Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
1 // Acorn is a tiny, fast JavaScript parser written in JavaScript.
2 //
3 // Acorn was written by Marijn Haverbeke and released under an MIT
4 // license. The Unicode regexps (for identifiers and whitespace) were
5 // taken from [Esprima](http://esprima.org) by Ariya Hidayat.
6 //
7 // Git repositories for Acorn are available at
8 //
9 // http://marijnhaverbeke.nl/git/acorn
10 // https://github.com/marijnh/acorn.git
11 //
12 // Please use the [github bug tracker][ghbt] to report issues.
13 //
14 // [ghbt]: https://github.com/marijnh/acorn/issues
15 //
16 // This file defines the main parser interface. The library also comes
17 // with a [error-tolerant parser][dammit] and an
18 // [abstract syntax tree walker][walk], defined in other files.
19 //
20 // [dammit]: acorn_loose.js
21 // [walk]: util/walk.js
23 (function(root, mod) {
24 if (typeof exports == "object" && typeof module == "object") return mod(exports); // CommonJS
25 if (typeof define == "function" && define.amd) return define(["exports"], mod); // AMD
26 mod(root.acorn || (root.acorn = {})); // Plain browser env
27 })(this, function(exports) {
28 "use strict";
30 exports.version = "0.4.1";
32 // The main exported interface (under `self.acorn` when in the
33 // browser) is a `parse` function that takes a code string and
34 // returns an abstract syntax tree as specified by [Mozilla parser
35 // API][api], with the caveat that the SpiderMonkey-specific syntax
36 // (`let`, `yield`, inline XML, etc) is not recognized.
37 //
38 // [api]: https://developer.mozilla.org/en-US/docs/SpiderMonkey/Parser_API
40 var options, input, inputLen, sourceFile;
42 exports.parse = function(inpt, opts) {
43 input = String(inpt); inputLen = input.length;
44 setOptions(opts);
45 initTokenState();
46 return parseTopLevel(options.program);
47 };
49 // A second optional argument can be given to further configure
50 // the parser process. These options are recognized:
52 var defaultOptions = exports.defaultOptions = {
53 // `ecmaVersion` indicates the ECMAScript version to parse. Must
54 // be either 3 or 5. This
55 // influences support for strict mode, the set of reserved words, and
56 // support for getters and setter.
57 ecmaVersion: 5,
58 // Turn on `strictSemicolons` to prevent the parser from doing
59 // automatic semicolon insertion.
60 strictSemicolons: false,
61 // When `allowTrailingCommas` is false, the parser will not allow
62 // trailing commas in array and object literals.
63 allowTrailingCommas: true,
64 // By default, reserved words are not enforced. Enable
65 // `forbidReserved` to enforce them.
66 forbidReserved: false,
67 // When `locations` is on, `loc` properties holding objects with
68 // `start` and `end` properties in `{line, column}` form (with
69 // line being 1-based and column 0-based) will be attached to the
70 // nodes.
71 locations: false,
72 // A function can be passed as `onComment` option, which will
73 // cause Acorn to call that function with `(block, text, start,
74 // end)` parameters whenever a comment is skipped. `block` is a
75 // boolean indicating whether this is a block (`/* */`) comment,
76 // `text` is the content of the comment, and `start` and `end` are
77 // character offsets that denote the start and end of the comment.
78 // When the `locations` option is on, two more parameters are
79 // passed, the full `{line, column}` locations of the start and
80 // end of the comments. Note that you are not allowed to call the
81 // parser from the callback—that will corrupt its internal state.
82 onComment: null,
83 // Nodes have their start and end characters offsets recorded in
84 // `start` and `end` properties (directly on the node, rather than
85 // the `loc` object, which holds line/column data. To also add a
86 // [semi-standardized][range] `range` property holding a `[start,
87 // end]` array with the same numbers, set the `ranges` option to
88 // `true`.
89 //
90 // [range]: https://bugzilla.mozilla.org/show_bug.cgi?id=745678
91 ranges: false,
92 // It is possible to parse multiple files into a single AST by
93 // passing the tree produced by parsing the first file as
94 // `program` option in subsequent parses. This will add the
95 // toplevel forms of the parsed file to the `Program` (top) node
96 // of an existing parse tree.
97 program: null,
98 // When `locations` is on, you can pass this to record the source
99 // file in every node's `loc` object.
100 sourceFile: null,
101 // This value, if given, is stored in every node, whether
102 // `locations` is on or off.
103 directSourceFile: null
104 };
106 function setOptions(opts) {
107 options = opts || {};
108 for (var opt in defaultOptions) if (!Object.prototype.hasOwnProperty.call(options, opt))
109 options[opt] = defaultOptions[opt];
110 sourceFile = options.sourceFile || null;
111 }
113 // The `getLineInfo` function is mostly useful when the
114 // `locations` option is off (for performance reasons) and you
115 // want to find the line/column position for a given character
116 // offset. `input` should be the code string that the offset refers
117 // into.
119 var getLineInfo = exports.getLineInfo = function(input, offset) {
120 for (var line = 1, cur = 0;;) {
121 lineBreak.lastIndex = cur;
122 var match = lineBreak.exec(input);
123 if (match && match.index < offset) {
124 ++line;
125 cur = match.index + match[0].length;
126 } else break;
127 }
128 return {line: line, column: offset - cur};
129 };
131 // Acorn is organized as a tokenizer and a recursive-descent parser.
132 // The `tokenize` export provides an interface to the tokenizer.
133 // Because the tokenizer is optimized for being efficiently used by
134 // the Acorn parser itself, this interface is somewhat crude and not
135 // very modular. Performing another parse or call to `tokenize` will
136 // reset the internal state, and invalidate existing tokenizers.
138 exports.tokenize = function(inpt, opts) {
139 input = String(inpt); inputLen = input.length;
140 setOptions(opts);
141 initTokenState();
143 var t = {};
144 function getToken(forceRegexp) {
145 lastEnd = tokEnd;
146 readToken(forceRegexp);
147 t.start = tokStart; t.end = tokEnd;
148 t.startLoc = tokStartLoc; t.endLoc = tokEndLoc;
149 t.type = tokType; t.value = tokVal;
150 return t;
151 }
152 getToken.jumpTo = function(pos, reAllowed) {
153 tokPos = pos;
154 if (options.locations) {
155 tokCurLine = 1;
156 tokLineStart = lineBreak.lastIndex = 0;
157 var match;
158 while ((match = lineBreak.exec(input)) && match.index < pos) {
159 ++tokCurLine;
160 tokLineStart = match.index + match[0].length;
161 }
162 }
163 tokRegexpAllowed = reAllowed;
164 skipSpace();
165 };
166 return getToken;
167 };
169 // State is kept in (closure-)global variables. We already saw the
170 // `options`, `input`, and `inputLen` variables above.
172 // The current position of the tokenizer in the input.
174 var tokPos;
176 // The start and end offsets of the current token.
178 var tokStart, tokEnd;
180 // When `options.locations` is true, these hold objects
181 // containing the tokens start and end line/column pairs.
183 var tokStartLoc, tokEndLoc;
185 // The type and value of the current token. Token types are objects,
186 // named by variables against which they can be compared, and
187 // holding properties that describe them (indicating, for example,
188 // the precedence of an infix operator, and the original name of a
189 // keyword token). The kind of value that's held in `tokVal` depends
190 // on the type of the token. For literals, it is the literal value,
191 // for operators, the operator name, and so on.
193 var tokType, tokVal;
195 // Interal state for the tokenizer. To distinguish between division
196 // operators and regular expressions, it remembers whether the last
197 // token was one that is allowed to be followed by an expression.
198 // (If it is, a slash is probably a regexp, if it isn't it's a
199 // division operator. See the `parseStatement` function for a
200 // caveat.)
202 var tokRegexpAllowed;
204 // When `options.locations` is true, these are used to keep
205 // track of the current line, and know when a new line has been
206 // entered.
208 var tokCurLine, tokLineStart;
210 // These store the position of the previous token, which is useful
211 // when finishing a node and assigning its `end` position.
213 var lastStart, lastEnd, lastEndLoc;
215 // This is the parser's state. `inFunction` is used to reject
216 // `return` statements outside of functions, `labels` to verify that
217 // `break` and `continue` have somewhere to jump to, and `strict`
218 // indicates whether strict mode is on.
220 var inFunction, labels, strict;
222 // This function is used to raise exceptions on parse errors. It
223 // takes an offset integer (into the current `input`) to indicate
224 // the location of the error, attaches the position to the end
225 // of the error message, and then raises a `SyntaxError` with that
226 // message.
228 function raise(pos, message) {
229 var loc = getLineInfo(input, pos);
230 message += " (" + loc.line + ":" + loc.column + ")";
231 var err = new SyntaxError(message);
232 err.pos = pos; err.loc = loc; err.raisedAt = tokPos;
233 throw err;
234 }
236 // Reused empty array added for node fields that are always empty.
238 var empty = [];
240 // ## Token types
242 // The assignment of fine-grained, information-carrying type objects
243 // allows the tokenizer to store the information it has about a
244 // token in a way that is very cheap for the parser to look up.
246 // All token type variables start with an underscore, to make them
247 // easy to recognize.
249 // These are the general types. The `type` property is only used to
250 // make them recognizeable when debugging.
252 var _num = {type: "num"}, _regexp = {type: "regexp"}, _string = {type: "string"};
253 var _name = {type: "name"}, _eof = {type: "eof"};
255 // Keyword tokens. The `keyword` property (also used in keyword-like
256 // operators) indicates that the token originated from an
257 // identifier-like word, which is used when parsing property names.
258 //
259 // The `beforeExpr` property is used to disambiguate between regular
260 // expressions and divisions. It is set on all token types that can
261 // be followed by an expression (thus, a slash after them would be a
262 // regular expression).
