tools/profiler/LulDwarf.cpp

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
     2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
     4 // Copyright (c) 2010 Google Inc. All Rights Reserved.
     5 //
     6 // Redistribution and use in source and binary forms, with or without
     7 // modification, are permitted provided that the following conditions are
     8 // met:
     9 //
    10 //     * Redistributions of source code must retain the above copyright
    11 // notice, this list of conditions and the following disclaimer.
    12 //     * Redistributions in binary form must reproduce the above
    13 // copyright notice, this list of conditions and the following disclaimer
    14 // in the documentation and/or other materials provided with the
    15 // distribution.
    16 //     * Neither the name of Google Inc. nor the names of its
    17 // contributors may be used to endorse or promote products derived from
    18 // this software without specific prior written permission.
    19 //
    20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    23 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    24 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    25 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    26 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    27 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    28 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    29 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    30 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    32 // CFI reader author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
    33 // Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
    35 // Implementation of dwarf2reader::LineInfo, dwarf2reader::CompilationUnit,
    36 // and dwarf2reader::CallFrameInfo. See dwarf2reader.h for details.
    38 // This file is derived from the following files in
    39 // toolkit/crashreporter/google-breakpad:
    40 //   src/common/dwarf/bytereader.cc
    41 //   src/common/dwarf/dwarf2reader.cc
    42 //   src/common/dwarf_cfi_to_module.cc
    44 #include <stdint.h>
    45 #include <stdio.h>
    46 #include <string.h>
    47 #include <stdlib.h>
    49 #include <map>
    50 #include <stack>
    51 #include <string>
    53 #include "mozilla/Assertions.h"
    55 #include "LulCommonExt.h"
    56 #include "LulDwarfInt.h"
    58 // Set this to 1 for verbose logging
    59 #define DEBUG_DWARF 0
    62 namespace lul {
    64 using std::string;
    66 ByteReader::ByteReader(enum Endianness endian)
    67     :offset_reader_(NULL), address_reader_(NULL), endian_(endian),
    68      address_size_(0), offset_size_(0),
    69      have_section_base_(), have_text_base_(), have_data_base_(),
    70      have_function_base_() { }
    72 ByteReader::~ByteReader() { }
    74 void ByteReader::SetOffsetSize(uint8 size) {
    75   offset_size_ = size;
    76   MOZ_ASSERT(size == 4 || size == 8);
    77   if (size == 4) {
    78     this->offset_reader_ = &ByteReader::ReadFourBytes;
    79   } else {
    80     this->offset_reader_ = &ByteReader::ReadEightBytes;
    81   }
    82 }
    84 void ByteReader::SetAddressSize(uint8 size) {
    85   address_size_ = size;
    86   MOZ_ASSERT(size == 4 || size == 8);
    87   if (size == 4) {
    88     this->address_reader_ = &ByteReader::ReadFourBytes;
    89   } else {
    90     this->address_reader_ = &ByteReader::ReadEightBytes;
    91   }
    92 }
    94 uint64 ByteReader::ReadInitialLength(const char* start, size_t* len) {
    95   const uint64 initial_length = ReadFourBytes(start);
    96   start += 4;
    98   // In DWARF2/3, if the initial length is all 1 bits, then the offset
    99   // size is 8 and we need to read the next 8 bytes for the real length.
   100   if (initial_length == 0xffffffff) {
   101     SetOffsetSize(8);
   102     *len = 12;
   103     return ReadOffset(start);
   104   } else {
   105     SetOffsetSize(4);
   106     *len = 4;
   107   }
   108   return initial_length;
   109 }
   111 bool ByteReader::ValidEncoding(DwarfPointerEncoding encoding) const {
   112   if (encoding == DW_EH_PE_omit) return true;
   113   if (encoding == DW_EH_PE_aligned) return true;
   114   if ((encoding & 0x7) > DW_EH_PE_udata8)
   115     return false;
   116   if ((encoding & 0x70) > DW_EH_PE_funcrel)
   117     return false;
   118   return true;
   119 }
   121 bool ByteReader::UsableEncoding(DwarfPointerEncoding encoding) const {
   122   switch (encoding & 0x70) {
   123     case DW_EH_PE_absptr:  return true;
   124     case DW_EH_PE_pcrel:   return have_section_base_;
   125     case DW_EH_PE_textrel: return have_text_base_;
   126     case DW_EH_PE_datarel: return have_data_base_;
   127     case DW_EH_PE_funcrel: return have_function_base_;
   128     default:               return false;
   129   }
   130 }
   132 uint64 ByteReader::ReadEncodedPointer(const char *buffer,
   133                                       DwarfPointerEncoding encoding,
   134                                       size_t *len) const {
   135   // UsableEncoding doesn't approve of DW_EH_PE_omit, so we shouldn't
   136   // see it here.
   137   MOZ_ASSERT(encoding != DW_EH_PE_omit);
   139   // The Linux Standards Base 4.0 does not make this clear, but the
   140   // GNU tools (gcc/unwind-pe.h; readelf/dwarf.c; gdb/dwarf2-frame.c)
   141   // agree that aligned pointers are always absolute, machine-sized,
   142   // machine-signed pointers.
   143   if (encoding == DW_EH_PE_aligned) {
   144     MOZ_ASSERT(have_section_base_);
   146     // We don't need to align BUFFER in *our* address space. Rather, we
   147     // need to find the next position in our buffer that would be aligned
   148     // when the .eh_frame section the buffer contains is loaded into the
   149     // program's memory. So align assuming that buffer_base_ gets loaded at
   150     // address section_base_, where section_base_ itself may or may not be
   151     // aligned.
   153     // First, find the offset to START from the closest prior aligned
   154     // address.
   155     uint64 skew = section_base_ & (AddressSize() - 1);
   156     // Now find the offset from that aligned address to buffer.
   157     uint64 offset = skew + (buffer - buffer_base_);
   158     // Round up to the next boundary.
   159     uint64 aligned = (offset + AddressSize() - 1) & -AddressSize();
   160     // Convert back to a pointer.
   161     const char *aligned_buffer = buffer_base_ + (aligned - skew);
   162     // Finally, store the length and actually fetch the pointer.
   163     *len = aligned_buffer - buffer + AddressSize();
   164     return ReadAddress(aligned_buffer);
   165   }
   167   // Extract the value first, ignoring whether it's a pointer or an
   168   // offset relative to some base.
   169   uint64 offset;
   170   switch (encoding & 0x0f) {
   171     case DW_EH_PE_absptr:
   172       // DW_EH_PE_absptr is weird, as it is used as a meaningful value for
   173       // both the high and low nybble of encoding bytes. When it appears in
   174       // the high nybble, it means that the pointer is absolute, not an
   175       // offset from some base address. When it appears in the low nybble,
   176       // as here, it means that the pointer is stored as a normal
   177       // machine-sized and machine-signed address. A low nybble of
   178       // DW_EH_PE_absptr does not imply that the pointer is absolute; it is
   179       // correct for us to treat the value as an offset from a base address
   180       // if the upper nybble is not DW_EH_PE_absptr.
   181       offset = ReadAddress(buffer);
   182       *len = AddressSize();
   183       break;
   185     case DW_EH_PE_uleb128:
   186       offset = ReadUnsignedLEB128(buffer, len);
   187       break;
   189     case DW_EH_PE_udata2:
   190       offset = ReadTwoBytes(buffer);
   191       *len = 2;
   192       break;
   194     case DW_EH_PE_udata4:
   195       offset = ReadFourBytes(buffer);
   196       *len = 4;
   197       break;
   199     case DW_EH_PE_udata8:
   200       offset = ReadEightBytes(buffer);
   201       *len = 8;
   202       break;
   204     case DW_EH_PE_sleb128:
   205       offset = ReadSignedLEB128(buffer, len);
   206       break;
   208     case DW_EH_PE_sdata2:
   209       offset = ReadTwoBytes(buffer);
   210       // Sign-extend from 16 bits.
   211       offset = (offset ^ 0x8000) - 0x8000;
   212       *len = 2;
   213       break;
   215     case DW_EH_PE_sdata4:
   216       offset = ReadFourBytes(buffer);
   217       // Sign-extend from 32 bits.
   218       offset = (offset ^ 0x80000000ULL) - 0x80000000ULL;
   219       *len = 4;
   220       break;
   222     case DW_EH_PE_sdata8:
   223       // No need to sign-extend; this is the full width of our type.
   224       offset = ReadEightBytes(buffer);
   225       *len = 8;
   226       break;
   228     default:
   229       abort();
   230   }
   232   // Find the appropriate base address.
   233   uint64 base;
   234   switch (encoding & 0x70) {
   235     case DW_EH_PE_absptr:
   236       base = 0;
   237       break;
   239     case DW_EH_PE_pcrel:
   240       MOZ_ASSERT(have_section_base_);
   241       base = section_base_ + (buffer - buffer_base_);
   242       break;
   244     case DW_EH_PE_textrel:
   245       MOZ_ASSERT(have_text_base_);
   246       base = text_base_;
   247       break;
   249     case DW_EH_PE_datarel:
   250       MOZ_ASSERT(have_data_base_);
   251       base = data_base_;
   252       break;
   254     case DW_EH_PE_funcrel:
   255       MOZ_ASSERT(have_function_base_);
   256       base = function_base_;
   257       break;
   259     default:
   260       abort();
   261   }
   263   uint64 pointer = base + offset;
   265   // Remove inappropriate upper bits.
   266   if (AddressSize() == 4)
   267     pointer = pointer & 0xffffffff;
   268   else
   269     MOZ_ASSERT(AddressSize() == sizeof(uint64));
   271   return pointer;
   272 }
   275 // A DWARF rule for recovering the address or value of a register, or
   276 // computing the canonical frame address. There is one subclass of this for
   277 // each '*Rule' member function in CallFrameInfo::Handler.
   278 //
   279 // It's annoying that we have to handle Rules using pointers (because
   280 // the concrete instances can have an arbitrary size). They're small,
   281 // so it would be much nicer if we could just handle them by value
   282 // instead of fretting about ownership and destruction.
   283 //
   284 // It seems like all these could simply be instances of std::tr1::bind,
   285 // except that we need instances to be EqualityComparable, too.
