security/sandbox/win/src/policy_engine_opcodes.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright (c) 2010 The Chromium Authors. All rights reserved.
     2 // Use of this source code is governed by a BSD-style license that can be
     3 // found in the LICENSE file.
     5 #ifndef SANDBOX_WIN_SRC_POLICY_ENGINE_OPCODES_H_
     6 #define SANDBOX_WIN_SRC_POLICY_ENGINE_OPCODES_H_
     8 #include "sandbox/win/src/policy_engine_params.h"
     9 #include "base/basictypes.h"
    11 // The low-level policy is implemented using the concept of policy 'opcodes'.
    12 // An opcode is a structure that contains enough information to perform one
    13 // comparison against one single input parameter. For example, an opcode can
    14 // encode just one of the following comparison:
    15 //
    16 // - Is input parameter 3 not equal to NULL?
    17 // - Does input parameter 2 start with L"c:\\"?
    18 // - Is input parameter 5, bit 3 is equal 1?
    19 //
    20 // Each opcode is in fact equivalent to a function invocation where all
    21 // the parameters are known by the opcode except one. So say you have a
    22 // function of this form:
    23 //      bool fn(a, b, c, d)  with 4 arguments
    24 //
    25 // Then an opcode is:
    26 //      op(fn, b, c, d)
    27 // Which stores the function to call and its 3 last arguments
    28 //
    29 // Then and opcode evaluation is:
    30 //      op.eval(a)  ------------------------> fn(a,b,c,d)
    31 //                        internally calls
    32 //
    33 // The idea is that complex policy rules can be split into streams of
    34 // opcodes which are evaluated in sequence. The evaluation is done in
    35 // groups of opcodes that have N comparison opcodes plus 1 action opcode:
    36 //
    37 // [comparison 1][comparison 2]...[comparison N][action][comparison 1]...
    38 //    ----- evaluation order----------->
    39 //
    40 // Each opcode group encodes one high-level policy rule. The rule applies
    41 // only if all the conditions on the group evaluate to true. The action
    42 // opcode contains the policy outcome for that particular rule.
    43 //
    44 // Note that this header contains the main building blocks of low-level policy
    45 // but not the low level policy class.
    46 namespace sandbox {
    48 // These are the possible policy outcomes. Note that some of them might
    49 // not apply and can be removed. Also note that The following values only
    50 // specify what to do, not how to do it and it is acceptable given specific
    51 // cases to ignore the policy outcome.
    52 enum EvalResult {
    53   // Comparison opcode values:
    54   EVAL_TRUE,   // Opcode condition evaluated true.
    55   EVAL_FALSE,  // Opcode condition evaluated false.
    56   EVAL_ERROR,  // Opcode condition generated an error while evaluating.
    57   // Action opcode values:
    58   ASK_BROKER,  // The target must generate an IPC to the broker. On the broker
    59                // side, this means grant access to the resource.
    60   DENY_ACCESS,   // No access granted to the resource.
    61   GIVE_READONLY,  // Give readonly access to the resource.
    62   GIVE_ALLACCESS,  // Give full access to the resource.
    63   GIVE_CACHED,  // IPC is not required. Target can return a cached handle.
    64   GIVE_FIRST,  // TODO(cpu)
    65   SIGNAL_ALARM,  // Unusual activity. Generate an alarm.
    66   FAKE_SUCCESS,  // Do not call original function. Just return 'success'.
    67   FAKE_ACCESS_DENIED,  // Do not call original function. Just return 'denied'
    68                        // and do not do IPC.
    69   TERMINATE_PROCESS,  // Destroy target process. Do IPC as well.
    70 };
    72 // The following are the implemented opcodes.
    73 enum OpcodeID {
    74   OP_ALWAYS_FALSE,  // Evaluates to false (EVAL_FALSE).
    75   OP_ALWAYS_TRUE,  // Evaluates to true (EVAL_TRUE).
    76   OP_NUMBER_MATCH,  // Match a 32-bit integer as n == a.
    77   OP_ULONG_MATCH_RANGE,  // Match an ulong integer as a <= n <= b.
    78   OP_ULONG_AND_MATCH,  // Match using bitwise AND; as in: n & a != 0.
    79   OP_WSTRING_MATCH,  // Match a string for equality.
    80   OP_ACTION  // Evaluates to an action opcode.
    81 };
    83 // Options that apply to every opcode. They are specified when creating
    84 // each opcode using OpcodeFactory::MakeOpXXXXX() family of functions
    85 // Do nothing special.