263 //
264 // `isLoop` marks a keyword as starting a loop, which is important
265 // to know when parsing a label, in order to allow or disallow
266 // continue jumps to that label.
268 var _break = {keyword: "break"}, _case = {keyword: "case", beforeExpr: true}, _catch = {keyword: "catch"};
269 var _continue = {keyword: "continue"}, _debugger = {keyword: "debugger"}, _default = {keyword: "default"};
270 var _do = {keyword: "do", isLoop: true}, _else = {keyword: "else", beforeExpr: true};
271 var _finally = {keyword: "finally"}, _for = {keyword: "for", isLoop: true}, _function = {keyword: "function"};
272 var _if = {keyword: "if"}, _return = {keyword: "return", beforeExpr: true}, _switch = {keyword: "switch"};
273 var _throw = {keyword: "throw", beforeExpr: true}, _try = {keyword: "try"}, _var = {keyword: "var"};
274 var _while = {keyword: "while", isLoop: true}, _with = {keyword: "with"}, _new = {keyword: "new", beforeExpr: true};
275 var _this = {keyword: "this"};
277 // The keywords that denote values.
279 var _null = {keyword: "null", atomValue: null}, _true = {keyword: "true", atomValue: true};
280 var _false = {keyword: "false", atomValue: false};
282 // Some keywords are treated as regular operators. `in` sometimes
283 // (when parsing `for`) needs to be tested against specifically, so
284 // we assign a variable name to it for quick comparing.
286 var _in = {keyword: "in", binop: 7, beforeExpr: true};
288 // Map keyword names to token types.
290 var keywordTypes = {"break": _break, "case": _case, "catch": _catch,
291 "continue": _continue, "debugger": _debugger, "default": _default,
292 "do": _do, "else": _else, "finally": _finally, "for": _for,
293 "function": _function, "if": _if, "return": _return, "switch": _switch,
294 "throw": _throw, "try": _try, "var": _var, "while": _while, "with": _with,
295 "null": _null, "true": _true, "false": _false, "new": _new, "in": _in,
296 "instanceof": {keyword: "instanceof", binop: 7, beforeExpr: true}, "this": _this,
297 "typeof": {keyword: "typeof", prefix: true, beforeExpr: true},
298 "void": {keyword: "void", prefix: true, beforeExpr: true},
299 "delete": {keyword: "delete", prefix: true, beforeExpr: true}};
301 // Punctuation token types. Again, the `type` property is purely for debugging.
303 var _bracketL = {type: "[", beforeExpr: true}, _bracketR = {type: "]"}, _braceL = {type: "{", beforeExpr: true};
304 var _braceR = {type: "}"}, _parenL = {type: "(", beforeExpr: true}, _parenR = {type: ")"};
305 var _comma = {type: ",", beforeExpr: true}, _semi = {type: ";", beforeExpr: true};
306 var _colon = {type: ":", beforeExpr: true}, _dot = {type: "."}, _question = {type: "?", beforeExpr: true};
308 // Operators. These carry several kinds of properties to help the
309 // parser use them properly (the presence of these properties is
310 // what categorizes them as operators).
311 //
312 // `binop`, when present, specifies that this operator is a binary
313 // operator, and will refer to its precedence.
314 //
315 // `prefix` and `postfix` mark the operator as a prefix or postfix
316 // unary operator. `isUpdate` specifies that the node produced by
317 // the operator should be of type UpdateExpression rather than
318 // simply UnaryExpression (`++` and `--`).
319 //
320 // `isAssign` marks all of `=`, `+=`, `-=` etcetera, which act as
321 // binary operators with a very low precedence, that should result
322 // in AssignmentExpression nodes.
324 var _slash = {binop: 10, beforeExpr: true}, _eq = {isAssign: true, beforeExpr: true};
325 var _assign = {isAssign: true, beforeExpr: true};
326 var _incDec = {postfix: true, prefix: true, isUpdate: true}, _prefix = {prefix: true, beforeExpr: true};
327 var _logicalOR = {binop: 1, beforeExpr: true};
328 var _logicalAND = {binop: 2, beforeExpr: true};
329 var _bitwiseOR = {binop: 3, beforeExpr: true};
330 var _bitwiseXOR = {binop: 4, beforeExpr: true};
331 var _bitwiseAND = {binop: 5, beforeExpr: true};
332 var _equality = {binop: 6, beforeExpr: true};
333 var _relational = {binop: 7, beforeExpr: true};
334 var _bitShift = {binop: 8, beforeExpr: true};
335 var _plusMin = {binop: 9, prefix: true, beforeExpr: true};
336 var _multiplyModulo = {binop: 10, beforeExpr: true};
338 // Provide access to the token types for external users of the
339 // tokenizer.
341 exports.tokTypes = {bracketL: _bracketL, bracketR: _bracketR, braceL: _braceL, braceR: _braceR,
342 parenL: _parenL, parenR: _parenR, comma: _comma, semi: _semi, colon: _colon,
343 dot: _dot, question: _question, slash: _slash, eq: _eq, name: _name, eof: _eof,
344 num: _num, regexp: _regexp, string: _string};
345 for (var kw in keywordTypes) exports.tokTypes["_" + kw] = keywordTypes[kw];
347 // This is a trick taken from Esprima. It turns out that, on
348 // non-Chrome browsers, to check whether a string is in a set, a
349 // predicate containing a big ugly `switch` statement is faster than
350 // a regular expression, and on Chrome the two are about on par.
351 // This function uses `eval` (non-lexical) to produce such a
352 // predicate from a space-separated string of words.
353 //
354 // It starts by sorting the words by length.
356 function makePredicate(words) {
357 words = words.split(" ");
358 var f = "", cats = [];
359 out: for (var i = 0; i < words.length; ++i) {
360 for (var j = 0; j < cats.length; ++j)
361 if (cats[j][0].length == words[i].length) {
362 cats[j].push(words[i]);
363 continue out;
364 }
365 cats.push([words[i]]);
366 }
367 function compareTo(arr) {
368 if (arr.length == 1) return f += "return str === " + JSON.stringify(arr[0]) + ";";
369 f += "switch(str){";
370 for (var i = 0; i < arr.length; ++i) f += "case " + JSON.stringify(arr[i]) + ":";
371 f += "return true}return false;";
372 }
374 // When there are more than three length categories, an outer
375 // switch first dispatches on the lengths, to save on comparisons.
377 if (cats.length > 3) {
378 cats.sort(function(a, b) {return b.length - a.length;});
379 f += "switch(str.length){";
380 for (var i = 0; i < cats.length; ++i) {
381 var cat = cats[i];
382 f += "case " + cat[0].length + ":";
383 compareTo(cat);
384 }
385 f += "}";
387 // Otherwise, simply generate a flat `switch` statement.
389 } else {
390 compareTo(words);
391 }
392 return new Function("str", f);
393 }
395 // The ECMAScript 3 reserved word list.
397 var isReservedWord3 = makePredicate("abstract boolean byte char class double enum export extends final float goto implements import int interface long native package private protected public short static super synchronized throws transient volatile");
399 // ECMAScript 5 reserved words.
401 var isReservedWord5 = makePredicate("class enum extends super const export import");
403 // The additional reserved words in strict mode.
405 var isStrictReservedWord = makePredicate("implements interface let package private protected public static yield");
407 // The forbidden variable names in strict mode.
409 var isStrictBadIdWord = makePredicate("eval arguments");
411 // And the keywords.
413 var isKeyword = makePredicate("break case catch continue debugger default do else finally for function if return switch throw try var while with null true false instanceof typeof void delete new in this");
415 // ## Character categories
417 // Big ugly regular expressions that match characters in the
418 // whitespace, identifier, and identifier-start categories. These
419 // are only applied when a character is found to actually have a
420 // code point above 128.