   286 //
   287 // This could logically be nested within State, but then the qualified names
   288 // get horrendous.
   289 class CallFrameInfo::Rule {
   290  public:
   291   virtual ~Rule() { }
   293   // Tell HANDLER that, at ADDRESS in the program, REGISTER can be
   294   // recovered using this rule. If REGISTER is kCFARegister, then this rule
   295   // describes how to compute the canonical frame address. Return what the
   296   // HANDLER member function returned.
   297   virtual bool Handle(Handler *handler,
   298                       uint64 address, int register) const = 0;
   300   // Equality on rules. We use these to decide which rules we need
   301   // to report after a DW_CFA_restore_state instruction.
   302   virtual bool operator==(const Rule &rhs) const = 0;
   304   bool operator!=(const Rule &rhs) const { return ! (*this == rhs); }
   306   // Return a pointer to a copy of this rule.
   307   virtual Rule *Copy() const = 0;
   309   // If this is a base+offset rule, change its base register to REG.
   310   // Otherwise, do nothing. (Ugly, but required for DW_CFA_def_cfa_register.)
   311   virtual void SetBaseRegister(unsigned reg) { }
   313   // If this is a base+offset rule, change its offset to OFFSET. Otherwise,
   314   // do nothing. (Ugly, but required for DW_CFA_def_cfa_offset.)
   315   virtual void SetOffset(long long offset) { }
   317   // A RTTI workaround, to make it possible to implement equality
   318   // comparisons on classes derived from this one.
   319   enum CFIRTag {
   320     CFIR_UNDEFINED_RULE,
   321     CFIR_SAME_VALUE_RULE,
   322     CFIR_OFFSET_RULE,
   323     CFIR_VAL_OFFSET_RULE,
   324     CFIR_REGISTER_RULE,
   325     CFIR_EXPRESSION_RULE,
   326     CFIR_VAL_EXPRESSION_RULE
   327   };
   329   // Produce the tag that identifies the child class of this object.
   330   virtual CFIRTag getTag() const = 0;
   331 };
   333 // Rule: the value the register had in the caller cannot be recovered.
   334 class CallFrameInfo::UndefinedRule: public CallFrameInfo::Rule {
   335  public:
   336   UndefinedRule() { }
   337   ~UndefinedRule() { }
   338   CFIRTag getTag() const { return CFIR_UNDEFINED_RULE; }
   339   bool Handle(Handler *handler, uint64 address, int reg) const {
   340     return handler->UndefinedRule(address, reg);
   341   }
   342   bool operator==(const Rule &rhs) const {
   343     if (rhs.getTag() != CFIR_UNDEFINED_RULE) return false;
   344     return true;
   345   }
   346   Rule *Copy() const { return new UndefinedRule(*this); }
   347 };
   349 // Rule: the register's value is the same as that it had in the caller.
   350 class CallFrameInfo::SameValueRule: public CallFrameInfo::Rule {
   351  public:
   352   SameValueRule() { }
   353   ~SameValueRule() { }
   354   CFIRTag getTag() const { return CFIR_SAME_VALUE_RULE; }
   355   bool Handle(Handler *handler, uint64 address, int reg) const {
   356     return handler->SameValueRule(address, reg);
   357   }
   358   bool operator==(const Rule &rhs) const {
   359     if (rhs.getTag() != CFIR_SAME_VALUE_RULE) return false;
   360     return true;
   361   }
   362   Rule *Copy() const { return new SameValueRule(*this); }
   363 };
   365 // Rule: the register is saved at OFFSET from BASE_REGISTER.  BASE_REGISTER
   366 // may be CallFrameInfo::Handler::kCFARegister.
   367 class CallFrameInfo::OffsetRule: public CallFrameInfo::Rule {
   368  public:
   369   OffsetRule(int base_register, long offset)
   370       : base_register_(base_register), offset_(offset) { }
   371   ~OffsetRule() { }
   372   CFIRTag getTag() const { return CFIR_OFFSET_RULE; }
   373   bool Handle(Handler *handler, uint64 address, int reg) const {
   374     return handler->OffsetRule(address, reg, base_register_, offset_);
   375   }
   376   bool operator==(const Rule &rhs) const {
   377     if (rhs.getTag() != CFIR_OFFSET_RULE) return false;
   378     const OffsetRule *our_rhs = static_cast<const OffsetRule *>(&rhs);
   379     return (base_register_ == our_rhs->base_register_ &&
   380             offset_ == our_rhs->offset_);
   381   }
   382   Rule *Copy() const { return new OffsetRule(*this); }
   383   // We don't actually need SetBaseRegister or SetOffset here, since they
   384   // are only ever applied to CFA rules, for DW_CFA_def_cfa_offset, and it
   385   // doesn't make sense to use OffsetRule for computing the CFA: it
   386   // computes the address at which a register is saved, not a value.
   387  private:
   388   int base_register_;
   389   long offset_;
   390 };
   392 // Rule: the value the register had in the caller is the value of
   393 // BASE_REGISTER plus offset. BASE_REGISTER may be
   394 // CallFrameInfo::Handler::kCFARegister.
   395 class CallFrameInfo::ValOffsetRule: public CallFrameInfo::Rule {
   396  public:
   397   ValOffsetRule(int base_register, long offset)
   398       : base_register_(base_register), offset_(offset) { }
   399   ~ValOffsetRule() { }
   400   CFIRTag getTag() const { return CFIR_VAL_OFFSET_RULE; }
   401   bool Handle(Handler *handler, uint64 address, int reg) const {
   402     return handler->ValOffsetRule(address, reg, base_register_, offset_);
   403   }
   404   bool operator==(const Rule &rhs) const {
   405     if (rhs.getTag() != CFIR_VAL_OFFSET_RULE) return false;
   406     const ValOffsetRule *our_rhs = static_cast<const ValOffsetRule *>(&rhs);
   407     return (base_register_ == our_rhs->base_register_ &&
   408             offset_ == our_rhs->offset_);
   409   }
   410   Rule *Copy() const { return new ValOffsetRule(*this); }
   411   void SetBaseRegister(unsigned reg) { base_register_ = reg; }
   412   void SetOffset(long long offset) { offset_ = offset; }
   413  private:
   414   int base_register_;
   415   long offset_;
   416 };
   418 // Rule: the register has been saved in another register REGISTER_NUMBER_.
   419 class CallFrameInfo::RegisterRule: public CallFrameInfo::Rule {
   420  public:
   421   explicit RegisterRule(int register_number)
   422       : register_number_(register_number) { }
   423   ~RegisterRule() { }
   424   CFIRTag getTag() const { return CFIR_REGISTER_RULE; }
   425   bool Handle(Handler *handler, uint64 address, int reg) const {
   426     return handler->RegisterRule(address, reg, register_number_);
   427   }
   428   bool operator==(const Rule &rhs) const {
   429     if (rhs.getTag() != CFIR_REGISTER_RULE) return false;
   430     const RegisterRule *our_rhs = static_cast<const RegisterRule *>(&rhs);
   431     return (register_number_ == our_rhs->register_number_);
   432   }
   433   Rule *Copy() const { return new RegisterRule(*this); }
   434  private:
   435   int register_number_;
   436 };
   438 // Rule: EXPRESSION evaluates to the address at which the register is saved.
   439 class CallFrameInfo::ExpressionRule: public CallFrameInfo::Rule {
   440  public:
   441   explicit ExpressionRule(const string &expression)
   442       : expression_(expression) { }
   443   ~ExpressionRule() { }
   444   CFIRTag getTag() const { return CFIR_EXPRESSION_RULE; }
   445   bool Handle(Handler *handler, uint64 address, int reg) const {
   446     return handler->ExpressionRule(address, reg, expression_);
   447   }
   448   bool operator==(const Rule &rhs) const {
   449     if (rhs.getTag() != CFIR_EXPRESSION_RULE) return false;
   450     const ExpressionRule *our_rhs = static_cast<const ExpressionRule *>(&rhs);
   451     return (expression_ == our_rhs->expression_);
   452   }
   453   Rule *Copy() const { return new ExpressionRule(*this); }
   454  private:
   455   string expression_;
   456 };
   458 // Rule: EXPRESSION evaluates to the previous value of the register.
   459 class CallFrameInfo::ValExpressionRule: public CallFrameInfo::Rule {
   460  public:
   461   explicit ValExpressionRule(const string &expression)
   462       : expression_(expression) { }
   463   ~ValExpressionRule() { }
   464   CFIRTag getTag() const { return CFIR_VAL_EXPRESSION_RULE; }
   465   bool Handle(Handler *handler, uint64 address, int reg) const {
   466     return handler->ValExpressionRule(address, reg, expression_);
   467   }
   468   bool operator==(const Rule &rhs) const {
   469     if (rhs.getTag() != CFIR_VAL_EXPRESSION_RULE) return false;
   470     const ValExpressionRule *our_rhs =
   471         static_cast<const ValExpressionRule *>(&rhs);
   472     return (expression_ == our_rhs->expression_);
   473   }
   474   Rule *Copy() const { return new ValExpressionRule(*this); }
   475  private:
   476   string expression_;
   477 };
   479 // A map from register numbers to rules.
   480 class CallFrameInfo::RuleMap {
   481  public:
   482   RuleMap() : cfa_rule_(NULL) { }
   483   RuleMap(const RuleMap &rhs) : cfa_rule_(NULL) { *this = rhs; }
   484   ~RuleMap() { Clear(); }
   486   RuleMap &operator=(const RuleMap &rhs);
   488   // Set the rule for computing the CFA to RULE. Take ownership of RULE.
   489   void SetCFARule(Rule *rule) { delete cfa_rule_; cfa_rule_ = rule; }
   491   // Return the current CFA rule. Unlike RegisterRule, this RuleMap retains
   492   // ownership of the rule. We use this for DW_CFA_def_cfa_offset and
   493   // DW_CFA_def_cfa_register, and for detecting references to the CFA before
   494   // a rule for it has been established.
   495   Rule *CFARule() const { return cfa_rule_; }
   497   // Return the rule for REG, or NULL if there is none. The caller takes
   498   // ownership of the result.
   499   Rule *RegisterRule(int reg) const;
   501   // Set the rule for computing REG to RULE. Take ownership of RULE.
