Wed, 31 Dec 2014 13:27:57 +0100
Ignore runtime configuration files generated during quality assurance.
1 # This Source Code Form is subject to the terms of the Mozilla Public
2 # License, v. 2.0. If a copy of the MPL was not distributed with this
3 # file, You can obtain one at http://mozilla.org/MPL/2.0/.
5 # Generates tables of background images which correspond with border images for
6 # creating reftests. Input is the filename containing input defined below (a subset
7 # of the allowed CSS border properties). An html representation of a table is
8 # output to stdout.
9 #
10 # Usage: python gen-refs.py input_filename
11 #
12 # Input must take the form (order is not important, nothing is optional, distance in order top, right, bottom, left):
13 # width: p;
14 # height: p;
15 # border-width: p;
16 # border-image-source: ...;
17 # border-image-slice: p p p p;
18 # note that actually border-image-slice takes numbers without px, which represent pixels anyway (or at least coords)
19 # border-image-width: np np np np;
20 # border-image-repeat: stretch | repeat | round;
21 # border-image-outset: np np np np;
22 #
23 # where:
24 # p ::= n'px'
25 # np ::= n | p
26 #
27 # Assumes there is no intrinsic size for the border-image-source, so uses
28 # the size of the border image area.
30 import sys
32 class Point:
33 def __init__(self, w=0, h=0):
34 self.x = w
35 self.y = h
36 class Size:
37 def __init__(self, w=0, h=0):
38 self.width = w
39 self.height = h
40 class Rect:
41 def __init__(self, x=0, y=0, x2=0, y2=0):
42 self.x = x
43 self.y = y
44 self.x2 = x2
45 self.y2 = y2
46 def width(self):
47 return self.x2 - self.x
48 def height(self):
49 return self.y2 - self.y
51 class Props:
52 def __init__(self):
53 self.size = Size()
55 class np:
56 def __init__(self, n, p):
57 self.n = n
58 self.p = p
60 def get_absolute(self, ref):
61 if not self.p == 0:
62 return self.p
63 return self.n * ref
65 def parse_p(tok):
66 if tok[-2:] == "px":
67 return float(tok[:-2])
68 print "Whoops, not a pixel value " + tok
70 def parse_np(tok):
71 if tok[-2:] == "px":
72 return np(0, float(tok[:-2]))
73 return np(float(tok), 0)
75 def parse(filename):
76 f = open(filename, "r")
77 props = Props()
78 for l in f:
79 l = l.strip()
80 if not l[-1] == ";":
81 continue
82 toks = l[:-1].split()
83 if toks[0] == "border-width:":
84 props.width = parse_p(toks[1])
85 if toks[0] == "height:":
86 props.size.height = parse_p(toks[1])
87 if toks[0] == "width:":
88 props.size.width = parse_p(toks[1])
89 if toks[0] == "border-image-source:":
90 props.source = l[l.find(":")+1:l.rfind(";")].strip()
91 if toks[0] == "border-image-repeat:":
92 props.repeat = toks[1]
93 if toks[0] == "border-image-slice:":
94 props.slice = map(parse_p, toks[1:5])
95 if toks[0] == "border-image-width:":
96 props.image_width = map(parse_np, toks[1:5])
97 if toks[0] == "border-image-outset:":
98 props.outset = map(parse_np, toks[1:5])
99 f.close()
100 return props
102 # the result of normalisation is that all sizes are in pixels and the size,
103 # widths, and outset have been normalised to a size and width - the former is
104 # the element's interior, the latter is the width of the drawn border.