    86 const uint32 kPolNone = 0;
    88 // Convert EVAL_TRUE into EVAL_FALSE and vice-versa. This allows to express
    89 // negated conditions such as if ( a && !b).
    90 const uint32 kPolNegateEval = 1;
    92 // Zero the MatchContext context structure. This happens after the opcode
    93 // is evaluated.
    94 const uint32 kPolClearContext = 2;
    96 // Use OR when evaluating this set of opcodes. The policy evaluator by default
    97 // uses AND when evaluating. Very helpful when
    98 // used with kPolNegateEval. For example if you have a condition best expressed
    99 // as if(! (a && b && c)), the use of this flags allows it to be expressed as
   100 // if ((!a) || (!b) || (!c)).
   101 const uint32 kPolUseOREval = 4;
   103 // Keeps the evaluation state between opcode evaluations. This is used
   104 // for string matching where the next opcode needs to continue matching
   105 // from the last character position from the current opcode. The match
   106 // context is preserved across opcode evaluation unless an opcode specifies
   107 // as an option kPolClearContext.
   108 struct MatchContext {
   109   size_t position;
   110   uint32 options;
   112   MatchContext() {
   113     Clear();
   114   }
   116   void Clear() {
   117     position = 0;
   118     options = 0;
   119   }
   120 };
   122 // Models a policy opcode; that is a condition evaluation were all the
   123 // arguments but one are stored in objects of this class. Use OpcodeFactory
   124 // to create objects of this type.
   125 // This class is just an implementation artifact and not exposed to the
   126 // API clients or visible in the intercepted service. Internally, an
   127 // opcode is just:
   128 //  - An integer that identifies the actual opcode.
   129 //  - An index to indicate which one is the input argument
   130 //  - An array of arguments.
   131 // While an OO hierarchy of objects would have been a natural choice, the fact
   132 // that 1) this code can execute before the CRT is loaded, presents serious
   133 // problems in terms of guarantees about the actual state of the vtables and
   134 // 2) because the opcode objects are generated in the broker process, we need to
   135 // use plain objects. To preserve some minimal type safety templates are used
   136 // when possible.
   137 class PolicyOpcode {
   138   friend class OpcodeFactory;
   139  public:
   140   // Evaluates the opcode. For a typical comparison opcode the return value
   141   // is EVAL_TRUE or EVAL_FALSE. If there was an error in the evaluation the
   142   // the return is EVAL_ERROR. If the opcode is an action opcode then the
   143   // return can take other values such as ASK_BROKER.
   144   // parameters: An array of all input parameters. This argument is normally
   145   // created by the macros POLPARAMS_BEGIN() POLPARAMS_END.
   146   // count: The number of parameters passed as first argument.
   147   // match: The match context that is persisted across the opcode evaluation
   148   // sequence.
   149   EvalResult Evaluate(const ParameterSet* parameters, size_t count,
   150                       MatchContext* match);
   152   // Retrieves a stored argument by index. Valid index values are
   153   // from 0 to < kArgumentCount.
   154   template <typename T>
   155   void GetArgument(size_t index, T* argument) const {
   156     COMPILE_ASSERT(sizeof(T) <= sizeof(arguments_[0]), invalid_size);
   157     *argument = *reinterpret_cast<const T*>(&arguments_[index].mem);
   158   }
   160   // Sets a stored argument by index. Valid index values are
   161   // from 0 to < kArgumentCount.
   162   template <typename T>
   163   void SetArgument(size_t index, const T& argument) {
   164     COMPILE_ASSERT(sizeof(T) <= sizeof(arguments_[0]), invalid_size);
   165     *reinterpret_cast<T*>(&arguments_[index].mem) = argument;
   166   }
   168   // Retrieves the actual address of an string argument. When using
   169   // GetArgument() to retrieve an index that contains a string, the returned
   170   // value is just an offset to the actual string.
   171   // index: the stored string index. Valid values are from 0
   172   // to < kArgumentCount.
   173   const wchar_t* GetRelativeString(size_t index) const {
   174     ptrdiff_t str_delta = 0;
   175     GetArgument(index, &str_delta);
   176     const char* delta = reinterpret_cast<const char*>(this) + str_delta;
   177     return reinterpret_cast<const wchar_t*>(delta);
   178   }
   180   // Returns true if this opcode is an action opcode without actually
   181   // evaluating it. Used to do a quick scan forward to the next opcode group.