   502   void SetRegisterRule(int reg, Rule *rule);
   504   // Make all the appropriate calls to HANDLER as if we were changing from
   505   // this RuleMap to NEW_RULES at ADDRESS. We use this to implement
   506   // DW_CFA_restore_state, where lots of rules can change simultaneously.
   507   // Return true if all handlers returned true; otherwise, return false.
   508   bool HandleTransitionTo(Handler *handler, uint64 address,
   509                           const RuleMap &new_rules) const;
   511  private:
   512   // A map from register numbers to Rules.
   513   typedef std::map<int, Rule *> RuleByNumber;
   515   // Remove all register rules and clear cfa_rule_.
   516   void Clear();
   518   // The rule for computing the canonical frame address. This RuleMap owns
   519   // this rule.
   520   Rule *cfa_rule_;
   522   // A map from register numbers to postfix expressions to recover
   523   // their values. This RuleMap owns the Rules the map refers to.
   524   RuleByNumber registers_;
   525 };
   527 CallFrameInfo::RuleMap &CallFrameInfo::RuleMap::operator=(const RuleMap &rhs) {
   528   Clear();
   529   // Since each map owns the rules it refers to, assignment must copy them.
   530   if (rhs.cfa_rule_) cfa_rule_ = rhs.cfa_rule_->Copy();
   531   for (RuleByNumber::const_iterator it = rhs.registers_.begin();
   532        it != rhs.registers_.end(); it++)
   533     registers_[it->first] = it->second->Copy();
   534   return *this;
   535 }
   537 CallFrameInfo::Rule *CallFrameInfo::RuleMap::RegisterRule(int reg) const {
   538   MOZ_ASSERT(reg != Handler::kCFARegister);
   539   RuleByNumber::const_iterator it = registers_.find(reg);
   540   if (it != registers_.end())
   541     return it->second->Copy();
   542   else
   543     return NULL;
   544 }
   546 void CallFrameInfo::RuleMap::SetRegisterRule(int reg, Rule *rule) {
   547   MOZ_ASSERT(reg != Handler::kCFARegister);
   548   MOZ_ASSERT(rule);
   549   Rule **slot = &registers_[reg];
   550   delete *slot;
   551   *slot = rule;
   552 }
   554 bool CallFrameInfo::RuleMap::HandleTransitionTo(
   555     Handler *handler,
   556     uint64 address,
   557     const RuleMap &new_rules) const {
   558   // Transition from cfa_rule_ to new_rules.cfa_rule_.
   559   if (cfa_rule_ && new_rules.cfa_rule_) {
   560     if (*cfa_rule_ != *new_rules.cfa_rule_ &&
   561         !new_rules.cfa_rule_->Handle(handler, address, Handler::kCFARegister))
   562       return false;
   563   } else if (cfa_rule_) {
   564     // this RuleMap has a CFA rule but new_rules doesn't.
   565     // CallFrameInfo::Handler has no way to handle this --- and shouldn't;
   566     // it's garbage input. The instruction interpreter should have
   567     // detected this and warned, so take no action here.
   568   } else if (new_rules.cfa_rule_) {
   569     // This shouldn't be possible: NEW_RULES is some prior state, and
   570     // there's no way to remove entries.
   571     MOZ_ASSERT(0);
   572   } else {
   573     // Both CFA rules are empty.  No action needed.
   574   }
   576   // Traverse the two maps in order by register number, and report
   577   // whatever differences we find.
   578   RuleByNumber::const_iterator old_it = registers_.begin();
   579   RuleByNumber::const_iterator new_it = new_rules.registers_.begin();
   580   while (old_it != registers_.end() && new_it != new_rules.registers_.end()) {
   581     if (old_it->first < new_it->first) {
   582       // This RuleMap has an entry for old_it->first, but NEW_RULES
   583       // doesn't.
   584       //
   585       // This isn't really the right thing to do, but since CFI generally
   586       // only mentions callee-saves registers, and GCC's convention for
   587       // callee-saves registers is that they are unchanged, it's a good
   588       // approximation.
   589       if (!handler->SameValueRule(address, old_it->first))
   590         return false;
   591       old_it++;
   592     } else if (old_it->first > new_it->first) {
   593       // NEW_RULES has entry for new_it->first, but this RuleMap
   594       // doesn't. This shouldn't be possible: NEW_RULES is some prior
   595       // state, and there's no way to remove entries.
   596       MOZ_ASSERT(0);
   597     } else {
   598       // Both maps have an entry for this register. Report the new
   599       // rule if it is different.
   600       if (*old_it->second != *new_it->second &&
   601           !new_it->second->Handle(handler, address, new_it->first))
   602         return false;
   603       new_it++, old_it++;
   604     }
   605   }
   606   // Finish off entries from this RuleMap with no counterparts in new_rules.
   607   while (old_it != registers_.end()) {
   608     if (!handler->SameValueRule(address, old_it->first))
   609       return false;
   610     old_it++;
   611   }
   612   // Since we only make transitions from a rule set to some previously
   613   // saved rule set, and we can only add rules to the map, NEW_RULES
   614   // must have fewer rules than *this.
   615   MOZ_ASSERT(new_it == new_rules.registers_.end());
   617   return true;
   618 }
   620 // Remove all register rules and clear cfa_rule_.
   621 void CallFrameInfo::RuleMap::Clear() {
   622   delete cfa_rule_;
   623   cfa_rule_ = NULL;
   624   for (RuleByNumber::iterator it = registers_.begin();
   625        it != registers_.end(); it++)
   626     delete it->second;
   627   registers_.clear();
   628 }
   630 // The state of the call frame information interpreter as it processes
   631 // instructions from a CIE and FDE.
   632 class CallFrameInfo::State {
   633  public:
   634   // Create a call frame information interpreter state with the given
   635   // reporter, reader, handler, and initial call frame info address.
   636   State(ByteReader *reader, Handler *handler, Reporter *reporter,
   637         uint64 address)
   638       : reader_(reader), handler_(handler), reporter_(reporter),
   639         address_(address), entry_(NULL), cursor_(NULL),
   640         saved_rules_(NULL) { }
   642   ~State() {
   643     if (saved_rules_)
   644       delete saved_rules_;
   645   }
   647   // Interpret instructions from CIE, save the resulting rule set for
   648   // DW_CFA_restore instructions, and return true. On error, report
   649   // the problem to reporter_ and return false.
   650   bool InterpretCIE(const CIE &cie);
   652   // Interpret instructions from FDE, and return true. On error,
   653   // report the problem to reporter_ and return false.
   654   bool InterpretFDE(const FDE &fde);
   656  private:
   657   // The operands of a CFI instruction, for ParseOperands.
   658   struct Operands {
   659     unsigned register_number;  // A register number.
   660     uint64 offset;             // An offset or address.
   661     long signed_offset;        // A signed offset.
   662     string expression;         // A DWARF expression.
   663   };
   665   // Parse CFI instruction operands from STATE's instruction stream as
   666   // described by FORMAT. On success, populate OPERANDS with the
   667   // results, and return true. On failure, report the problem and
   668   // return false.
   669   //
   670   // Each character of FORMAT should be one of the following:
   671   //
   672   //   'r'  unsigned LEB128 register number (OPERANDS->register_number)
   673   //   'o'  unsigned LEB128 offset          (OPERANDS->offset)
   674   //   's'  signed LEB128 offset            (OPERANDS->signed_offset)
   675   //   'a'  machine-size address            (OPERANDS->offset)
   676   //        (If the CIE has a 'z' augmentation string, 'a' uses the
   677   //        encoding specified by the 'R' argument.)
   678   //   '1'  a one-byte offset               (OPERANDS->offset)
   679   //   '2'  a two-byte offset               (OPERANDS->offset)
   680   //   '4'  a four-byte offset              (OPERANDS->offset)
   681   //   '8'  an eight-byte offset            (OPERANDS->offset)
   682   //   'e'  a DW_FORM_block holding a       (OPERANDS->expression)
   683   //        DWARF expression
   684   bool ParseOperands(const char *format, Operands *operands);
   686   // Interpret one CFI instruction from STATE's instruction stream, update
   687   // STATE, report any rule changes to handler_, and return true. On
   688   // failure, report the problem and return false.
   689   bool DoInstruction();
   691   // The following Do* member functions are subroutines of DoInstruction,
   692   // factoring out the actual work of operations that have several
   693   // different encodings.
   695   // Set the CFA rule to be the value of BASE_REGISTER plus OFFSET, and
   696   // return true. On failure, report and return false. (Used for
   697   // DW_CFA_def_cfa and DW_CFA_def_cfa_sf.)
   698   bool DoDefCFA(unsigned base_register, long offset);
   700   // Change the offset of the CFA rule to OFFSET, and return true. On
   701   // failure, report and return false. (Subroutine for
   702   // DW_CFA_def_cfa_offset and DW_CFA_def_cfa_offset_sf.)
   703   bool DoDefCFAOffset(long offset);
   705   // Specify that REG can be recovered using RULE, and return true. On
   706   // failure, report and return false.
   707   bool DoRule(unsigned reg, Rule *rule);
   709   // Specify that REG can be found at OFFSET from the CFA, and return true.
   710   // On failure, report and return false. (Subroutine for DW_CFA_offset,
   711   // DW_CFA_offset_extended, and DW_CFA_offset_extended_sf.)
   712   bool DoOffset(unsigned reg, long offset);
   714   // Specify that the caller's value for REG is the CFA plus OFFSET,
   715   // and return true. On failure, report and return false. (Subroutine
   716   // for DW_CFA_val_offset and DW_CFA_val_offset_sf.)
   717   bool DoValOffset(unsigned reg, long offset);
   719   // Restore REG to the rule established in the CIE, and return true. On
   720   // failure, report and return false. (Subroutine for DW_CFA_restore and
   721   // DW_CFA_restore_extended.)
   722   bool DoRestore(unsigned reg);
   724   // Return the section offset of the instruction at cursor. For use
   725   // in error messages.
   726   uint64 CursorOffset() { return entry_->offset + (cursor_ - entry_->start); }
   728   // Report that entry_ is incomplete, and return false. For brevity.
   729   bool ReportIncomplete() {
   730     reporter_->Incomplete(entry_->offset, entry_->kind);
   731     return false;
   732   }
   734   // For reading multi-byte values with the appropriate endianness.