105 def normalise(props):
106 result = Props()
107 result.source = props.source
108 result.repeat = props.repeat
109 result.width = map(lambda x: x.get_absolute(props.width), props.image_width)
110 outsets = map(lambda x: x.get_absolute(props.width), props.outset)
111 result.size.width = props.size.width + 2*props.width + outsets[1] + outsets[3]
112 result.size.height = props.size.height + 2*props.width + outsets[0] + outsets[2]
113 result.slice = props.slice
114 for i in [0,2]:
115 if result.slice[i] > result.size.height:
116 result.slice[i] = result.size.height
117 if result.slice[i+1] > result.size.width:
118 result.slice[i+1] = result.size.width
120 return result
122 def check_parse(props):
123 if not hasattr(props, 'source'):
124 print "missing border-image-source"
125 return False
126 if not hasattr(props.size, 'width'):
127 print "missing width"
128 return False
129 if not hasattr(props.size, 'height'):
130 print "missing height"
131 return False
132 if not hasattr(props, 'width'):
133 print "missing border-width"
134 return False
135 if not hasattr(props, 'image_width'):
136 print "missing border-image-width"
137 return False
138 if not hasattr(props, 'slice'):
139 print "missing border-image-slice"
140 return False
141 if not hasattr(props, 'repeat') or (props.repeat not in ["stretch", "repeat", "round"]):
142 print "missing or incorrect border-image-repeat '" + props.repeat + "'"
143 return False
144 if not hasattr(props, 'outset'):
145 print "missing border-image-outset"
146 return False
148 return True
150 def check_normalise(props):
151 if not hasattr(props, 'source'):
152 print "missing border-image-source"
153 return False
154 if not hasattr(props.size, 'width'):
155 print "missing width"
156 return False
157 if not hasattr(props.size, 'height'):
158 print "missing height"
159 return False
160 if not hasattr(props, 'slice'):
161 print "missing border-image-slice"
162 return False
163 if not hasattr(props, 'repeat') or (props.repeat not in ["stretch", "repeat", "round"]):
164 print "missing or incorrect border-image-repeat '" + props.repeat + "'"
165 return False
167 return True
169 class Tile:
170 def __init__(self):
171 self.slice = Rect()
172 self.border_width = Rect()
174 # throughout, we will use arrays for nine-patches, the indices correspond thusly:
175 # 0 1 2
176 # 3 4 5
177 # 6 7 8
179 # Compute the source tiles' slice and border-width sizes
180 def make_src_tiles():
181 tiles = [Tile() for i in range(9)]
183 rows = [range(3*i, 3*(i+1)) for i in range(3)]
184 cols = [[i, i+3, i+6] for i in range(3)]
186 row_limits_slice = [0, props.slice[3], props.size.width - props.slice[1], props.size.width]
187 row_limits_width = [0, props.width[3], props.size.width - props.width[1], props.size.width]
188 for r in range(3):
189 for t in [tiles[i] for i in cols[r]]:
190 t.slice.x = row_limits_slice[r]
191 t.slice.x2 = row_limits_slice[r+1]
192 t.border_width.x = row_limits_width[r]
193 t.border_width.x2 = row_limits_width[r+1]
195 col_limits_slice = [0, props.slice[0], props.size.height - props.slice[2], props.size.height]
196 col_limits_width = [0, props.width[0], props.size.height - props.width[2], props.size.height]
197 for c in range(3):
198 for t in [tiles[i] for i in rows[c]]:
199 t.slice.y = col_limits_slice[c]
200 t.slice.y2 = col_limits_slice[c+1]
201 t.border_width.y = col_limits_width[c]
202 t.border_width.y2 = col_limits_width[c+1]
204 return tiles
206 def compute(props):
207 tiles = make_src_tiles()
209 # corners scale easy
210 for t in [tiles[i] for i in [0, 2, 6, 8]]:
211 t.scale = Point(t.border_width.width()/t.slice.width(), t.border_width.height()/t.slice.height())
212 # edges are by their secondary dimension
213 for t in [tiles[i] for i in [1, 7]]:
214 t.scale = Point(t.border_width.height()/t.slice.height(), t.border_width.height()/t.slice.height())
215 for t in [tiles[i] for i in [3, 5]]:
216 t.scale = Point(t.border_width.width()/t.slice.width(), t.border_width.width()/t.slice.width())
217 # the middle is scaled by the factors for the top and left edges