422 var nonASCIIwhitespace = /[\u1680\u180e\u2000-\u200a\u202f\u205f\u3000\ufeff]/;
423 var nonASCIIidentifierStartChars = "\xaa\xb5\xba\xc0-\xd6\xd8-\xf6\xf8-\u02c1\u02c6-\u02d1\u02e0-\u02e4\u02ec\u02ee\u0370-\u0374\u0376\u0377\u037a-\u037d\u0386\u0388-\u038a\u038c\u038e-\u03a1\u03a3-\u03f5\u03f7-\u0481\u048a-\u0527\u0531-\u0556\u0559\u0561-\u0587\u05d0-\u05ea\u05f0-\u05f2\u0620-\u064a\u066e\u066f\u0671-\u06d3\u06d5\u06e5\u06e6\u06ee\u06ef\u06fa-\u06fc\u06ff\u0710\u0712-\u072f\u074d-\u07a5\u07b1\u07ca-\u07ea\u07f4\u07f5\u07fa\u0800-\u0815\u081a\u0824\u0828\u0840-\u0858\u08a0\u08a2-\u08ac\u0904-\u0939\u093d\u0950\u0958-\u0961\u0971-\u0977\u0979-\u097f\u0985-\u098c\u098f\u0990\u0993-\u09a8\u09aa-\u09b0\u09b2\u09b6-\u09b9\u09bd\u09ce\u09dc\u09dd\u09df-\u09e1\u09f0\u09f1\u0a05-\u0a0a\u0a0f\u0a10\u0a13-\u0a28\u0a2a-\u0a30\u0a32\u0a33\u0a35\u0a36\u0a38\u0a39\u0a59-\u0a5c\u0a5e\u0a72-\u0a74\u0a85-\u0a8d\u0a8f-\u0a91\u0a93-\u0aa8\u0aaa-\u0ab0\u0ab2\u0ab3\u0ab5-\u0ab9\u0abd\u0ad0\u0ae0\u0ae1\u0b05-\u0b0c\u0b0f\u0b10\u0b13-\u0b28\u0b2a-\u0b30\u0b32\u0b33\u0b35-\u0b39\u0b3d\u0b5c\u0b5d\u0b5f-\u0b61\u0b71\u0b83\u0b85-\u0b8a\u0b8e-\u0b90\u0b92-\u0b95\u0b99\u0b9a\u0b9c\u0b9e\u0b9f\u0ba3\u0ba4\u0ba8-\u0baa\u0bae-\u0bb9\u0bd0\u0c05-\u0c0c\u0c0e-\u0c10\u0c12-\u0c28\u0c2a-\u0c33\u0c35-\u0c39\u0c3d\u0c58\u0c59\u0c60\u0c61\u0c85-\u0c8c\u0c8e-\u0c90\u0c92-\u0ca8\u0caa-\u0cb3\u0cb5-\u0cb9\u0cbd\u0cde\u0ce0\u0ce1\u0cf1\u0cf2\u0d05-\u0d0c\u0d0e-\u0d10\u0d12-\u0d3a\u0d3d\u0d4e\u0d60\u0d61\u0d7a-\u0d7f\u0d85-\u0d96\u0d9a-\u0db1\u0db3-\u0dbb\u0dbd\u0dc0-\u0dc6\u0e01-\u0e30\u0e32\u0e33\u0e40-\u0e46\u0e81\u0e82\u0e84\u0e87\u0e88\u0e8a\u0e8d\u0e94-\u0e97\u0e99-\u0e9f\u0ea1-\u0ea3\u0ea5\u0ea7\u0eaa\u0eab\u0ead-\u0eb0\u0eb2\u0eb3\u0ebd\u0ec0-\u0ec4\u0ec6\u0edc-\u0edf\u0f00\u0f40-\u0f47\u0f49-\u0f6c\u0f88-\u0f8c\u1000-\u102a\u103f\u1050-\u1055\u105a-\u105d\u1061\u1065\u1066\u106e-\u1070\u1075-\u1081\u108e\u10a0-\u10c5\u10c7\u10cd\u10d0-\u10fa\u10fc-\u1248\u124a-\u124d\u1250-\u1256\u1258\u125a-\u125d\u1260-\u1288\u128a-\u128d\u1290-\u12b0\u12b2-\u12b5\u12b8-\u12be\u12c0\u12c2-\u12c5\u12c8-\u12d6\u12d8-\u1310\u1312-\u1315\u1318-\u135a\u1380-\u138f\u13a0-\u13f4\u1401-\u166c\u166f-\u167f\u1681-\u169a\u16a0-\u16ea\u16ee-\u16f0\u1700-\u170c\u170e-\u1711\u1720-\u1731\u1740-\u1751\u1760-\u176c\u176e-\u1770\u1780-\u17b3\u17d7\u17dc\u1820-\u1877\u1880-\u18a8\u18aa\u18b0-\u18f5\u1900-\u191c\u1950-\u196d\u1970-\u1974\u1980-\u19ab\u19c1-\u19c7\u1a00-\u1a16\u1a20-\u1a54\u1aa7\u1b05-\u1b33\u1b45-\u1b4b\u1b83-\u1ba0\u1bae\u1baf\u1bba-\u1be5\u1c00-\u1c23\u1c4d-\u1c4f\u1c5a-\u1c7d\u1ce9-\u1cec\u1cee-\u1cf1\u1cf5\u1cf6\u1d00-\u1dbf\u1e00-\u1f15\u1f18-\u1f1d\u1f20-\u1f45\u1f48-\u1f4d\u1f50-\u1f57\u1f59\u1f5b\u1f5d\u1f5f-\u1f7d\u1f80-\u1fb4\u1fb6-\u1fbc\u1fbe\u1fc2-\u1fc4\u1fc6-\u1fcc\u1fd0-\u1fd3\u1fd6-\u1fdb\u1fe0-\u1fec\u1ff2-\u1ff4\u1ff6-\u1ffc\u2071\u207f\u2090-\u209c\u2102\u2107\u210a-\u2113\u2115\u2119-\u211d\u2124\u2126\u2128\u212a-\u212d\u212f-\u2139\u213c-\u213f\u2145-\u2149\u214e\u2160-\u2188\u2c00-\u2c2e\u2c30-\u2c5e\u2c60-\u2ce4\u2ceb-\u2cee\u2cf2\u2cf3\u2d00-\u2d25\u2d27\u2d2d\u2d30-\u2d67\u2d6f\u2d80-\u2d96\u2da0-\u2da6\u2da8-\u2dae\u2db0-\u2db6\u2db8-\u2dbe\u2dc0-\u2dc6\u2dc8-\u2dce\u2dd0-\u2dd6\u2dd8-\u2dde\u2e2f\u3005-\u3007\u3021-\u3029\u3031-\u3035\u3038-\u303c\u3041-\u3096\u309d-\u309f\u30a1-\u30fa\u30fc-\u30ff\u3105-\u312d\u3131-\u318e\u31a0-\u31ba\u31f0-\u31ff\u3400-\u4db5\u4e00-\u9fcc\ua000-\ua48c\ua4d0-\ua4fd\ua500-\ua60c\ua610-\ua61f\ua62a\ua62b\ua640-\ua66e\ua67f-\ua697\ua6a0-\ua6ef\ua717-\ua71f\ua722-\ua788\ua78b-\ua78e\ua790-\ua793\ua7a0-\ua7aa\ua7f8-\ua801\ua803-\ua805\ua807-\ua80a\ua80c-\ua822\ua840-\ua873\ua882-\ua8b3\ua8f2-\ua8f7\ua8fb\ua90a-\ua925\ua930-\ua946\ua960-\ua97c\ua984-\ua9b2\ua9cf\uaa00-\uaa28\uaa40-\uaa42\uaa44-\uaa4b\uaa60-\uaa76\uaa7a\uaa80-\uaaaf\uaab1\uaab5\uaab6\uaab9-\uaabd\uaac0\uaac2\uaadb-\uaadd\uaae0-\uaaea\uaaf2-\uaaf4\uab01-\uab06\uab09-\uab0e\uab11-\uab16\uab20-\uab26\uab28-\uab2e\uabc0-\uabe2\uac00-\ud7a3\ud7b0-\ud7c6\ud7cb-\ud7fb\uf900-\ufa6d\ufa70-\ufad9\ufb00-\ufb06\ufb13-\ufb17\ufb1d\ufb1f-\ufb28\ufb2a-\ufb36\ufb38-\ufb3c\ufb3e\ufb40\ufb41\ufb43\ufb44\ufb46-\ufbb1\ufbd3-\ufd3d\ufd50-\ufd8f\ufd92-\ufdc7\ufdf0-\ufdfb\ufe70-\ufe74\ufe76-\ufefc\uff21-\uff3a\uff41-\uff5a\uff66-\uffbe\uffc2-\uffc7\uffca-\uffcf\uffd2-\uffd7\uffda-\uffdc";
424 var nonASCIIidentifierChars = "\u0300-\u036f\u0483-\u0487\u0591-\u05bd\u05bf\u05c1\u05c2\u05c4\u05c5\u05c7\u0610-\u061a\u0620-\u0649\u0672-\u06d3\u06e7-\u06e8\u06fb-\u06fc\u0730-\u074a\u0800-\u0814\u081b-\u0823\u0825-\u0827\u0829-\u082d\u0840-\u0857\u08e4-\u08fe\u0900-\u0903\u093a-\u093c\u093e-\u094f\u0951-\u0957\u0962-\u0963\u0966-\u096f\u0981-\u0983\u09bc\u09be-\u09c4\u09c7\u09c8\u09d7\u09df-\u09e0\u0a01-\u0a03\u0a3c\u0a3e-\u0a42\u0a47\u0a48\u0a4b-\u0a4d\u0a51\u0a66-\u0a71\u0a75\u0a81-\u0a83\u0abc\u0abe-\u0ac5\u0ac7-\u0ac9\u0acb-\u0acd\u0ae2-\u0ae3\u0ae6-\u0aef\u0b01-\u0b03\u0b3c\u0b3e-\u0b44\u0b47\u0b48\u0b4b-\u0b4d\u0b56\u0b57\u0b5f-\u0b60\u0b66-\u0b6f\u0b82\u0bbe-\u0bc2\u0bc6-\u0bc8\u0bca-\u0bcd\u0bd7\u0be6-\u0bef\u0c01-\u0c03\u0c46-\u0c48\u0c4a-\u0c4d\u0c55\u0c56\u0c62-\u0c63\u0c66-\u0c6f\u0c82\u0c83\u0cbc\u0cbe-\u0cc4\u0cc6-\u0cc8\u0cca-\u0ccd\u0cd5\u0cd6\u0ce2-\u0ce3\u0ce6-\u0cef\u0d02\u0d03\u0d46-\u0d48\u0d57\u0d62-\u0d63\u0d66-\u0d6f\u0d82\u0d83\u0dca\u0dcf-\u0dd4\u0dd6\u0dd8-\u0ddf\u0df2\u0df3\u0e34-\u0e3a\u0e40-\u0e45\u0e50-\u0e59\u0eb4-\u0eb9\u0ec8-\u0ecd\u0ed0-\u0ed9\u0f18\u0f19\u0f20-\u0f29\u0f35\u0f37\u0f39\u0f41-\u0f47\u0f71-\u0f84\u0f86-\u0f87\u0f8d-\u0f97\u0f99-\u0fbc\u0fc6\u1000-\u1029\u1040-\u1049\u1067-\u106d\u1071-\u1074\u1082-\u108d\u108f-\u109d\u135d-\u135f\u170e-\u1710\u1720-\u1730\u1740-\u1750\u1772\u1773\u1780-\u17b2\u17dd\u17e0-\u17e9\u180b-\u180d\u1810-\u1819\u1920-\u192b\u1930-\u193b\u1951-\u196d\u19b0-\u19c0\u19c8-\u19c9\u19d0-\u19d9\u1a00-\u1a15\u1a20-\u1a53\u1a60-\u1a7c\u1a7f-\u1a89\u1a90-\u1a99\u1b46-\u1b4b\u1b50-\u1b59\u1b6b-\u1b73\u1bb0-\u1bb9\u1be6-\u1bf3\u1c00-\u1c22\u1c40-\u1c49\u1c5b-\u1c7d\u1cd0-\u1cd2\u1d00-\u1dbe\u1e01-\u1f15\u200c\u200d\u203f\u2040\u2054\u20d0-\u20dc\u20e1\u20e5-\u20f0\u2d81-\u2d96\u2de0-\u2dff\u3021-\u3028\u3099\u309a\ua640-\ua66d\ua674-\ua67d\ua69f\ua6f0-\ua6f1\ua7f8-\ua800\ua806\ua80b\ua823-\ua827\ua880-\ua881\ua8b4-\ua8c4\ua8d0-\ua8d9\ua8f3-\ua8f7\ua900-\ua909\ua926-\ua92d\ua930-\ua945\ua980-\ua983\ua9b3-\ua9c0\uaa00-\uaa27\uaa40-\uaa41\uaa4c-\uaa4d\uaa50-\uaa59\uaa7b\uaae0-\uaae9\uaaf2-\uaaf3\uabc0-\uabe1\uabec\uabed\uabf0-\uabf9\ufb20-\ufb28\ufe00-\ufe0f\ufe20-\ufe26\ufe33\ufe34\ufe4d-\ufe4f\uff10-\uff19\uff3f";
425 var nonASCIIidentifierStart = new RegExp("[" + nonASCIIidentifierStartChars + "]");
426 var nonASCIIidentifier = new RegExp("[" + nonASCIIidentifierStartChars + nonASCIIidentifierChars + "]");
428 // Whether a single character denotes a newline.