   735   ByteReader *reader_;
   737   // The handler to which we should report the data we find.
   738   Handler *handler_;
   740   // For reporting problems in the info we're parsing.
   741   Reporter *reporter_;
   743   // The code address to which the next instruction in the stream applies.
   744   uint64 address_;
   746   // The entry whose instructions we are currently processing. This is
   747   // first a CIE, and then an FDE.
   748   const Entry *entry_;
   750   // The next instruction to process.
   751   const char *cursor_;
   753   // The current set of rules.
   754   RuleMap rules_;
   756   // The set of rules established by the CIE, used by DW_CFA_restore
   757   // and DW_CFA_restore_extended. We set this after interpreting the
   758   // CIE's instructions.
   759   RuleMap cie_rules_;
   761   // A stack of saved states, for DW_CFA_remember_state and
   762   // DW_CFA_restore_state.
   763   std::stack<RuleMap>* saved_rules_;
   764 };
   766 bool CallFrameInfo::State::InterpretCIE(const CIE &cie) {
   767   entry_ = &cie;
   768   cursor_ = entry_->instructions;
   769   while (cursor_ < entry_->end)
   770     if (!DoInstruction())
   771       return false;
   772   // Note the rules established by the CIE, for use by DW_CFA_restore
   773   // and DW_CFA_restore_extended.
   774   cie_rules_ = rules_;
   775   return true;
   776 }
   778 bool CallFrameInfo::State::InterpretFDE(const FDE &fde) {
   779   entry_ = &fde;
   780   cursor_ = entry_->instructions;
   781   while (cursor_ < entry_->end)
   782     if (!DoInstruction())
   783       return false;
   784   return true;
   785 }
   787 bool CallFrameInfo::State::ParseOperands(const char *format,
   788                                          Operands *operands) {
   789   size_t len;
   790   const char *operand;
   792   for (operand = format; *operand; operand++) {
   793     size_t bytes_left = entry_->end - cursor_;
   794     switch (*operand) {
   795       case 'r':
   796         operands->register_number = reader_->ReadUnsignedLEB128(cursor_, &len);
   797         if (len > bytes_left) return ReportIncomplete();
   798         cursor_ += len;
   799         break;
   801       case 'o':
   802         operands->offset = reader_->ReadUnsignedLEB128(cursor_, &len);
   803         if (len > bytes_left) return ReportIncomplete();
   804         cursor_ += len;
   805         break;
   807       case 's':
   808         operands->signed_offset = reader_->ReadSignedLEB128(cursor_, &len);
   809         if (len > bytes_left) return ReportIncomplete();
   810         cursor_ += len;
   811         break;
   813       case 'a':
   814         operands->offset =
   815           reader_->ReadEncodedPointer(cursor_, entry_->cie->pointer_encoding,
   816                                       &len);
   817         if (len > bytes_left) return ReportIncomplete();
   818         cursor_ += len;
   819         break;
   821       case '1':
   822         if (1 > bytes_left) return ReportIncomplete();
   823         operands->offset = static_cast<unsigned char>(*cursor_++);
   824         break;
   826       case '2':
   827         if (2 > bytes_left) return ReportIncomplete();
   828         operands->offset = reader_->ReadTwoBytes(cursor_);
   829         cursor_ += 2;
   830         break;
   832       case '4':
   833         if (4 > bytes_left) return ReportIncomplete();
   834         operands->offset = reader_->ReadFourBytes(cursor_);
   835         cursor_ += 4;
   836         break;
   838       case '8':
   839         if (8 > bytes_left) return ReportIncomplete();
   840         operands->offset = reader_->ReadEightBytes(cursor_);
   841         cursor_ += 8;
   842         break;
   844       case 'e': {
   845         size_t expression_length = reader_->ReadUnsignedLEB128(cursor_, &len);
   846         if (len > bytes_left || expression_length > bytes_left - len)
   847           return ReportIncomplete();
   848         cursor_ += len;
   849         operands->expression = string(cursor_, expression_length);
   850         cursor_ += expression_length;
   851         break;
   852       }
   854       default:
   855         MOZ_ASSERT(0);
   856     }
   857   }
   859   return true;
   860 }
   862 bool CallFrameInfo::State::DoInstruction() {
   863   CIE *cie = entry_->cie;
   864   Operands ops;
   866   // Our entry's kind should have been set by now.
   867   MOZ_ASSERT(entry_->kind != kUnknown);
   869   // We shouldn't have been invoked unless there were more
   870   // instructions to parse.
   871   MOZ_ASSERT(cursor_ < entry_->end);
   873   unsigned opcode = *cursor_++;
   874   if ((opcode & 0xc0) != 0) {
   875     switch (opcode & 0xc0) {
   876       // Advance the address.
   877       case DW_CFA_advance_loc: {
   878         size_t code_offset = opcode & 0x3f;
   879         address_ += code_offset * cie->code_alignment_factor;
   880         break;
   881       }
   883       // Find a register at an offset from the CFA.
   884       case DW_CFA_offset:
   885         if (!ParseOperands("o", &ops) ||
   886             !DoOffset(opcode & 0x3f, ops.offset * cie->data_alignment_factor))
   887           return false;
   888         break;
   890       // Restore the rule established for a register by the CIE.
   891       case DW_CFA_restore:
   892         if (!DoRestore(opcode & 0x3f)) return false;
   893         break;
   895       // The 'if' above should have excluded this possibility.
   896       default:
   897         MOZ_ASSERT(0);
   898     }
   900     // Return here, so the big switch below won't be indented.
   901     return true;
   902   }
   904   switch (opcode) {
   905     // Set the address.
   906     case DW_CFA_set_loc:
   907       if (!ParseOperands("a", &ops)) return false;
   908       address_ = ops.offset;
   909       break;
   911     // Advance the address.
   912     case DW_CFA_advance_loc1:
   913       if (!ParseOperands("1", &ops)) return false;
   914       address_ += ops.offset * cie->code_alignment_factor;
   915       break;
   917     // Advance the address.
   918     case DW_CFA_advance_loc2:
   919       if (!ParseOperands("2", &ops)) return false;
   920       address_ += ops.offset * cie->code_alignment_factor;
   921       break;
   923     // Advance the address.
   924     case DW_CFA_advance_loc4:
   925       if (!ParseOperands("4", &ops)) return false;
   926       address_ += ops.offset * cie->code_alignment_factor;
   927       break;
   929     // Advance the address.
   930     case DW_CFA_MIPS_advance_loc8:
   931       if (!ParseOperands("8", &ops)) return false;
   932       address_ += ops.offset * cie->code_alignment_factor;
   933       break;
   935     // Compute the CFA by adding an offset to a register.
   936     case DW_CFA_def_cfa:
   937       if (!ParseOperands("ro", &ops) ||
   938           !DoDefCFA(ops.register_number, ops.offset))
   939         return false;
   940       break;
   942     // Compute the CFA by adding an offset to a register.
   943     case DW_CFA_def_cfa_sf:
   944       if (!ParseOperands("rs", &ops) ||
   945           !DoDefCFA(ops.register_number,
   946                     ops.signed_offset * cie->data_alignment_factor))
   947         return false;
   948       break;
   950     // Change the base register used to compute the CFA.
   951     case DW_CFA_def_cfa_register: {
   952       Rule *cfa_rule = rules_.CFARule();
   953       if (!cfa_rule) {
   954         reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
   955         return false;
   956       }
   957       if (!ParseOperands("r", &ops)) return false;
   958       cfa_rule->SetBaseRegister(ops.register_number);
   959       if (!cfa_rule->Handle(handler_, address_, Handler::kCFARegister))
   960         return false;
   961       break;
   962     }
   964     // Change the offset used to compute the CFA.
   965     case DW_CFA_def_cfa_offset:
   966       if (!ParseOperands("o", &ops) ||
   967           !DoDefCFAOffset(ops.offset))
   968         return false;
   969       break;
   971     // Change the offset used to compute the CFA.
   972     case DW_CFA_def_cfa_offset_sf:
   973       if (!ParseOperands("s", &ops) ||
   974           !DoDefCFAOffset(ops.signed_offset * cie->data_alignment_factor))
   975         return false;
   976       break;
   978     // Specify an expression whose value is the CFA.
   979     case DW_CFA_def_cfa_expression: {
   980       if (!ParseOperands("e", &ops))
   981         return false;
   982       Rule *rule = new ValExpressionRule(ops.expression);
   983       rules_.SetCFARule(rule);
   984       if (!rule->Handle(handler_, address_, Handler::kCFARegister))
   985         return false;
   986       break;
   987     }
   989     // The register's value cannot be recovered.
   990     case DW_CFA_undefined: {
   991       if (!ParseOperands("r", &ops) ||
   992           !DoRule(ops.register_number, new UndefinedRule()))
   993         return false;
   994       break;
   995     }
   997     // The register's value is unchanged from its value in the caller.
   998     case DW_CFA_same_value: {
   999       if (!ParseOperands("r", &ops) ||
  1000           !DoRule(ops.register_number, new SameValueRule()))
  1001         return false;
  1002       break;
  1005     // Find a register at an offset from the CFA.
  1006     case DW_CFA_offset_extended:
  1007       if (!ParseOperands("ro", &ops) ||
  1008           !DoOffset(ops.register_number,
  1009                     ops.offset * cie->data_alignment_factor))
  1010         return false;
  1011       break;
  1013     // The register is saved at an offset from the CFA.
  1014     case DW_CFA_offset_extended_sf:
  1015       if (!ParseOperands("rs", &ops) ||
  1016           !DoOffset(ops.register_number,
  1017                     ops.signed_offset * cie->data_alignment_factor))
  1018         return false;
  1019       break;
  1021     // The register is saved at an offset from the CFA.
  1022     case DW_CFA_GNU_negative_offset_extended:
  1023       if (!ParseOperands("ro", &ops) ||
  1024           !DoOffset(ops.register_number,
  1025                     -ops.offset * cie->data_alignment_factor))
  1026         return false;
  1027       break;
  1029     // The register's value is the sum of the CFA plus an offset.