   182   bool IsAction() const {
   183     return (OP_ACTION == opcode_id_);
   184   };
   186   // Returns the opcode type.
   187   OpcodeID GetID() const {
   188     return opcode_id_;
   189   }
   191   // Returns the stored options such as kPolNegateEval and others.
   192   uint32 GetOptions() const {
   193     return options_;
   194   }
   196   // Sets the stored options such as kPolNegateEval.
   197   void SetOptions(int16 options) {
   198     options_ = options;
   199   }
   201  private:
   203   static const size_t kArgumentCount = 4;  // The number of supported argument.
   205   struct OpcodeArgument {
   206     UINT_PTR mem;
   207   };
   209   // Better define placement new in the class instead of relying on the
   210   // global definition which seems to be fubared.
   211   void* operator new(size_t, void* location) {
   212     return location;
   213   }
   215   // Helper function to evaluate the opcode. The parameters have the same
   216   // meaning that in Evaluate().
   217   EvalResult EvaluateHelper(const ParameterSet* parameters,
   218                            MatchContext* match);
   219   OpcodeID opcode_id_;
   220   int16 parameter_;
   221   int16 options_;
   222   OpcodeArgument arguments_[PolicyOpcode::kArgumentCount];
   223 };
   225 enum StringMatchOptions {
   226   CASE_SENSITIVE = 0,      // Pay or Not attention to the case as defined by
   227   CASE_INSENSITIVE = 1,    // RtlCompareUnicodeString windows API.
   228   EXACT_LENGHT = 2         // Don't do substring match. Do full string match.
   229 };
   231 // Opcodes that do string comparisons take a parameter that is the starting
   232 // position to perform the comparison so we can do substring matching. There
   233 // are two special values:
   234 //
   235 // Start from the current position and compare strings advancing forward until
   236 // a match is found if any. Similar to CRT strstr().
   237 const int  kSeekForward = -1;
   238 // Perform a match with the end of the string. It only does a single comparison.
   239 const int  kSeekToEnd = 0xfffff;
   242 // A PolicyBuffer is a variable size structure that contains all the opcodes
   243 // that are to be created or evaluated in sequence.
   244 struct PolicyBuffer {
   245   size_t opcode_count;
   246   PolicyOpcode opcodes[1];
   247 };
   249 // Helper class to create any opcode sequence. This class is normally invoked
   250 // only by the high level policy module or when you need to handcraft a special
   251 // policy.
   252 // The factory works by creating the opcodes using a chunk of memory given
   253 // in the constructor. The opcodes themselves are allocated from the beginning
   254 // (top) of the memory, while any string that an opcode needs is allocated from
   255 // the end (bottom) of the memory.
   256 //
   257 // In essence:
   258 //
   259 //   low address ---> [opcode 1]
   260 //                    [opcode 2]
   261 //                    [opcode 3]
   262 //                    |        | <--- memory_top_
   263 //                    | free   |
   264 //                    |        |
   265 //                    |        | <--- memory_bottom_
   266 //                    [string 1]
   267 //   high address --> [string 2]
   268 //
   269 // Note that this class does not keep track of the number of opcodes made and
   270 // it is designed to be a building block for low-level policy.
   271 //
   272 // Note that any of the MakeOpXXXXX member functions below can return NULL on
   273 // failure. When that happens opcode sequence creation must be aborted.
   274 class OpcodeFactory {
   275  public:
   276   // memory: base pointer to a chunk of memory where the opcodes are created.
   277   // memory_size: the size in bytes of the memory chunk.
   278   OpcodeFactory(char* memory, size_t memory_size)
   279       : memory_top_(memory) {
   280     memory_bottom_ = &memory_top_[memory_size];
   281   }
   283   // policy: contains the raw memory where the opcodes are created.
   284   // memory_size: contains the actual size of the policy argument.
   285   OpcodeFactory(PolicyBuffer* policy, size_t memory_size) {
   286     memory_top_ = reinterpret_cast<char*>(&policy->opcodes[0]);
   287     memory_bottom_ = &memory_top_[memory_size];
   288   }
   290   // Returns the available memory to make opcodes.