430 var newline = /[\n\r\u2028\u2029]/;
432 // Matches a whole line break (where CRLF is considered a single
433 // line break). Used to count lines.
435 var lineBreak = /\r\n|[\n\r\u2028\u2029]/g;
437 // Test whether a given character code starts an identifier.
439 var isIdentifierStart = exports.isIdentifierStart = function(code) {
440 if (code < 65) return code === 36;
441 if (code < 91) return true;
442 if (code < 97) return code === 95;
443 if (code < 123)return true;
444 return code >= 0xaa && nonASCIIidentifierStart.test(String.fromCharCode(code));
445 };
447 // Test whether a given character is part of an identifier.
449 var isIdentifierChar = exports.isIdentifierChar = function(code) {
450 if (code < 48) return code === 36;
451 if (code < 58) return true;
452 if (code < 65) return false;
453 if (code < 91) return true;
454 if (code < 97) return code === 95;
455 if (code < 123)return true;
456 return code >= 0xaa && nonASCIIidentifier.test(String.fromCharCode(code));
457 };
459 // ## Tokenizer
461 // These are used when `options.locations` is on, for the
462 // `tokStartLoc` and `tokEndLoc` properties.
464 function line_loc_t() {
465 this.line = tokCurLine;
466 this.column = tokPos - tokLineStart;
467 }
469 // Reset the token state. Used at the start of a parse.
471 function initTokenState() {
472 tokCurLine = 1;
473 tokPos = tokLineStart = 0;
474 tokRegexpAllowed = true;
475 skipSpace();
476 }
478 // Called at the end of every token. Sets `tokEnd`, `tokVal`, and
479 // `tokRegexpAllowed`, and skips the space after the token, so that
480 // the next one's `tokStart` will point at the right position.
482 function finishToken(type, val) {
483 tokEnd = tokPos;
484 if (options.locations) tokEndLoc = new line_loc_t;
485 tokType = type;
486 skipSpace();
487 tokVal = val;
488 tokRegexpAllowed = type.beforeExpr;
489 }
491 function skipBlockComment() {
492 var startLoc = options.onComment && options.locations && new line_loc_t;
493 var start = tokPos, end = input.indexOf("*/", tokPos += 2);
494 if (end === -1) raise(tokPos - 2, "Unterminated comment");
495 tokPos = end + 2;
496 if (options.locations) {
497 lineBreak.lastIndex = start;
498 var match;
499 while ((match = lineBreak.exec(input)) && match.index < tokPos) {
500 ++tokCurLine;
501 tokLineStart = match.index + match[0].length;
502 }
503 }
504 if (options.onComment)
505 options.onComment(true, input.slice(start + 2, end), start, tokPos,
506 startLoc, options.locations && new line_loc_t);
507 }
509 function skipLineComment() {
510 var start = tokPos;
511 var startLoc = options.onComment && options.locations && new line_loc_t;
512 var ch = input.charCodeAt(tokPos+=2);
513 while (tokPos < inputLen && ch !== 10 && ch !== 13 && ch !== 8232 && ch !== 8233) {
514 ++tokPos;
515 ch = input.charCodeAt(tokPos);
516 }
517 if (options.onComment)
518 options.onComment(false, input.slice(start + 2, tokPos), start, tokPos,
519 startLoc, options.locations && new line_loc_t);
520 }
522 // Called at the start of the parse and after every token. Skips
523 // whitespace and comments, and.
525 function skipSpace() {
526 while (tokPos < inputLen) {
527 var ch = input.charCodeAt(tokPos);
528 if (ch === 32) { // ' '
529 ++tokPos;
530 } else if (ch === 13) {
531 ++tokPos;
532 var next = input.charCodeAt(tokPos);
533 if (next === 10) {
534 ++tokPos;
535 }
536 if (options.locations) {
537 ++tokCurLine;
538 tokLineStart = tokPos;
539 }
540 } else if (ch === 10 || ch === 8232 || ch === 8233) {
541 ++tokPos;
542 if (options.locations) {
543 ++tokCurLine;
544 tokLineStart = tokPos;
545 }
546 } else if (ch > 8 && ch < 14) {
547 ++tokPos;
548 } else if (ch === 47) { // '/'
549 var next = input.charCodeAt(tokPos + 1);
550 if (next === 42) { // '*'
551 skipBlockComment();
552 } else if (next === 47) { // '/'
553 skipLineComment();
554 } else break;
555 } else if (ch === 160) { // '\xa0'
556 ++tokPos;
557 } else if (ch >= 5760 && nonASCIIwhitespace.test(String.fromCharCode(ch))) {
558 ++tokPos;
559 } else {
560 break;
561 }
562 }
563 }
565 // ### Token reading
567 // This is the function that is called to fetch the next token. It
568 // is somewhat obscure, because it works in character codes rather
569 // than characters, and because operator parsing has been inlined
570 // into it.
571 //
572 // All in the name of speed.
573 //
574 // The `forceRegexp` parameter is used in the one case where the
575 // `tokRegexpAllowed` trick does not work. See `parseStatement`.
577 function readToken_dot() {
578 var next = input.charCodeAt(tokPos + 1);
579 if (next >= 48 && next <= 57) return readNumber(true);
580 ++tokPos;
581 return finishToken(_dot);
582 }
584 function readToken_slash() { // '/'
585 var next = input.charCodeAt(tokPos + 1);
586 if (tokRegexpAllowed) {++tokPos; return readRegexp();}
587 if (next === 61) return finishOp(_assign, 2);
588 return finishOp(_slash, 1);
589 }
591 function readToken_mult_modulo() { // '%*'
592 var next = input.charCodeAt(tokPos + 1);
593 if (next === 61) return finishOp(_assign, 2);
594 return finishOp(_multiplyModulo, 1);
595 }
597 function readToken_pipe_amp(code) { // '|&'
598 var next = input.charCodeAt(tokPos + 1);
599 if (next === code) return finishOp(code === 124 ? _logicalOR : _logicalAND, 2);
600 if (next === 61) return finishOp(_assign, 2);
601 return finishOp(code === 124 ? _bitwiseOR : _bitwiseAND, 1);
602 }
604 function readToken_caret() { // '^'
605 var next = input.charCodeAt(tokPos + 1);
606 if (next === 61) return finishOp(_assign, 2);
607 return finishOp(_bitwiseXOR, 1);
608 }
610 function readToken_plus_min(code) { // '+-'
611 var next = input.charCodeAt(tokPos + 1);
612 if (next === code) {
613 if (next == 45 && input.charCodeAt(tokPos + 2) == 62 &&
614 newline.test(input.slice(lastEnd, tokPos))) {
615 // A `-->` line comment
616 tokPos += 3;
617 skipLineComment();
618 skipSpace();
619 return readToken();
620 }
621 return finishOp(_incDec, 2);
622 }
623 if (next === 61) return finishOp(_assign, 2);
624 return finishOp(_plusMin, 1);
625 }
627 function readToken_lt_gt(code) { // '<>'
628 var next = input.charCodeAt(tokPos + 1);
629 var size = 1;
630 if (next === code) {
631 size = code === 62 && input.charCodeAt(tokPos + 2) === 62 ? 3 : 2;
632 if (input.charCodeAt(tokPos + size) === 61) return finishOp(_assign, size + 1);
633 return finishOp(_bitShift, size);
634 }
635 if (next == 33 && code == 60 && input.charCodeAt(tokPos + 2) == 45 &&
636 input.charCodeAt(tokPos + 3) == 45) {
637 // `<!--`, an XML-style comment that should be interpreted as a line comment
638 tokPos += 4;
639 skipLineComment();
640 skipSpace();
641 return readToken();
642 }
643 if (next === 61)
644 size = input.charCodeAt(tokPos + 2) === 61 ? 3 : 2;
645 return finishOp(_relational, size);
646 }
648 function readToken_eq_excl(code) { // '=!'
649 var next = input.charCodeAt(tokPos + 1);
650 if (next === 61) return finishOp(_equality, input.charCodeAt(tokPos + 2) === 61 ? 3 : 2);
651 return finishOp(code === 61 ? _eq : _prefix, 1);
652 }
654 function getTokenFromCode(code) {
655 switch(code) {
656 // The interpretation of a dot depends on whether it is followed
657 // by a digit.