  1030     case DW_CFA_val_offset:
  1031       if (!ParseOperands("ro", &ops) ||
  1032           !DoValOffset(ops.register_number,
  1033                        ops.offset * cie->data_alignment_factor))
  1034         return false;
  1035       break;
  1037     // The register's value is the sum of the CFA plus an offset.
  1038     case DW_CFA_val_offset_sf:
  1039       if (!ParseOperands("rs", &ops) ||
  1040           !DoValOffset(ops.register_number,
  1041                        ops.signed_offset * cie->data_alignment_factor))
  1042         return false;
  1043       break;
  1045     // The register has been saved in another register.
  1046     case DW_CFA_register: {
  1047       if (!ParseOperands("ro", &ops) ||
  1048           !DoRule(ops.register_number, new RegisterRule(ops.offset)))
  1049         return false;
  1050       break;
  1053     // An expression yields the address at which the register is saved.
  1054     case DW_CFA_expression: {
  1055       if (!ParseOperands("re", &ops) ||
  1056           !DoRule(ops.register_number, new ExpressionRule(ops.expression)))
  1057         return false;
  1058       break;
  1061     // An expression yields the caller's value for the register.
  1062     case DW_CFA_val_expression: {
  1063       if (!ParseOperands("re", &ops) ||
  1064           !DoRule(ops.register_number, new ValExpressionRule(ops.expression)))
  1065         return false;
  1066       break;
  1069     // Restore the rule established for a register by the CIE.
  1070     case DW_CFA_restore_extended:
  1071       if (!ParseOperands("r", &ops) ||
  1072           !DoRestore( ops.register_number))
  1073         return false;
  1074       break;
  1076     // Save the current set of rules on a stack.
  1077     case DW_CFA_remember_state:
  1078       if (!saved_rules_) {
  1079         saved_rules_ = new std::stack<RuleMap>();
  1081       saved_rules_->push(rules_);
  1082       break;
  1084     // Pop the current set of rules off the stack.
  1085     case DW_CFA_restore_state: {
  1086       if (!saved_rules_ || saved_rules_->empty()) {
  1087         reporter_->EmptyStateStack(entry_->offset, entry_->kind,
  1088                                    CursorOffset());
  1089         return false;
  1091       const RuleMap &new_rules = saved_rules_->top();
  1092       if (rules_.CFARule() && !new_rules.CFARule()) {
  1093         reporter_->ClearingCFARule(entry_->offset, entry_->kind,
  1094                                    CursorOffset());
  1095         return false;
  1097       rules_.HandleTransitionTo(handler_, address_, new_rules);
  1098       rules_ = new_rules;
  1099       saved_rules_->pop();
  1100       break;
  1103     // No operation.  (Padding instruction.)
  1104     case DW_CFA_nop:
  1105       break;
  1107     // A SPARC register window save: Registers 8 through 15 (%o0-%o7)
  1108     // are saved in registers 24 through 31 (%i0-%i7), and registers
  1109     // 16 through 31 (%l0-%l7 and %i0-%i7) are saved at CFA offsets
  1110     // (0-15 * the register size). The register numbers must be
  1111     // hard-coded. A GNU extension, and not a pretty one.
  1112     case DW_CFA_GNU_window_save: {
  1113       // Save %o0-%o7 in %i0-%i7.
  1114       for (int i = 8; i < 16; i++)
  1115         if (!DoRule(i, new RegisterRule(i + 16)))
  1116           return false;
  1117       // Save %l0-%l7 and %i0-%i7 at the CFA.
  1118       for (int i = 16; i < 32; i++)
  1119         // Assume that the byte reader's address size is the same as
  1120         // the architecture's register size. !@#%*^ hilarious.
  1121         if (!DoRule(i, new OffsetRule(Handler::kCFARegister,
  1122                                       (i - 16) * reader_->AddressSize())))
  1123           return false;
  1124       break;
  1127     // I'm not sure what this is. GDB doesn't use it for unwinding.
  1128     case DW_CFA_GNU_args_size:
  1129       if (!ParseOperands("o", &ops)) return false;
  1130       break;
  1132     // An opcode we don't recognize.
  1133     default: {
  1134       reporter_->BadInstruction(entry_->offset, entry_->kind, CursorOffset());
  1135       return false;
  1139   return true;
  1142 bool CallFrameInfo::State::DoDefCFA(unsigned base_register, long offset) {
  1143   Rule *rule = new ValOffsetRule(base_register, offset);
  1144   rules_.SetCFARule(rule);
  1145   return rule->Handle(handler_, address_, Handler::kCFARegister);
  1148 bool CallFrameInfo::State::DoDefCFAOffset(long offset) {
  1149   Rule *cfa_rule = rules_.CFARule();
  1150   if (!cfa_rule) {
  1151     reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
  1152     return false;
  1154   cfa_rule->SetOffset(offset);
  1155   return cfa_rule->Handle(handler_, address_, Handler::kCFARegister);
  1158 bool CallFrameInfo::State::DoRule(unsigned reg, Rule *rule) {
  1159   rules_.SetRegisterRule(reg, rule);
  1160   return rule->Handle(handler_, address_, reg);
  1163 bool CallFrameInfo::State::DoOffset(unsigned reg, long offset) {
  1164   if (!rules_.CFARule()) {
  1165     reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
  1166     return false;
  1168   return DoRule(reg,
  1169                 new OffsetRule(Handler::kCFARegister, offset));
  1172 bool CallFrameInfo::State::DoValOffset(unsigned reg, long offset) {
  1173   if (!rules_.CFARule()) {
  1174     reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
  1175     return false;
  1177   return DoRule(reg,
  1178                 new ValOffsetRule(Handler::kCFARegister, offset));
  1181 bool CallFrameInfo::State::DoRestore(unsigned reg) {
  1182   // DW_CFA_restore and DW_CFA_restore_extended don't make sense in a CIE.
  1183   if (entry_->kind == kCIE) {
  1184     reporter_->RestoreInCIE(entry_->offset, CursorOffset());
  1185     return false;
  1187   Rule *rule = cie_rules_.RegisterRule(reg);
  1188   if (!rule) {
  1189     // This isn't really the right thing to do, but since CFI generally
  1190     // only mentions callee-saves registers, and GCC's convention for
  1191     // callee-saves registers is that they are unchanged, it's a good
  1192     // approximation.
  1193     rule = new SameValueRule();
  1195   return DoRule(reg, rule);
  1198 bool CallFrameInfo::ReadEntryPrologue(const char *cursor, Entry *entry) {
  1199   const char *buffer_end = buffer_ + buffer_length_;
  1201   // Initialize enough of ENTRY for use in error reporting.
  1202   entry->offset = cursor - buffer_;
  1203   entry->start = cursor;
  1204   entry->kind = kUnknown;
  1205   entry->end = NULL;
  1207   // Read the initial length. This sets reader_'s offset size.
  1208   size_t length_size;
  1209   uint64 length = reader_->ReadInitialLength(cursor, &length_size);
  1210   if (length_size > size_t(buffer_end - cursor))
  1211     return ReportIncomplete(entry);
  1212   cursor += length_size;
  1214   // In a .eh_frame section, a length of zero marks the end of the series
  1215   // of entries.
  1216   if (length == 0 && eh_frame_) {
  1217     entry->kind = kTerminator;
  1218     entry->end = cursor;
  1219     return true;
  1222   // Validate the length.
  1223   if (length > size_t(buffer_end - cursor))
  1224     return ReportIncomplete(entry);
  1226   // The length is the number of bytes after the initial length field;
  1227   // we have that position handy at this point, so compute the end
  1228   // now. (If we're parsing 64-bit-offset DWARF on a 32-bit machine,
  1229   // and the length didn't fit in a size_t, we would have rejected it
  1230   // above.)
  1231   entry->end = cursor + length;
  1233   // Parse the next field: either the offset of a CIE or a CIE id.
  1234   size_t offset_size = reader_->OffsetSize();
  1235   if (offset_size > size_t(entry->end - cursor)) return ReportIncomplete(entry);
  1236   entry->id = reader_->ReadOffset(cursor);
  1238   // Don't advance cursor past id field yet; in .eh_frame data we need
  1239   // the id's position to compute the section offset of an FDE's CIE.
  1241   // Now we can decide what kind of entry this is.
  1242   if (eh_frame_) {
  1243     // In .eh_frame data, an ID of zero marks the entry as a CIE, and
  1244     // anything else is an offset from the id field of the FDE to the start
  1245     // of the CIE.
  1246     if (entry->id == 0) {
  1247       entry->kind = kCIE;
  1248     } else {
  1249       entry->kind = kFDE;
  1250       // Turn the offset from the id into an offset from the buffer's start.
  1251       entry->id = (cursor - buffer_) - entry->id;
  1253   } else {
  1254     // In DWARF CFI data, an ID of ~0 (of the appropriate width, given the
  1255     // offset size for the entry) marks the entry as a CIE, and anything
  1256     // else is the offset of the CIE from the beginning of the section.
  1257     if (offset_size == 4)
  1258       entry->kind = (entry->id == 0xffffffff) ? kCIE : kFDE;
  1259     else {
  1260       MOZ_ASSERT(offset_size == 8);
  1261       entry->kind = (entry->id == 0xffffffffffffffffULL) ? kCIE : kFDE;
  1265   // Now advance cursor past the id.
  1266    cursor += offset_size;
  1268   // The fields specific to this kind of entry start here.
  1269   entry->fields = cursor;
  1271   entry->cie = NULL;
  1273   return true;
  1276 bool CallFrameInfo::ReadCIEFields(CIE *cie) {
  1277   const char *cursor = cie->fields;
  1278   size_t len;
  1280   MOZ_ASSERT(cie->kind == kCIE);
  1282   // Prepare for early exit.
  1283   cie->version = 0;
  1284   cie->augmentation.clear();
  1285   cie->code_alignment_factor = 0;
  1286   cie->data_alignment_factor = 0;
  1287   cie->return_address_register = 0;
  1288   cie->has_z_augmentation = false;
  1289   cie->pointer_encoding = DW_EH_PE_absptr;
  1290   cie->instructions = 0;
  1292   // Parse the version number.