   291   size_t memory_size() const {
   292     return memory_bottom_ - memory_top_;
   293   }
   295   // Creates an OpAlwaysFalse opcode.
   296   PolicyOpcode* MakeOpAlwaysFalse(uint32 options);
   298   // Creates an OpAlwaysFalse opcode.
   299   PolicyOpcode* MakeOpAlwaysTrue(uint32 options);
   301   // Creates an OpAction opcode.
   302   // action: The action to return when Evaluate() is called.
   303   PolicyOpcode* MakeOpAction(EvalResult action, uint32 options);
   305   // Creates an OpNumberMatch opcode.
   306   // selected_param: index of the input argument. It must be a ulong or the
   307   // evaluation result will generate a EVAL_ERROR.
   308   // match: the number to compare against the selected_param.
   309   PolicyOpcode* MakeOpNumberMatch(int16 selected_param, unsigned long match,
   310                                   uint32 options);
   312   // Creates an OpNumberMatch opcode (void pointers are cast to numbers).
   313   // selected_param: index of the input argument. It must be an void* or the
   314   // evaluation result will generate a EVAL_ERROR.
   315   // match: the pointer numeric value to compare against selected_param.
   316   PolicyOpcode* MakeOpVoidPtrMatch(int16 selected_param, const void* match,
   317                                    uint32 options);
   319   // Creates an OpUlongMatchRange opcode using the memory passed in the ctor.
   320   // selected_param: index of the input argument. It must be a ulong or the
   321   // evaluation result will generate a EVAL_ERROR.
   322   // lower_bound, upper_bound: the range to compare against selected_param.
   323   PolicyOpcode* MakeOpUlongMatchRange(int16 selected_param,
   324                                       unsigned long lower_bound,
   325                                       unsigned long upper_bound,
   326                                       uint32 options);
   328   // Creates an OpWStringMatch opcode using the raw memory passed in the ctor.
   329   // selected_param: index of the input argument. It must be a wide string
   330   // pointer or the evaluation result will generate a EVAL_ERROR.
   331   // match_str: string to compare against selected_param.
   332   // start_position: when its value is from 0 to < 0x7fff it indicates an
   333   // offset from the selected_param string where to perform the comparison. If
   334   // the value is SeekForward  then a substring search is performed. If the
   335   // value is SeekToEnd the comparison is performed against the last part of
   336   // the selected_param string.
   337   // Note that the range in the position (0 to 0x7fff) is dictated by the
   338   // current implementation.
   339   // match_opts: Indicates additional matching flags. Currently CaseInsensitive
   340   // is supported.
   341   PolicyOpcode* MakeOpWStringMatch(int16 selected_param,
   342                                    const wchar_t* match_str,
   343                                    int start_position,
   344                                    StringMatchOptions match_opts,
   345                                    uint32 options);
   347   // Creates an OpUlongAndMatch opcode using the raw memory passed in the ctor.
   348   // selected_param: index of the input argument. It must be ulong or the
   349   // evaluation result will generate a EVAL_ERROR.
   350   // match: the value to bitwise AND against selected_param.
   351   PolicyOpcode* MakeOpUlongAndMatch(int16 selected_param,
   352                                     unsigned long match,
   353                                     uint32 options);
   355  private:
   356   // Constructs the common part of every opcode. selected_param is the index
   357   // of the input param to use when evaluating the opcode. Pass -1 in
   358   // selected_param to indicate that no input parameter is required.
   359   PolicyOpcode* MakeBase(OpcodeID opcode_id, uint32 options,
   360                          int16 selected_param);
   362   // Allocates (and copies) a string (of size length) inside the buffer and
   363   // returns the displacement with respect to start.
   364   ptrdiff_t AllocRelative(void* start, const wchar_t* str, size_t lenght);
   366   // Points to the lowest currently available address of the memory
   367   // used to make the opcodes. This pointer increments as opcodes are made.
   368   char* memory_top_;
   370   // Points to the highest currently available address of the memory
   371   // used to make the opcodes. This pointer decrements as opcode strings are
   372   // allocated.
   373   char* memory_bottom_;
   375   DISALLOW_COPY_AND_ASSIGN(OpcodeFactory);
   376 };
   378 }  // namespace sandbox
   380 #endif  // SANDBOX_WIN_SRC_POLICY_ENGINE_OPCODES_H_

mercurial