658 case 46: // '.'
659 return readToken_dot();
661 // Punctuation tokens.
662 case 40: ++tokPos; return finishToken(_parenL);
663 case 41: ++tokPos; return finishToken(_parenR);
664 case 59: ++tokPos; return finishToken(_semi);
665 case 44: ++tokPos; return finishToken(_comma);
666 case 91: ++tokPos; return finishToken(_bracketL);
667 case 93: ++tokPos; return finishToken(_bracketR);
668 case 123: ++tokPos; return finishToken(_braceL);
669 case 125: ++tokPos; return finishToken(_braceR);
670 case 58: ++tokPos; return finishToken(_colon);
671 case 63: ++tokPos; return finishToken(_question);
673 // '0x' is a hexadecimal number.
674 case 48: // '0'
675 var next = input.charCodeAt(tokPos + 1);
676 if (next === 120 || next === 88) return readHexNumber();
677 // Anything else beginning with a digit is an integer, octal
678 // number, or float.
679 case 49: case 50: case 51: case 52: case 53: case 54: case 55: case 56: case 57: // 1-9
680 return readNumber(false);
682 // Quotes produce strings.
683 case 34: case 39: // '"', "'"
684 return readString(code);
686 // Operators are parsed inline in tiny state machines. '=' (61) is
687 // often referred to. `finishOp` simply skips the amount of
688 // characters it is given as second argument, and returns a token
689 // of the type given by its first argument.
691 case 47: // '/'
692 return readToken_slash(code);
694 case 37: case 42: // '%*'
695 return readToken_mult_modulo();
697 case 124: case 38: // '|&'
698 return readToken_pipe_amp(code);
700 case 94: // '^'
701 return readToken_caret();
703 case 43: case 45: // '+-'
704 return readToken_plus_min(code);
706 case 60: case 62: // '<>'
707 return readToken_lt_gt(code);
709 case 61: case 33: // '=!'
710 return readToken_eq_excl(code);
712 case 126: // '~'
713 return finishOp(_prefix, 1);
714 }
716 return false;
717 }
719 function readToken(forceRegexp) {
720 if (!forceRegexp) tokStart = tokPos;
721 else tokPos = tokStart + 1;
722 if (options.locations) tokStartLoc = new line_loc_t;
723 if (forceRegexp) return readRegexp();
724 if (tokPos >= inputLen) return finishToken(_eof);
726 var code = input.charCodeAt(tokPos);
727 // Identifier or keyword. '\uXXXX' sequences are allowed in
728 // identifiers, so '\' also dispatches to that.
729 if (isIdentifierStart(code) || code === 92 /* '\' */) return readWord();
731 var tok = getTokenFromCode(code);
733 if (tok === false) {
734 // If we are here, we either found a non-ASCII identifier
735 // character, or something that's entirely disallowed.
736 var ch = String.fromCharCode(code);
737 if (ch === "\\" || nonASCIIidentifierStart.test(ch)) return readWord();
738 raise(tokPos, "Unexpected character '" + ch + "'");
739 }
740 return tok;
741 }
743 function finishOp(type, size) {
744 var str = input.slice(tokPos, tokPos + size);
745 tokPos += size;
746 finishToken(type, str);
747 }
749 // Parse a regular expression. Some context-awareness is necessary,
750 // since a '/' inside a '[]' set does not end the expression.
752 function readRegexp() {
753 var content = "", escaped, inClass, start = tokPos;
754 for (;;) {
755 if (tokPos >= inputLen) raise(start, "Unterminated regular expression");
756 var ch = input.charAt(tokPos);
757 if (newline.test(ch)) raise(start, "Unterminated regular expression");
758 if (!escaped) {
759 if (ch === "[") inClass = true;
760 else if (ch === "]" && inClass) inClass = false;
761 else if (ch === "/" && !inClass) break;
762 escaped = ch === "\\";
763 } else escaped = false;
764 ++tokPos;
765 }
766 var content = input.slice(start, tokPos);
767 ++tokPos;
768 // Need to use `readWord1` because '\uXXXX' sequences are allowed
769 // here (don't ask).
770 var mods = readWord1();
771 if (mods && !/^[gmsiy]*$/.test(mods)) raise(start, "Invalid regexp flag");
772 try {
773 var value = new RegExp(content, mods);
774 } catch (e) {
775 if (e instanceof SyntaxError) raise(start, e.message);
776 raise(e);
777 }
778 return finishToken(_regexp, value);
779 }
781 // Read an integer in the given radix. Return null if zero digits
782 // were read, the integer value otherwise. When `len` is given, this
783 // will return `null` unless the integer has exactly `len` digits.
785 function readInt(radix, len) {
786 var start = tokPos, total = 0;
787 for (var i = 0, e = len == null ? Infinity : len; i < e; ++i) {
788 var code = input.charCodeAt(tokPos), val;
789 if (code >= 97) val = code - 97 + 10; // a
790 else if (code >= 65) val = code - 65 + 10; // A
791 else if (code >= 48 && code <= 57) val = code - 48; // 0-9
792 else val = Infinity;
793 if (val >= radix) break;
794 ++tokPos;
795 total = total * radix + val;
796 }
797 if (tokPos === start || len != null && tokPos - start !== len) return null;
799 return total;
800 }
802 function readHexNumber() {
803 tokPos += 2; // 0x
804 var val = readInt(16);
805 if (val == null) raise(tokStart + 2, "Expected hexadecimal number");
806 if (isIdentifierStart(input.charCodeAt(tokPos))) raise(tokPos, "Identifier directly after number");
807 return finishToken(_num, val);
808 }
810 // Read an integer, octal integer, or floating-point number.
812 function readNumber(startsWithDot) {
813 var start = tokPos, isFloat = false, octal = input.charCodeAt(tokPos) === 48;
814 if (!startsWithDot && readInt(10) === null) raise(start, "Invalid number");
815 if (input.charCodeAt(tokPos) === 46) {
816 ++tokPos;
817 readInt(10);
818 isFloat = true;
819 }
820 var next = input.charCodeAt(tokPos);
821 if (next === 69 || next === 101) { // 'eE'
822 next = input.charCodeAt(++tokPos);
823 if (next === 43 || next === 45) ++tokPos; // '+-'
824 if (readInt(10) === null) raise(start, "Invalid number");
825 isFloat = true;
826 }
827 if (isIdentifierStart(input.charCodeAt(tokPos))) raise(tokPos, "Identifier directly after number");
829 var str = input.slice(start, tokPos), val;
830 if (isFloat) val = parseFloat(str);
831 else if (!octal || str.length === 1) val = parseInt(str, 10);
832 else if (/[89]/.test(str) || strict) raise(start, "Invalid number");
833 else val = parseInt(str, 8);
834 return finishToken(_num, val);
835 }
837 // Read a string value, interpreting backslash-escapes.
839 function readString(quote) {
840 tokPos++;
841 var out = "";
842 for (;;) {
843 if (tokPos >= inputLen) raise(tokStart, "Unterminated string constant");
844 var ch = input.charCodeAt(tokPos);
845 if (ch === quote) {
846 ++tokPos;
847 return finishToken(_string, out);
848 }
849 if (ch === 92) { // '\'
850 ch = input.charCodeAt(++tokPos);
851 var octal = /^[0-7]+/.exec(input.slice(tokPos, tokPos + 3));
852 if (octal) octal = octal[0];
853 while (octal && parseInt(octal, 8) > 255) octal = octal.slice(0, -1);
854 if (octal === "0") octal = null;
855 ++tokPos;
856 if (octal) {
857 if (strict) raise(tokPos - 2, "Octal literal in strict mode");
858 out += String.fromCharCode(parseInt(octal, 8));
859 tokPos += octal.length - 1;
860 } else {
861 switch (ch) {
862 case 110: out += "\n"; break; // 'n' -> '\n'
863 case 114: out += "\r"; break; // 'r' -> '\r'
864 case 120: out += String.fromCharCode(readHexChar(2)); break; // 'x'
865 case 117: out += String.fromCharCode(readHexChar(4)); break; // 'u'
866 case 85: out += String.fromCharCode(readHexChar(8)); break; // 'U'
867 case 116: out += "\t"; break; // 't' -> '\t'
868 case 98: out += "\b"; break; // 'b' -> '\b'
869 case 118: out += "\u000b"; break; // 'v' -> '\u000b'
870 case 102: out += "\f"; break; // 'f' -> '\f'
871 case 48: out += "\0"; break; // 0 -> '\0'
872 case 13: if (input.charCodeAt(tokPos) === 10) ++tokPos; // '\r\n'
873 case 10: // ' \n'
874 if (options.locations) { tokLineStart = tokPos; ++tokCurLine; }
875 break;
876 default: out += String.fromCharCode(ch); break;
877 }
878 }
879 } else {
880 if (ch === 13 || ch === 10 || ch === 8232 || ch === 8233) raise(tokStart, "Unterminated string constant");
881 out += String.fromCharCode(ch); // '\'
882 ++tokPos;
883 }
884 }
885 }
887 // Used to read character escape sequences ('\x', '\u', '\U').
889 function readHexChar(len) {
890 var n = readInt(16, len);
891 if (n === null) raise(tokStart, "Bad character escape sequence");
892 return n;
893 }
895 // Used to signal to callers of `readWord1` whether the word
896 // contained any escape sequences. This is needed because words with
897 // escape sequences must not be interpreted as keywords.
899 var containsEsc;
901 // Read an identifier, and return it as a string. Sets `containsEsc`
902 // to whether the word contained a '\u' escape.
903 //
904 // Only builds up the word character-by-character when it actually
905 // containeds an escape, as a micro-optimization.