  1293   if (cie->end - cursor < 1)
  1294     return ReportIncomplete(cie);
  1295   cie->version = reader_->ReadOneByte(cursor);
  1296   cursor++;
  1298   // If we don't recognize the version, we can't parse any more fields of the
  1299   // CIE. For DWARF CFI, we handle versions 1 through 3 (there was never a
  1300   // version 2 of CFI data). For .eh_frame, we handle versions 1 and 3 as well;
  1301   // the difference between those versions seems to be the same as for
  1302   // .debug_frame.
  1303   if (cie->version < 1 || cie->version > 3) {
  1304     reporter_->UnrecognizedVersion(cie->offset, cie->version);
  1305     return false;
  1308   const char *augmentation_start = cursor;
  1309   const void *augmentation_end =
  1310       memchr(augmentation_start, '\0', cie->end - augmentation_start);
  1311   if (! augmentation_end) return ReportIncomplete(cie);
  1312   cursor = static_cast<const char *>(augmentation_end);
  1313   cie->augmentation = string(augmentation_start,
  1314                                   cursor - augmentation_start);
  1315   // Skip the terminating '\0'.
  1316   cursor++;
  1318   // Is this CFI augmented?
  1319   if (!cie->augmentation.empty()) {
  1320     // Is it an augmentation we recognize?
  1321     if (cie->augmentation[0] == DW_Z_augmentation_start) {
  1322       // Linux C++ ABI 'z' augmentation, used for exception handling data.
  1323       cie->has_z_augmentation = true;
  1324     } else {
  1325       // Not an augmentation we recognize. Augmentations can have arbitrary
  1326       // effects on the form of rest of the content, so we have to give up.
  1327       reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation);
  1328       return false;
  1332   // Parse the code alignment factor.
  1333   cie->code_alignment_factor = reader_->ReadUnsignedLEB128(cursor, &len);
  1334   if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
  1335   cursor += len;
  1337   // Parse the data alignment factor.
  1338   cie->data_alignment_factor = reader_->ReadSignedLEB128(cursor, &len);
  1339   if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
  1340   cursor += len;
  1342   // Parse the return address register. This is a ubyte in version 1, and
  1343   // a ULEB128 in version 3.
  1344   if (cie->version == 1) {
  1345     if (cursor >= cie->end) return ReportIncomplete(cie);
  1346     cie->return_address_register = uint8(*cursor++);
  1347   } else {
  1348     cie->return_address_register = reader_->ReadUnsignedLEB128(cursor, &len);
  1349     if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
  1350     cursor += len;
  1353   // If we have a 'z' augmentation string, find the augmentation data and
  1354   // use the augmentation string to parse it.
  1355   if (cie->has_z_augmentation) {
  1356     uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &len);
  1357     if (size_t(cie->end - cursor) < len + data_size)
  1358       return ReportIncomplete(cie);
  1359     cursor += len;
  1360     const char *data = cursor;
  1361     cursor += data_size;
  1362     const char *data_end = cursor;
  1364     cie->has_z_lsda = false;
  1365     cie->has_z_personality = false;
  1366     cie->has_z_signal_frame = false;
  1368     // Walk the augmentation string, and extract values from the
  1369     // augmentation data as the string directs.
  1370     for (size_t i = 1; i < cie->augmentation.size(); i++) {
  1371       switch (cie->augmentation[i]) {
  1372         case DW_Z_has_LSDA:
  1373           // The CIE's augmentation data holds the language-specific data
  1374           // area pointer's encoding, and the FDE's augmentation data holds
  1375           // the pointer itself.
  1376           cie->has_z_lsda = true;
  1377           // Fetch the LSDA encoding from the augmentation data.
  1378           if (data >= data_end) return ReportIncomplete(cie);
  1379           cie->lsda_encoding = DwarfPointerEncoding(*data++);
  1380           if (!reader_->ValidEncoding(cie->lsda_encoding)) {
  1381             reporter_->InvalidPointerEncoding(cie->offset, cie->lsda_encoding);
  1382             return false;
  1384           // Don't check if the encoding is usable here --- we haven't
  1385           // read the FDE's fields yet, so we're not prepared for
  1386           // DW_EH_PE_funcrel, although that's a fine encoding for the
  1387           // LSDA to use, since it appears in the FDE.
  1388           break;
  1390         case DW_Z_has_personality_routine:
  1391           // The CIE's augmentation data holds the personality routine
  1392           // pointer's encoding, followed by the pointer itself.
  1393           cie->has_z_personality = true;
  1394           // Fetch the personality routine pointer's encoding from the
  1395           // augmentation data.
  1396           if (data >= data_end) return ReportIncomplete(cie);
  1397           cie->personality_encoding = DwarfPointerEncoding(*data++);
  1398           if (!reader_->ValidEncoding(cie->personality_encoding)) {
  1399             reporter_->InvalidPointerEncoding(cie->offset,
  1400                                               cie->personality_encoding);
  1401             return false;
  1403           if (!reader_->UsableEncoding(cie->personality_encoding)) {
  1404             reporter_->UnusablePointerEncoding(cie->offset,
  1405                                                cie->personality_encoding);
  1406             return false;
  1408           // Fetch the personality routine's pointer itself from the data.
  1409           cie->personality_address =
  1410             reader_->ReadEncodedPointer(data, cie->personality_encoding,
  1411                                         &len);
  1412           if (len > size_t(data_end - data))
  1413             return ReportIncomplete(cie);
  1414           data += len;
  1415           break;
  1417         case DW_Z_has_FDE_address_encoding:
  1418           // The CIE's augmentation data holds the pointer encoding to use
  1419           // for addresses in the FDE.
  1420           if (data >= data_end) return ReportIncomplete(cie);
  1421           cie->pointer_encoding = DwarfPointerEncoding(*data++);
  1422           if (!reader_->ValidEncoding(cie->pointer_encoding)) {
  1423             reporter_->InvalidPointerEncoding(cie->offset,
  1424                                               cie->pointer_encoding);
  1425             return false;
  1427           if (!reader_->UsableEncoding(cie->pointer_encoding)) {
  1428             reporter_->UnusablePointerEncoding(cie->offset,
  1429                                                cie->pointer_encoding);
  1430             return false;
  1432           break;
  1434         case DW_Z_is_signal_trampoline:
  1435           // Frames using this CIE are signal delivery frames.
  1436           cie->has_z_signal_frame = true;
  1437           break;
  1439         default:
  1440           // An augmentation we don't recognize.
  1441           reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation);
  1442           return false;
  1447   // The CIE's instructions start here.
  1448   cie->instructions = cursor;
  1450   return true;
  1453 bool CallFrameInfo::ReadFDEFields(FDE *fde) {
  1454   const char *cursor = fde->fields;
  1455   size_t size;
  1457   fde->address = reader_->ReadEncodedPointer(cursor, fde->cie->pointer_encoding,
  1458                                              &size);
  1459   if (size > size_t(fde->end - cursor))
  1460     return ReportIncomplete(fde);
  1461   cursor += size;
  1462   reader_->SetFunctionBase(fde->address);
  1464   // For the length, we strip off the upper nybble of the encoding used for
  1465   // the starting address.
  1466   DwarfPointerEncoding length_encoding =
  1467     DwarfPointerEncoding(fde->cie->pointer_encoding & 0x0f);
  1468   fde->size = reader_->ReadEncodedPointer(cursor, length_encoding, &size);
  1469   if (size > size_t(fde->end - cursor))
  1470     return ReportIncomplete(fde);
  1471   cursor += size;
  1473   // If the CIE has a 'z' augmentation string, then augmentation data
  1474   // appears here.
  1475   if (fde->cie->has_z_augmentation) {
  1476     uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &size);
  1477     if (size_t(fde->end - cursor) < size + data_size)
  1478       return ReportIncomplete(fde);
  1479     cursor += size;
  1481     // In the abstract, we should walk the augmentation string, and extract
  1482     // items from the FDE's augmentation data as we encounter augmentation
  1483     // string characters that specify their presence: the ordering of items
  1484     // in the augmentation string determines the arrangement of values in
  1485     // the augmentation data.
  1486     //
  1487     // In practice, there's only ever one value in FDE augmentation data
  1488     // that we support --- the LSDA pointer --- and we have to bail if we
  1489     // see any unrecognized augmentation string characters. So if there is
  1490     // anything here at all, we know what it is, and where it starts.
  1491     if (fde->cie->has_z_lsda) {
  1492       // Check whether the LSDA's pointer encoding is usable now: only once
  1493       // we've parsed the FDE's starting address do we call reader_->
  1494       // SetFunctionBase, so that the DW_EH_PE_funcrel encoding becomes
  1495       // usable.
  1496       if (!reader_->UsableEncoding(fde->cie->lsda_encoding)) {
  1497         reporter_->UnusablePointerEncoding(fde->cie->offset,
  1498                                            fde->cie->lsda_encoding);
  1499         return false;
  1502       fde->lsda_address =
  1503         reader_->ReadEncodedPointer(cursor, fde->cie->lsda_encoding, &size);
  1504       if (size > data_size)
  1505         return ReportIncomplete(fde);
  1506       // Ideally, we would also complain here if there were unconsumed
  1507       // augmentation data.
  1510     cursor += data_size;
  1513   // The FDE's instructions start after those.
  1514   fde->instructions = cursor;
  1516   return true;
  1519 bool CallFrameInfo::Start() {
  1520   const char *buffer_end = buffer_ + buffer_length_;
  1521   const char *cursor;
  1522   bool all_ok = true;
  1523   const char *entry_end;
  1524   bool ok;
  1526   // Traverse all the entries in buffer_, skipping CIEs and offering
  1527   // FDEs to the handler.
  1528   for (cursor = buffer_; cursor < buffer_end;
  1529        cursor = entry_end, all_ok = all_ok && ok) {
  1530     FDE fde;
  1532     // Make it easy to skip this entry with 'continue': assume that
  1533     // things are not okay until we've checked all the data, and
  1534     // prepare the address of the next entry.
  1535     ok = false;
  1537     // Read the entry's prologue.
  1538     if (!ReadEntryPrologue(cursor, &fde)) {
  1539       if (!fde.end) {
  1540         // If we couldn't even figure out this entry's extent, then we
  1541         // must stop processing entries altogether.
  1542         all_ok = false;
  1543         break;
  1545       entry_end = fde.end;
  1546       continue;
  1549     // The next iteration picks up after this entry.