907 function readWord1() {
908 containsEsc = false;
909 var word, first = true, start = tokPos;
910 for (;;) {
911 var ch = input.charCodeAt(tokPos);
912 if (isIdentifierChar(ch)) {
913 if (containsEsc) word += input.charAt(tokPos);
914 ++tokPos;
915 } else if (ch === 92) { // "\"
916 if (!containsEsc) word = input.slice(start, tokPos);
917 containsEsc = true;
918 if (input.charCodeAt(++tokPos) != 117) // "u"
919 raise(tokPos, "Expecting Unicode escape sequence \\uXXXX");
920 ++tokPos;
921 var esc = readHexChar(4);
922 var escStr = String.fromCharCode(esc);
923 if (!escStr) raise(tokPos - 1, "Invalid Unicode escape");
924 if (!(first ? isIdentifierStart(esc) : isIdentifierChar(esc)))
925 raise(tokPos - 4, "Invalid Unicode escape");
926 word += escStr;
927 } else {
928 break;
929 }
930 first = false;
931 }
932 return containsEsc ? word : input.slice(start, tokPos);
933 }
935 // Read an identifier or keyword token. Will check for reserved
936 // words when necessary.
938 function readWord() {
939 var word = readWord1();
940 var type = _name;
941 if (!containsEsc) {
942 if (isKeyword(word)) type = keywordTypes[word];
943 else if (options.forbidReserved &&
944 (options.ecmaVersion === 3 ? isReservedWord3 : isReservedWord5)(word) ||
945 strict && isStrictReservedWord(word))
946 raise(tokStart, "The keyword '" + word + "' is reserved");
947 }
948 return finishToken(type, word);
949 }
951 // ## Parser
953 // A recursive descent parser operates by defining functions for all
954 // syntactic elements, and recursively calling those, each function
955 // advancing the input stream and returning an AST node. Precedence
956 // of constructs (for example, the fact that `!x[1]` means `!(x[1])`
957 // instead of `(!x)[1]` is handled by the fact that the parser
958 // function that parses unary prefix operators is called first, and
959 // in turn calls the function that parses `[]` subscripts — that
960 // way, it'll receive the node for `x[1]` already parsed, and wraps
961 // *that* in the unary operator node.
962 //
963 // Acorn uses an [operator precedence parser][opp] to handle binary
964 // operator precedence, because it is much more compact than using
965 // the technique outlined above, which uses different, nesting
966 // functions to specify precedence, for all of the ten binary
967 // precedence levels that JavaScript defines.
968 //
969 // [opp]: http://en.wikipedia.org/wiki/Operator-precedence_parser
971 // ### Parser utilities
973 // Continue to the next token.
975 function next() {
976 lastStart = tokStart;
977 lastEnd = tokEnd;
978 lastEndLoc = tokEndLoc;
979 readToken();
980 }
982 // Enter strict mode. Re-reads the next token to please pedantic
983 // tests ("use strict"; 010; -- should fail).
985 function setStrict(strct) {
986 strict = strct;
987 tokPos = tokStart;
988 if (options.locations) {
989 while (tokPos < tokLineStart) {
990 tokLineStart = input.lastIndexOf("\n", tokLineStart - 2) + 1;
991 --tokCurLine;
992 }
993 }
994 skipSpace();
995 readToken();
996 }
998 // Start an AST node, attaching a start offset.
1000 function node_t() {
1001 this.type = null;
1002 this.start = tokStart;
1003 this.end = null;
1004 }
1006 function node_loc_t() {
1007 this.start = tokStartLoc;
1008 this.end = null;
1009 if (sourceFile !== null) this.source = sourceFile;
1010 }
1012 function startNode() {
1013 var node = new node_t();
1014 if (options.locations)
1015 node.loc = new node_loc_t();
1016 if (options.directSourceFile)
1017 node.sourceFile = options.directSourceFile;
1018 if (options.ranges)
1019 node.range = [tokStart, 0];
1020 return node;
1021 }
1023 // Start a node whose start offset information should be based on
1024 // the start of another node. For example, a binary operator node is
1025 // only started after its left-hand side has already been parsed.
1027 function startNodeFrom(other) {
1028 var node = new node_t();
1029 node.start = other.start;
1030 if (options.locations) {
1031 node.loc = new node_loc_t();
1032 node.loc.start = other.loc.start;
1033 }
1034 if (options.ranges)
1035 node.range = [other.range[0], 0];
1037 return node;
1038 }
1040 // Finish an AST node, adding `type` and `end` properties.
1042 function finishNode(node, type) {
1043 node.type = type;
1044 node.end = lastEnd;
1045 if (options.locations)
1046 node.loc.end = lastEndLoc;
1047 if (options.ranges)
1048 node.range[1] = lastEnd;
1049 return node;
1050 }
1052 // Test whether a statement node is the string literal `"use strict"`.
1054 function isUseStrict(stmt) {
1055 return options.ecmaVersion >= 5 && stmt.type === "ExpressionStatement" &&
1056 stmt.expression.type === "Literal" && stmt.expression.value === "use strict";
1057 }
1059 // Predicate that tests whether the next token is of the given
1060 // type, and if yes, consumes it as a side effect.
1062 function eat(type) {
1063 if (tokType === type) {
1064 next();
1065 return true;
1066 }
1067 }
1069 // Test whether a semicolon can be inserted at the current position.
1071 function canInsertSemicolon() {
1072 return !options.strictSemicolons &&
1073 (tokType === _eof || tokType === _braceR || newline.test(input.slice(lastEnd, tokStart)));
1074 }
1076 // Consume a semicolon, or, failing that, see if we are allowed to
1077 // pretend that there is a semicolon at this position.
1079 function semicolon() {
1080 if (!eat(_semi) && !canInsertSemicolon()) unexpected();
1081 }
1083 // Expect a token of a given type. If found, consume it, otherwise,
1084 // raise an unexpected token error.
1086 function expect(type) {
1087 if (tokType === type) next();
1088 else unexpected();
1089 }
1091 // Raise an unexpected token error.
1093 function unexpected() {
1094 raise(tokStart, "Unexpected token");
1095 }
1097 // Verify that a node is an lval — something that can be assigned
1098 // to.
1100 function checkLVal(expr) {
1101 if (expr.type !== "Identifier" && expr.type !== "MemberExpression")
1102 raise(expr.start, "Assigning to rvalue");
1103 if (strict && expr.type === "Identifier" && isStrictBadIdWord(expr.name))
1104 raise(expr.start, "Assigning to " + expr.name + " in strict mode");
1105 }
1107 // ### Statement parsing
1109 // Parse a program. Initializes the parser, reads any number of
1110 // statements, and wraps them in a Program node. Optionally takes a
1111 // `program` argument. If present, the statements will be appended
1112 // to its body instead of creating a new node.
1114 function parseTopLevel(program) {
1115 lastStart = lastEnd = tokPos;
1116 if (options.locations) lastEndLoc = new line_loc_t;
1117 inFunction = strict = null;
1118 labels = [];
1119 readToken();
1121 var node = program || startNode(), first = true;
1122 if (!program) node.body = [];
1123 while (tokType !== _eof) {
1124 var stmt = parseStatement();
1125 node.body.push(stmt);
1126 if (first && isUseStrict(stmt)) setStrict(true);
1127 first = false;
1128 }
1129 return finishNode(node, "Program");
1130 }
1132 var loopLabel = {kind: "loop"}, switchLabel = {kind: "switch"};
1134 // Parse a single statement.
1135 //
1136 // If expecting a statement and finding a slash operator, parse a
1137 // regular expression literal. This is to handle cases like
1138 // `if (foo) /blah/.exec(foo);`, where looking at the previous token
1139 // does not help.
1141 function parseStatement() {
1142 if (tokType === _slash || tokType === _assign && tokVal == "/=")
1143 readToken(true);
1145 var starttype = tokType, node = startNode();
1147 // Most types of statements are recognized by the keyword they
1148 // start with. Many are trivial to parse, some require a bit of
1149 // complexity.
1151 switch (starttype) {
1152 case _break: case _continue:
1153 next();
1154 var isBreak = starttype === _break;
1155 if (eat(_semi) || canInsertSemicolon()) node.label = null;
1156 else if (tokType !== _name) unexpected();
1157 else {
1158 node.label = parseIdent();
1159 semicolon();
1160 }
1162 // Verify that there is an actual destination to break or
1163 // continue to.
1164 for (var i = 0; i < labels.length; ++i) {
1165 var lab = labels[i];
1166 if (node.label == null || lab.name === node.label.name) {
1167 if (lab.kind != null && (isBreak || lab.kind === "loop")) break;
1168 if (node.label && isBreak) break;
1169 }
1170 }
1171 if (i === labels.length) raise(node.start, "Unsyntactic " + starttype.keyword);
1172 return finishNode(node, isBreak ? "BreakStatement" : "ContinueStatement");
1174 case _debugger:
1175 next();
1176 semicolon();
1177 return finishNode(node, "DebuggerStatement");
1179 case _do:
1180 next();
1181 labels.push(loopLabel);
1182 node.body = parseStatement();
1183 labels.pop();
1184 expect(_while);
1185 node.test = parseParenExpression();
1186 semicolon();
1187 return finishNode(node, "DoWhileStatement");
1189 // Disambiguating between a `for` and a `for`/`in` loop is
1190 // non-trivial. Basically, we have to parse the init `var`
1191 // statement or expression, disallowing the `in` operator (see
1192 // the second parameter to `parseExpression`), and then check
1193 // whether the next token is `in`. When there is no init part
1194 // (semicolon immediately after the opening parenthesis), it is
1195 // a regular `for` loop.
1197 case _for:
1198 next();
1199 labels.push(loopLabel);
1200 expect(_parenL);
1201 if (tokType === _semi) return parseFor(node, null);
1202 if (tokType === _var) {
1203 var init = startNode();
1204 next();
1205 parseVar(init, true);
1206 finishNode(init, "VariableDeclaration");
1207 if (init.declarations.length === 1 && eat(_in))
1208 return parseForIn(node, init);
1209 return parseFor(node, init);
1210 }
1211 var init = parseExpression(false, true);
1212 if (eat(_in)) {checkLVal(init); return parseForIn(node, init);}
1213 return parseFor(node, init);
1215 case _function:
1216 next();
1217 return parseFunction(node, true);
1219 case _if:
1220 next();
1221 node.test = parseParenExpression();
1222 node.consequent = parseStatement();
1223 node.alternate = eat(_else) ? parseStatement() : null;
1224 return finishNode(node, "IfStatement");
1226 case _return:
1227 if (!inFunction) raise(tokStart, "'return' outside of function");
1228 next();
1230 // In `return` (and `break`/`continue`), the keywords with
1231 // optional arguments, we eagerly look for a semicolon or the
1232 // possibility to insert one.
1234 if (eat(_semi) || canInsertSemicolon()) node.argument = null;
1235 else { node.argument = parseExpression(); semicolon(); }
1236 return finishNode(node, "ReturnStatement");
1238 case _switch:
1239 next();
1240 node.discriminant = parseParenExpression();
1241 node.cases = [];
1242 expect(_braceL);
1243 labels.push(switchLabel);
1245 // Statements under must be grouped (by label) in SwitchCase
1246 // nodes. `cur` is used to keep the node that we are currently
1247 // adding statements to.
1249 for (var cur, sawDefault; tokType != _braceR;) {
1250 if (tokType === _case || tokType === _default) {
1251 var isCase = tokType === _case;
1252 if (cur) finishNode(cur, "SwitchCase");
1253 node.cases.push(cur = startNode());
1254 cur.consequent = [];
1255 next();
1256 if (isCase) cur.test = parseExpression();
1257 else {
1258 if (sawDefault) raise(lastStart, "Multiple default clauses"); sawDefault = true;
1259 cur.test = null;
1260 }
1261 expect(_colon);
1262 } else {
1263 if (!cur) unexpected();
1264 cur.consequent.push(parseStatement());
1265 }
1266 }
1267 if (cur) finishNode(cur, "SwitchCase");
1268 next(); // Closing brace
1269 labels.pop();
1270 return finishNode(node, "SwitchStatement");
1272 case _throw:
1273 next();
1274 if (newline.test(input.slice(lastEnd, tokStart)))
1275 raise(lastEnd, "Illegal newline after throw");
1276 node.argument = parseExpression();
1277 semicolon();
1278 return finishNode(node, "ThrowStatement");
1280 case _try:
1281 next();
1282 node.block = parseBlock();
1283 node.handler = null;
1284 if (tokType === _catch) {
1285 var clause = startNode();
1286 next();
1287 expect(_parenL);
1288 clause.param = parseIdent();
1289 if (strict && isStrictBadIdWord(clause.param.name))
1290 raise(clause.param.start, "Binding " + clause.param.name + " in strict mode");
1291 expect(_parenR);
1292 clause.guard = null;
1293 clause.body = parseBlock();
1294 node.handler = finishNode(clause, "CatchClause");
1295 }
1296 node.guardedHandlers = empty;
1297 node.finalizer = eat(_finally) ? parseBlock() : null;
1298 if (!node.handler && !node.finalizer)
1299 raise(node.start, "Missing catch or finally clause");
1300 return finishNode(node, "TryStatement");
1302 case _var:
1303 next();
1304 parseVar(node);
1305 semicolon();
1306 return finishNode(node, "VariableDeclaration");
1308 case _while:
1309 next();
1310 node.test = parseParenExpression();
1311 labels.push(loopLabel);
1312 node.body = parseStatement();
1313 labels.pop();
1314 return finishNode(node, "WhileStatement");
1316 case _with:
1317 if (strict) raise(tokStart, "'with' in strict mode");
1318 next();
1319 node.object = parseParenExpression();
1320 node.body = parseStatement();
1321 return finishNode(node, "WithStatement");
1323 case _braceL:
1324 return parseBlock();
1326 case _semi:
1327 next();
1328 return finishNode(node, "EmptyStatement");
1330 // If the statement does not start with a statement keyword or a
1331 // brace, it's an ExpressionStatement or LabeledStatement. We
1332 // simply start parsing an expression, and afterwards, if the
1333 // next token is a colon and the expression was a simple
1334 // Identifier node, we switch to interpreting it as a label.
1336 default:
1337 var maybeName = tokVal, expr = parseExpression();
1338 if (starttype === _name && expr.type === "Identifier" && eat(_colon)) {
1339 for (var i = 0; i < labels.length; ++i)
1340 if (labels[i].name === maybeName) raise(expr.start, "Label '" + maybeName + "' is already declared");
1341 var kind = tokType.isLoop ? "loop" : tokType === _switch ? "switch" : null;
1342 labels.push({name: maybeName, kind: kind});
1343 node.body = parseStatement();
1344 labels.pop();
1345 node.label = expr;
1346 return finishNode(node, "LabeledStatement");
1347 } else {
1348 node.expression = expr;
1349 semicolon();
1350 return finishNode(node, "ExpressionStatement");
1351 }
1352 }
1353 }
1355 // Used for constructs like `switch` and `if` that insist on
1356 // parentheses around their expression.
1358 function parseParenExpression() {
1359 expect(_parenL);
1360 var val = parseExpression();
1361 expect(_parenR);
1362 return val;
1363 }
1365 // Parse a semicolon-enclosed block of statements, handling `"use
1366 // strict"` declarations when `allowStrict` is true (used for
1367 // function bodies).
1369 function parseBlock(allowStrict) {
1370 var node = startNode(), first = true, strict = false, oldStrict;
1371 node.body = [];
1372 expect(_braceL);
1373 while (!eat(_braceR)) {
1374 var stmt = parseStatement();
1375 node.body.push(stmt);
1376 if (first && allowStrict && isUseStrict(stmt)) {
1377 oldStrict = strict;
1378 setStrict(strict = true);
1379 }
1380 first = false;
1381 }
1382 if (strict && !oldStrict) setStrict(false);
1383 return finishNode(node, "BlockStatement");
1384 }
1386 // Parse a regular `for` loop. The disambiguation code in
1387 // `parseStatement` will already have parsed the init statement or
1388 // expression.
1390 function parseFor(node, init) {
1391 node.init = init;
1392 expect(_semi);
1393 node.test = tokType === _semi ? null : parseExpression();
1394 expect(_semi);
1395 node.update = tokType === _parenR ? null : parseExpression();
1396 expect(_parenR);
1397 node.body = parseStatement();
1398 labels.pop();
1399 return finishNode(node, "ForStatement");
1400 }
1402 // Parse a `for`/`in` loop.
1404 function parseForIn(node, init) {
1405 node.left = init;
1406 node.right = parseExpression();
1407 expect(_parenR);
1408 node.body = parseStatement();
1409 labels.pop();
1410 return finishNode(node, "ForInStatement");
1411 }
1413 // Parse a list of variable declarations.
1415 function parseVar(node, noIn) {
1416 node.declarations = [];
1417 node.kind = "var";
1418 for (;;) {
1419 var decl = startNode();
1420 decl.id = parseIdent();
1421 if (strict && isStrictBadIdWord(decl.id.name))
1422 raise(decl.id.start, "Binding " + decl.id.name + " in strict mode");
1423 decl.init = eat(_eq) ? parseExpression(true, noIn) : null;
1424 node.declarations.push(finishNode(decl, "VariableDeclarator"));
1425 if (!eat(_comma)) break;
1426 }
1427 return node;
1428 }
1430 // ### Expression parsing
1432 // These nest, from the most general expression type at the top to
1433 // 'atomic', nondivisible expression types at the bottom. Most of
1434 // the functions will simply let the function(s) below them parse,
1435 // and, *if* the syntactic construct they handle is present, wrap
1436 // the AST node that the inner parser gave them in another node.
1438 // Parse a full expression. The arguments are used to forbid comma
1439 // sequences (in argument lists, array literals, or object literals)
1440 // or the `in` operator (in for loops initalization expressions).
1442 function parseExpression(noComma, noIn) {
1443 var expr = parseMaybeAssign(noIn);
1444 if (!noComma && tokType === _comma) {
1445 var node = startNodeFrom(expr);
1446 node.expressions = [expr];
1447 while (eat(_comma)) node.expressions.push(parseMaybeAssign(noIn));
1448 return finishNode(node, "SequenceExpression");
1449 }
1450 return expr;
1451 }
1453 // Parse an assignment expression. This includes applications of
1454 // operators like `+=`.
1456 function parseMaybeAssign(noIn) {
1457 var left = parseMaybeConditional(noIn);
1458 if (tokType.isAssign) {
1459 var node = startNodeFrom(left);
1460 node.operator = tokVal;
1461 node.left = left;
1462 next();
1463 node.right = parseMaybeAssign(noIn);
1464 checkLVal(left);
1465 return finishNode(node, "AssignmentExpression");
1466 }
1467 return left;
1468 }
1470 // Parse a ternary conditional (`?:`) operator.
1472 function parseMaybeConditional(noIn) {
1473 var expr = parseExprOps(noIn);
1474 if (eat(_question)) {
1475 var node = startNodeFrom(expr);
1476 node.test = expr;
1477 node.consequent = parseExpression(true);
1478 expect(_colon);
1479 node.alternate = parseExpression(true, noIn);
1480 return finishNode(node, "ConditionalExpression");
1481 }
1482 return expr;
1483 }
1485 // Start the precedence parser.
1487 function parseExprOps(noIn) {
1488 return parseExprOp(parseMaybeUnary(), -1, noIn);
1489 }
1491 // Parse binary operators with the operator precedence parsing
1492 // algorithm. `left` is the left-hand side of the operator.
1493 // `minPrec` provides context that allows the function to stop and
1494 // defer further parser to one of its callers when it encounters an
1495 // operator that has a lower precedence than the set it is parsing.