  1550     entry_end = fde.end;
  1552     // Did we see an .eh_frame terminating mark?
  1553     if (fde.kind == kTerminator) {
  1554       // If there appears to be more data left in the section after the
  1555       // terminating mark, warn the user. But this is just a warning;
  1556       // we leave all_ok true.
  1557       if (fde.end < buffer_end) reporter_->EarlyEHTerminator(fde.offset);
  1558       break;
  1561     // In this loop, we skip CIEs. We only parse them fully when we
  1562     // parse an FDE that refers to them. This limits our memory
  1563     // consumption (beyond the buffer itself) to that needed to
  1564     // process the largest single entry.
  1565     if (fde.kind != kFDE) {
  1566       ok = true;
  1567       continue;
  1570     // Validate the CIE pointer.
  1571     if (fde.id > buffer_length_) {
  1572       reporter_->CIEPointerOutOfRange(fde.offset, fde.id);
  1573       continue;
  1576     CIE cie;
  1578     // Parse this FDE's CIE header.
  1579     if (!ReadEntryPrologue(buffer_ + fde.id, &cie))
  1580       continue;
  1581     // This had better be an actual CIE.
  1582     if (cie.kind != kCIE) {
  1583       reporter_->BadCIEId(fde.offset, fde.id);
  1584       continue;
  1586     if (!ReadCIEFields(&cie))
  1587       continue;
  1589     // We now have the values that govern both the CIE and the FDE.
  1590     cie.cie = &cie;
  1591     fde.cie = &cie;
  1593     // Parse the FDE's header.
  1594     if (!ReadFDEFields(&fde))
  1595       continue;
  1597     // Call Entry to ask the consumer if they're interested.
  1598     if (!handler_->Entry(fde.offset, fde.address, fde.size,
  1599                          cie.version, cie.augmentation,
  1600                          cie.return_address_register)) {
  1601       // The handler isn't interested in this entry. That's not an error.
  1602       ok = true;
  1603       continue;
  1606     if (cie.has_z_augmentation) {
  1607       // Report the personality routine address, if we have one.
  1608       if (cie.has_z_personality) {
  1609         if (!handler_
  1610             ->PersonalityRoutine(cie.personality_address,
  1611                                  IsIndirectEncoding(cie.personality_encoding)))
  1612           continue;
  1615       // Report the language-specific data area address, if we have one.
  1616       if (cie.has_z_lsda) {
  1617         if (!handler_
  1618             ->LanguageSpecificDataArea(fde.lsda_address,
  1619                                        IsIndirectEncoding(cie.lsda_encoding)))
  1620           continue;
  1623       // If this is a signal-handling frame, report that.
  1624       if (cie.has_z_signal_frame) {
  1625         if (!handler_->SignalHandler())
  1626           continue;
  1630     // Interpret the CIE's instructions, and then the FDE's instructions.
  1631     State state(reader_, handler_, reporter_, fde.address);
  1632     ok = state.InterpretCIE(cie) && state.InterpretFDE(fde);
  1634     // Tell the ByteReader that the function start address from the
  1635     // FDE header is no longer valid.
  1636     reader_->ClearFunctionBase();
  1638     // Report the end of the entry.
  1639     handler_->End();
  1642   return all_ok;
  1645 const char *CallFrameInfo::KindName(EntryKind kind) {
  1646   if (kind == CallFrameInfo::kUnknown)
  1647     return "entry";
  1648   else if (kind == CallFrameInfo::kCIE)
  1649     return "common information entry";
  1650   else if (kind == CallFrameInfo::kFDE)
  1651     return "frame description entry";
  1652   else {
  1653     MOZ_ASSERT (kind == CallFrameInfo::kTerminator);
  1654     return ".eh_frame sequence terminator";
  1658 bool CallFrameInfo::ReportIncomplete(Entry *entry) {
  1659   reporter_->Incomplete(entry->offset, entry->kind);
  1660   return false;
  1663 void CallFrameInfo::Reporter::Incomplete(uint64 offset,
  1664                                          CallFrameInfo::EntryKind kind) {
  1665   char buf[300];
  1666   snprintf(buf, sizeof(buf),
  1667            "%s: CFI %s at offset 0x%llx in '%s': entry ends early\n",
  1668            filename_.c_str(), CallFrameInfo::KindName(kind), offset,
  1669            section_.c_str());
  1670   log_(buf);
  1673 void CallFrameInfo::Reporter::EarlyEHTerminator(uint64 offset) {
  1674   char buf[300];
  1675   snprintf(buf, sizeof(buf),
  1676            "%s: CFI at offset 0x%llx in '%s': saw end-of-data marker"
  1677            " before end of section contents\n",
  1678            filename_.c_str(), offset, section_.c_str());
  1679   log_(buf);
  1682 void CallFrameInfo::Reporter::CIEPointerOutOfRange(uint64 offset,
  1683                                                    uint64 cie_offset) {
  1684   char buf[300];
  1685   snprintf(buf, sizeof(buf),
  1686            "%s: CFI frame description entry at offset 0x%llx in '%s':"
  1687            " CIE pointer is out of range: 0x%llx\n",
  1688            filename_.c_str(), offset, section_.c_str(), cie_offset);
  1689   log_(buf);
  1692 void CallFrameInfo::Reporter::BadCIEId(uint64 offset, uint64 cie_offset) {
  1693   char buf[300];
  1694   snprintf(buf, sizeof(buf),
  1695            "%s: CFI frame description entry at offset 0x%llx in '%s':"
  1696            " CIE pointer does not point to a CIE: 0x%llx\n",
  1697            filename_.c_str(), offset, section_.c_str(), cie_offset);
  1698   log_(buf);
  1701 void CallFrameInfo::Reporter::UnrecognizedVersion(uint64 offset, int version) {
  1702   char buf[300];
  1703   snprintf(buf, sizeof(buf),
  1704            "%s: CFI frame description entry at offset 0x%llx in '%s':"
  1705            " CIE specifies unrecognized version: %d\n",
  1706            filename_.c_str(), offset, section_.c_str(), version);
  1707   log_(buf);
  1710 void CallFrameInfo::Reporter::UnrecognizedAugmentation(uint64 offset,
  1711                                                        const string &aug) {
  1712   char buf[300];
  1713   snprintf(buf, sizeof(buf),
  1714            "%s: CFI frame description entry at offset 0x%llx in '%s':"
  1715            " CIE specifies unrecognized augmentation: '%s'\n",
  1716            filename_.c_str(), offset, section_.c_str(), aug.c_str());
  1717   log_(buf);
  1720 void CallFrameInfo::Reporter::InvalidPointerEncoding(uint64 offset,
  1721                                                      uint8 encoding) {
  1722   char buf[300];
  1723   snprintf(buf, sizeof(buf),
  1724            "%s: CFI common information entry at offset 0x%llx in '%s':"
  1725            " 'z' augmentation specifies invalid pointer encoding: 0x%02x\n",
  1726            filename_.c_str(), offset, section_.c_str(), encoding);
  1727   log_(buf);
  1730 void CallFrameInfo::Reporter::UnusablePointerEncoding(uint64 offset,
  1731                                                       uint8 encoding) {
  1732   char buf[300];
  1733   snprintf(buf, sizeof(buf),
  1734            "%s: CFI common information entry at offset 0x%llx in '%s':"
  1735            " 'z' augmentation specifies a pointer encoding for which"
  1736            " we have no base address: 0x%02x\n",
  1737            filename_.c_str(), offset, section_.c_str(), encoding);
  1738   log_(buf);
  1741 void CallFrameInfo::Reporter::RestoreInCIE(uint64 offset, uint64 insn_offset) {
  1742   char buf[300];
  1743   snprintf(buf, sizeof(buf),
  1744            "%s: CFI common information entry at offset 0x%llx in '%s':"
  1745            " the DW_CFA_restore instruction at offset 0x%llx"
  1746            " cannot be used in a common information entry\n",
  1747            filename_.c_str(), offset, section_.c_str(), insn_offset);
  1748   log_(buf);
  1751 void CallFrameInfo::Reporter::BadInstruction(uint64 offset,
  1752                                              CallFrameInfo::EntryKind kind,
  1753                                              uint64 insn_offset) {
  1754   char buf[300];
  1755   snprintf(buf, sizeof(buf),
  1756            "%s: CFI %s at offset 0x%llx in section '%s':"
  1757            " the instruction at offset 0x%llx is unrecognized\n",
  1758            filename_.c_str(), CallFrameInfo::KindName(kind),
  1759            offset, section_.c_str(), insn_offset);
  1760   log_(buf);
  1763 void CallFrameInfo::Reporter::NoCFARule(uint64 offset,
  1764                                         CallFrameInfo::EntryKind kind,
  1765                                         uint64 insn_offset) {
  1766   char buf[300];
  1767   snprintf(buf, sizeof(buf),
  1768            "%s: CFI %s at offset 0x%llx in section '%s':"
  1769            " the instruction at offset 0x%llx assumes that a CFA rule has"
  1770            " been set, but none has been set\n",
  1771            filename_.c_str(), CallFrameInfo::KindName(kind), offset,
  1772            section_.c_str(), insn_offset);
  1773   log_(buf);
  1776 void CallFrameInfo::Reporter::EmptyStateStack(uint64 offset,
  1777                                               CallFrameInfo::EntryKind kind,
  1778                                               uint64 insn_offset) {
  1779   char buf[300];
  1780   snprintf(buf, sizeof(buf),
  1781            "%s: CFI %s at offset 0x%llx in section '%s':"
  1782            " the DW_CFA_restore_state instruction at offset 0x%llx"