1497 function parseExprOp(left, minPrec, noIn) {
1498 var prec = tokType.binop;
1499 if (prec != null && (!noIn || tokType !== _in)) {
1500 if (prec > minPrec) {
1501 var node = startNodeFrom(left);
1502 node.left = left;
1503 node.operator = tokVal;
1504 var op = tokType;
1505 next();
1506 node.right = parseExprOp(parseMaybeUnary(), prec, noIn);
1507 var exprNode = finishNode(node, (op === _logicalOR || op === _logicalAND) ? "LogicalExpression" : "BinaryExpression");
1508 return parseExprOp(exprNode, minPrec, noIn);
1509 }
1510 }
1511 return left;
1512 }
1514 // Parse unary operators, both prefix and postfix.
1516 function parseMaybeUnary() {
1517 if (tokType.prefix) {
1518 var node = startNode(), update = tokType.isUpdate;
1519 node.operator = tokVal;
1520 node.prefix = true;
1521 tokRegexpAllowed = true;
1522 next();
1523 node.argument = parseMaybeUnary();
1524 if (update) checkLVal(node.argument);
1525 else if (strict && node.operator === "delete" &&
1526 node.argument.type === "Identifier")
1527 raise(node.start, "Deleting local variable in strict mode");
1528 return finishNode(node, update ? "UpdateExpression" : "UnaryExpression");
1529 }
1530 var expr = parseExprSubscripts();
1531 while (tokType.postfix && !canInsertSemicolon()) {
1532 var node = startNodeFrom(expr);
1533 node.operator = tokVal;
1534 node.prefix = false;
1535 node.argument = expr;
1536 checkLVal(expr);
1537 next();
1538 expr = finishNode(node, "UpdateExpression");
1539 }
1540 return expr;
1541 }
1543 // Parse call, dot, and `[]`-subscript expressions.
1545 function parseExprSubscripts() {
1546 return parseSubscripts(parseExprAtom());
1547 }
1549 function parseSubscripts(base, noCalls) {
1550 if (eat(_dot)) {
1551 var node = startNodeFrom(base);
1552 node.object = base;
1553 node.property = parseIdent(true);
1554 node.computed = false;
1555 return parseSubscripts(finishNode(node, "MemberExpression"), noCalls);
1556 } else if (eat(_bracketL)) {
1557 var node = startNodeFrom(base);
1558 node.object = base;
1559 node.property = parseExpression();
1560 node.computed = true;
1561 expect(_bracketR);
1562 return parseSubscripts(finishNode(node, "MemberExpression"), noCalls);
1563 } else if (!noCalls && eat(_parenL)) {
1564 var node = startNodeFrom(base);
1565 node.callee = base;
1566 node.arguments = parseExprList(_parenR, false);
1567 return parseSubscripts(finishNode(node, "CallExpression"), noCalls);
1568 } else return base;
1569 }
1571 // Parse an atomic expression — either a single token that is an
1572 // expression, an expression started by a keyword like `function` or
1573 // `new`, or an expression wrapped in punctuation like `()`, `[]`,
1574 // or `{}`.
1576 function parseExprAtom() {
1577 switch (tokType) {
1578 case _this:
1579 var node = startNode();
1580 next();
1581 return finishNode(node, "ThisExpression");
1582 case _name:
1583 return parseIdent();
1584 case _num: case _string: case _regexp:
1585 var node = startNode();
1586 node.value = tokVal;
1587 node.raw = input.slice(tokStart, tokEnd);
1588 next();
1589 return finishNode(node, "Literal");
1591 case _null: case _true: case _false:
1592 var node = startNode();
1593 node.value = tokType.atomValue;
1594 node.raw = tokType.keyword;
1595 next();
1596 return finishNode(node, "Literal");
1598 case _parenL:
1599 var tokStartLoc1 = tokStartLoc, tokStart1 = tokStart;
1600 next();
1601 var val = parseExpression();
1602 val.start = tokStart1;
1603 val.end = tokEnd;
1604 if (options.locations) {
1605 val.loc.start = tokStartLoc1;
1606 val.loc.end = tokEndLoc;
1607 }
1608 if (options.ranges)
1609 val.range = [tokStart1, tokEnd];
1610 expect(_parenR);
1611 return val;
1613 case _bracketL:
1614 var node = startNode();
1615 next();
1616 node.elements = parseExprList(_bracketR, true, true);
1617 return finishNode(node, "ArrayExpression");
1619 case _braceL:
1620 return parseObj();
1622 case _function:
1623 var node = startNode();
1624 next();
1625 return parseFunction(node, false);
1627 case _new:
1628 return parseNew();
1630 default:
1631 unexpected();
1632 }
1633 }
1635 // New's precedence is slightly tricky. It must allow its argument
1636 // to be a `[]` or dot subscript expression, but not a call — at
1637 // least, not without wrapping it in parentheses. Thus, it uses the
1639 function parseNew() {
1640 var node = startNode();
1641 next();
1642 node.callee = parseSubscripts(parseExprAtom(), true);
1643 if (eat(_parenL)) node.arguments = parseExprList(_parenR, false);
1644 else node.arguments = empty;
1645 return finishNode(node, "NewExpression");
1646 }
1648 // Parse an object literal.
1650 function parseObj() {
1651 var node = startNode(), first = true, sawGetSet = false;
1652 node.properties = [];
1653 next();
1654 while (!eat(_braceR)) {
1655 if (!first) {
1656 expect(_comma);
1657 if (options.allowTrailingCommas && eat(_braceR)) break;
1658 } else first = false;
1660 var prop = {key: parsePropertyName()}, isGetSet = false, kind;
1661 if (eat(_colon)) {
1662 prop.value = parseExpression(true);
1663 kind = prop.kind = "init";
1664 } else if (options.ecmaVersion >= 5 && prop.key.type === "Identifier" &&
1665 (prop.key.name === "get" || prop.key.name === "set")) {
1666 isGetSet = sawGetSet = true;
1667 kind = prop.kind = prop.key.name;
1668 prop.key = parsePropertyName();
1669 if (tokType !== _parenL) unexpected();
1670 prop.value = parseFunction(startNode(), false);
1671 } else unexpected();
1673 // getters and setters are not allowed to clash — either with
1674 // each other or with an init property — and in strict mode,
1675 // init properties are also not allowed to be repeated.
1677 if (prop.key.type === "Identifier" && (strict || sawGetSet)) {
1678 for (var i = 0; i < node.properties.length; ++i) {
1679 var other = node.properties[i];
1680 if (other.key.name === prop.key.name) {
1681 var conflict = kind == other.kind || isGetSet && other.kind === "init" ||
1682 kind === "init" && (other.kind === "get" || other.kind === "set");
1683 if (conflict && !strict && kind === "init" && other.kind === "init") conflict = false;
1684 if (conflict) raise(prop.key.start, "Redefinition of property");
1685 }
1686 }
1687 }
1688 node.properties.push(prop);
1689 }
1690 return finishNode(node, "ObjectExpression");
1691 }
1693 function parsePropertyName() {
1694 if (tokType === _num || tokType === _string) return parseExprAtom();
1695 return parseIdent(true);
1696 }
1698 // Parse a function declaration or literal (depending on the
1699 // `isStatement` parameter).
1701 function parseFunction(node, isStatement) {
1702 if (tokType === _name) node.id = parseIdent();
1703 else if (isStatement) unexpected();
1704 else node.id = null;
1705 node.params = [];
1706 var first = true;
1707 expect(_parenL);
1708 while (!eat(_parenR)) {
1709 if (!first) expect(_comma); else first = false;
1710 node.params.push(parseIdent());
1711 }
1713 // Start a new scope with regard to labels and the `inFunction`
1714 // flag (restore them to their old value afterwards).
1715 var oldInFunc = inFunction, oldLabels = labels;
1716 inFunction = true; labels = [];
1717 node.body = parseBlock(true);
1718 inFunction = oldInFunc; labels = oldLabels;
1720 // If this is a strict mode function, verify that argument names
1721 // are not repeated, and it does not try to bind the words `eval`
1722 // or `arguments`.
1723 if (strict || node.body.body.length && isUseStrict(node.body.body[0])) {
1724 for (var i = node.id ? -1 : 0; i < node.params.length; ++i) {
1725 var id = i < 0 ? node.id : node.params[i];
1726 if (isStrictReservedWord(id.name) || isStrictBadIdWord(id.name))
1727 raise(id.start, "Defining '" + id.name + "' in strict mode");
1728 if (i >= 0) for (var j = 0; j < i; ++j) if (id.name === node.params[j].name)
1729 raise(id.start, "Argument name clash in strict mode");
1730 }
1731 }
1733 return finishNode(node, isStatement ? "FunctionDeclaration" : "FunctionExpression");
1734 }
1736 // Parses a comma-separated list of expressions, and returns them as
1737 // an array. `close` is the token type that ends the list, and
1738 // `allowEmpty` can be turned on to allow subsequent commas with
1739 // nothing in between them to be parsed as `null` (which is needed
1740 // for array literals).
1742 function parseExprList(close, allowTrailingComma, allowEmpty) {
1743 var elts = [], first = true;
1744 while (!eat(close)) {
1745 if (!first) {
1746 expect(_comma);
1747 if (allowTrailingComma && options.allowTrailingCommas && eat(close)) break;
1748 } else first = false;
1750 if (allowEmpty && tokType === _comma) elts.push(null);
1751 else elts.push(parseExpression(true));
1752 }
1753 return elts;
1754 }
1756 // Parse the next token as an identifier. If `liberal` is true (used
1757 // when parsing properties), it will also convert keywords into
1758 // identifiers.
1760 function parseIdent(liberal) {
1761 var node = startNode();
1762 node.name = tokType === _name ? tokVal : (liberal && !options.forbidReserved && tokType.keyword) || unexpected();
1763 tokRegexpAllowed = false;
1764 next();
1765 return finishNode(node, "Identifier");
1766 }
1768 });