  1783            " should pop a saved state from the stack, but the stack is empty\n",
  1784            filename_.c_str(), CallFrameInfo::KindName(kind), offset,
  1785            section_.c_str(), insn_offset);
  1786   log_(buf);
  1789 void CallFrameInfo::Reporter::ClearingCFARule(uint64 offset,
  1790                                               CallFrameInfo::EntryKind kind,
  1791                                               uint64 insn_offset) {
  1792   char buf[300];
  1793   snprintf(buf, sizeof(buf),
  1794            "%s: CFI %s at offset 0x%llx in section '%s':"
  1795            " the DW_CFA_restore_state instruction at offset 0x%llx"
  1796            " would clear the CFA rule in effect\n",
  1797            filename_.c_str(), CallFrameInfo::KindName(kind), offset,
  1798            section_.c_str(), insn_offset);
  1799   log_(buf);
  1803 const unsigned int DwarfCFIToModule::RegisterNames::I386() {
  1804   /*
  1805    8 "$eax", "$ecx", "$edx", "$ebx", "$esp", "$ebp", "$esi", "$edi",
  1806    3 "$eip", "$eflags", "$unused1",
  1807    8 "$st0", "$st1", "$st2", "$st3", "$st4", "$st5", "$st6", "$st7",
  1808    2 "$unused2", "$unused3",
  1809    8 "$xmm0", "$xmm1", "$xmm2", "$xmm3", "$xmm4", "$xmm5", "$xmm6", "$xmm7",
  1810    8 "$mm0", "$mm1", "$mm2", "$mm3", "$mm4", "$mm5", "$mm6", "$mm7",
  1811    3 "$fcw", "$fsw", "$mxcsr",
  1812    8 "$es", "$cs", "$ss", "$ds", "$fs", "$gs", "$unused4", "$unused5",
  1813    2 "$tr", "$ldtr"
  1814   */
  1815   return 8 + 3 + 8 + 2 + 8 + 8 + 3 + 8 + 2;
  1818 const unsigned int DwarfCFIToModule::RegisterNames::X86_64() {
  1819   /*
  1820    8 "$rax", "$rdx", "$rcx", "$rbx", "$rsi", "$rdi", "$rbp", "$rsp",
  1821    8 "$r8",  "$r9",  "$r10", "$r11", "$r12", "$r13", "$r14", "$r15",
  1822    1 "$rip",
  1823    8 "$xmm0","$xmm1","$xmm2", "$xmm3", "$xmm4", "$xmm5", "$xmm6", "$xmm7",
  1824    8 "$xmm8","$xmm9","$xmm10","$xmm11","$xmm12","$xmm13","$xmm14","$xmm15",
  1825    8 "$st0", "$st1", "$st2", "$st3", "$st4", "$st5", "$st6", "$st7",
  1826    8 "$mm0", "$mm1", "$mm2", "$mm3", "$mm4", "$mm5", "$mm6", "$mm7",
  1827    1 "$rflags",
  1828    8 "$es", "$cs", "$ss", "$ds", "$fs", "$gs", "$unused1", "$unused2",
  1829    4 "$fs.base", "$gs.base", "$unused3", "$unused4",
  1830    2 "$tr", "$ldtr",
  1831    3 "$mxcsr", "$fcw", "$fsw"
  1832   */
  1833   return 8 + 8 + 1 + 8 + 8 + 8 + 8 + 1 + 8 + 4 + 2 + 3;
  1836 // Per ARM IHI 0040A, section 3.1
  1837 const unsigned int DwarfCFIToModule::RegisterNames::ARM() {
  1838   /*
  1839    8 "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
  1840    8 "r8",  "r9",  "r10", "r11", "r12", "sp",  "lr",  "pc",
  1841    8 "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7",
  1842    8 "fps", "cpsr", "",   "",    "",    "",    "",    "",
  1843    8 "",    "",    "",    "",    "",    "",    "",    "",
  1844    8 "",    "",    "",    "",    "",    "",    "",    "",
  1845    8 "",    "",    "",    "",    "",    "",    "",    "",
  1846    8 "",    "",    "",    "",    "",    "",    "",    "",
  1847    8 "s0",  "s1",  "s2",  "s3",  "s4",  "s5",  "s6",  "s7",
  1848    8 "s8",  "s9",  "s10", "s11", "s12", "s13", "s14", "s15",
  1849    8 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
  1850    8 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
  1851    8 "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7"
  1852   */
  1853   return 13 * 8;
  1856 bool DwarfCFIToModule::Entry(size_t offset, uint64 address, uint64 length,
  1857                              uint8 version, const string &augmentation,
  1858                              unsigned return_address) {
  1859   if (DEBUG_DWARF)
  1860     printf("LUL.DW DwarfCFIToModule::Entry 0x%llx,+%lld\n", address, length);
  1862   summ_->Entry(address, length);
  1864   // If dwarf2reader::CallFrameInfo can handle this version and
  1865   // augmentation, then we should be okay with that, so there's no
  1866   // need to check them here.
  1868   // Get ready to collect entries.
  1869   return_address_ = return_address;
  1871   // Breakpad STACK CFI records must provide a .ra rule, but DWARF CFI
  1872   // may not establish any rule for .ra if the return address column
  1873   // is an ordinary register, and that register holds the return
  1874   // address on entry to the function. So establish an initial .ra
  1875   // rule citing the return address register.
  1876   if (return_address_ < num_dw_regs_) {
  1877     summ_->Rule(address, return_address_, return_address, 0, false);
  1880   return true;
  1883 const UniqueString* DwarfCFIToModule::RegisterName(int i) {
  1884   if (i < 0) {
  1885     MOZ_ASSERT(i == kCFARegister);
  1886     return ustr__ZDcfa();
  1888   unsigned reg = i;
  1889   if (reg == return_address_)
  1890     return ustr__ZDra();
  1892   char buf[30];
  1893   sprintf(buf, "dwarf_reg_%u", reg);
  1894   return ToUniqueString(buf);
  1897 bool DwarfCFIToModule::UndefinedRule(uint64 address, int reg) {
  1898   reporter_->UndefinedNotSupported(entry_offset_, RegisterName(reg));
  1899   // Treat this as a non-fatal error.
  1900   return true;
  1903 bool DwarfCFIToModule::SameValueRule(uint64 address, int reg) {
  1904   if (DEBUG_DWARF)
  1905     printf("LUL.DW  0x%llx: old r%d = Same\n", address, reg);
  1906   // reg + 0
  1907   summ_->Rule(address, reg, reg, 0, false);
  1908   return true;
  1911 bool DwarfCFIToModule::OffsetRule(uint64 address, int reg,
  1912                                   int base_register, long offset) {
  1913   if (DEBUG_DWARF)
  1914     printf("LUL.DW  0x%llx: old r%d = *(r%d + %ld)\n",
  1915            address, reg, base_register, offset);
  1916   // *(base_register + offset)
  1917   summ_->Rule(address, reg, base_register, offset, true);
  1918   return true;
  1921 bool DwarfCFIToModule::ValOffsetRule(uint64 address, int reg,
  1922                                      int base_register, long offset) {
  1923   if (DEBUG_DWARF)
  1924     printf("LUL.DW  0x%llx: old r%d = r%d + %ld\n",
  1925            address, reg, base_register, offset);
  1926   // base_register + offset
  1927   summ_->Rule(address, reg, base_register, offset, false);
  1928   return true;
  1931 bool DwarfCFIToModule::RegisterRule(uint64 address, int reg,
  1932                                     int base_register) {
  1933   if (DEBUG_DWARF)
  1934     printf("LUL.DW  0x%llx: old r%d = r%d\n", address, reg, base_register);
  1935   // base_register + 0
  1936   summ_->Rule(address, reg, base_register, 0, false);
  1937   return true;
  1940 bool DwarfCFIToModule::ExpressionRule(uint64 address, int reg,
  1941                                       const string &expression) {
  1942   reporter_->ExpressionsNotSupported(entry_offset_, RegisterName(reg));
  1943   // Treat this as a non-fatal error.
  1944   return true;
  1947 bool DwarfCFIToModule::ValExpressionRule(uint64 address, int reg,
  1948                                          const string &expression) {
  1949   reporter_->ExpressionsNotSupported(entry_offset_, RegisterName(reg));
  1950   // Treat this as a non-fatal error.
  1951   return true;
  1954 bool DwarfCFIToModule::End() {
  1955   //module_->AddStackFrameEntry(entry_);
  1956   if (DEBUG_DWARF)
  1957     printf("LUL.DW DwarfCFIToModule::End()\n");
  1958   summ_->End();
  1959   return true;
  1962 void DwarfCFIToModule::Reporter::UndefinedNotSupported(
  1963     size_t offset,
  1964     const UniqueString* reg) {
  1965   char buf[300];
  1966   snprintf(buf, sizeof(buf),
  1967            "DwarfCFIToModule::Reporter::UndefinedNotSupported()\n");
  1968   log_(buf);
  1969   //BPLOG(INFO) << file_ << ", section '" << section_
  1970   //  << "': the call frame entry at offset 0x"
  1971   //  << std::setbase(16) << offset << std::setbase(10)
  1972   //  << " sets the rule for register '" << FromUniqueString(reg)
  1973   //  << "' to 'undefined', but the Breakpad symbol file format cannot "
  1974   //  << " express this";
  1977 // FIXME: move this somewhere sensible
  1978 static bool is_power_of_2(uint64_t n)
  1980   int i, nSetBits = 0;
  1981   for (i = 0; i < 8*(int)sizeof(n); i++) {
  1982     if ((n & ((uint64_t)1) << i) != 0)
  1983       nSetBits++;
  1985   return nSetBits <= 1;
  1988 void DwarfCFIToModule::Reporter::ExpressionsNotSupported(
  1989     size_t offset,
  1990     const UniqueString* reg) {
  1991   static uint64_t n_complaints = 0; // This isn't threadsafe
  1992   n_complaints++;
  1993   if (!is_power_of_2(n_complaints))
  1994     return;
  1995   char buf[300];
  1996   snprintf(buf, sizeof(buf),
  1997            "DwarfCFIToModule::Reporter::"
  1998            "ExpressionsNotSupported(shown %llu times)\n",
  1999            (unsigned long long int)n_complaints);
  2000   log_(buf);
  2001   //BPLOG(INFO) << file_ << ", section '" << section_
  2002   //  << "': the call frame entry at offset 0x"
  2003   //  << std::setbase(16) << offset << std::setbase(10)
  2004   //  << " uses a DWARF expression to describe how to recover register '"
  2005   //  << FromUniqueString(reg) << "', but this translator cannot yet "
  2006   //  << "translate DWARF expressions to Breakpad postfix expressions (shown "
  2007   //  << n_complaints << " times)";
  2010 } // namespace lul

mercurial