218 tiles[4].scale = Point(tiles[1].scale.x, tiles[3].scale.y)
220 # the size of a source tile for the middle section
221 src_tile_size = Size(tiles[4].slice.width()*tiles[4].scale.x, tiles[4].slice.height()*tiles[4].scale.y)
223 # the size of a single destination tile in the central part
224 dest_tile_size = Size()
225 if props.repeat == "stretch":
226 dest_tile_size.width = tiles[4].border_width.width()
227 dest_tile_size.height = tiles[4].border_width.height()
228 for t in [tiles[i] for i in [1, 7]]:
229 t.scale.x = t.border_width.width()/t.slice.width()
230 for t in [tiles[i] for i in [3, 5]]:
231 t.scale.y = t.border_width.height()/t.slice.height()
232 elif props.repeat == "repeat":
233 dest_tile_size = src_tile_size
234 elif props.repeat == "round":
235 dest_tile_size.width = tiles[4].border_width.width() / math.ceil(tiles[4].border_width.width() / src_tile_size.width)
236 dest_tile_size.height = tiles[4].border_width.height() / math.ceil(tiles[4].border_width.height() / src_tile_size.height)
237 for t in [tiles[i] for i in [1, 4, 7]]:
238 t.scale.x = dest_tile_size.width/t.slice.width()
239 for t in [tiles[i] for i in [3, 4, 5]]:
240 t.scale.y = dest_tile_size.height/t.slice.height()
241 else:
242 print "Whoops, invalid border-image-repeat value"
244 # catch overlapping slices. Its easier to deal with it here than to catch
245 # earlier and have to avoid all the divide by zeroes above
246 for t in tiles:
247 if t.slice.width() < 0:
248 t.scale.x = 0
249 if t.slice.height() < 0:
250 t.scale.y = 0
252 tiles_h = int(math.ceil(tiles[4].border_width.width()/dest_tile_size.width)+2)
253 tiles_v = int(math.ceil(tiles[4].border_width.height()/dest_tile_size.height)+2)
255 # if border-image-repeat: repeat, then we will later center the tiles, that
256 # means we need an extra tile for the two 'half' tiles at either end
257 if props.repeat == "repeat":
258 if tiles_h % 2 == 0:
259 tiles_h += 1
260 if tiles_v % 2 == 0:
261 tiles_v += 1
262 dest_tiles = [Tile() for i in range(tiles_h * tiles_v)]
264 # corners
265 corners = [(0, 0), (tiles_h-1, 2), (tiles_v*(tiles_h-1), 6), (tiles_v*tiles_h-1, 8)]
266 for d,s in corners:
267 dest_tiles[d].size = Size(tiles[s].scale.x*props.size.width, tiles[s].scale.y*props.size.height)
268 dest_tiles[d].dest_size = Size(tiles[s].border_width.width(), tiles[s].border_width.height())
269 dest_tiles[0].offset = Point(0, 0)
270 dest_tiles[tiles_h-1].offset = Point(tiles[2].border_width.width() - dest_tiles[tiles_h-1].size.width, 0)
271 dest_tiles[tiles_v*(tiles_h-1)].offset = Point(0, tiles[6].border_width.height() - dest_tiles[tiles_v*(tiles_h-1)].size.height)
272 dest_tiles[tiles_v*tiles_h-1].offset = Point(tiles[8].border_width.width() - dest_tiles[tiles_h*tiles_v-1].size.width, tiles[8].border_width.height() - dest_tiles[tiles_h*tiles_v-1].size.height)
274 # horizontal edges
275 for i in range(1, tiles_h-1):
276 dest_tiles[i].size = Size(tiles[1].scale.x*props.size.width, tiles[1].scale.y*props.size.height)
277 dest_tiles[(tiles_v-1)*tiles_h + i].size = Size(tiles[7].scale.x*props.size.width, tiles[7].scale.y*props.size.height)
278 dest_tiles[i].dest_size = Size(dest_tile_size.width, tiles[1].border_width.height())
279 dest_tiles[(tiles_v-1)*tiles_h + i].dest_size = Size(dest_tile_size.width, tiles[7].border_width.height())
280 dest_tiles[i].offset = Point(-tiles[1].scale.x*tiles[1].slice.x, -tiles[1].scale.y*tiles[1].slice.y)
281 dest_tiles[(tiles_v-1)*tiles_h + i].offset = Point(-tiles[7].scale.x*tiles[7].slice.x, -tiles[7].scale.y*tiles[7].slice.y)
283 # vertical edges
284 for i in range(1, tiles_v-1):
285 dest_tiles[i*tiles_h].size = Size(tiles[3].scale.x*props.size.width, tiles[3].scale.y*props.size.height)
286 dest_tiles[(i+1)*tiles_h-1].size = Size(tiles[5].scale.x*props.size.width, tiles[5].scale.y*props.size.height)
287 dest_tiles[i*tiles_h].dest_size = Size(tiles[3].border_width.width(), dest_tile_size.height)
288 dest_tiles[(i+1)*tiles_h-1].dest_size = Size(tiles[5].border_width.width(), dest_tile_size.height)
289 dest_tiles[i*tiles_h].offset = Point(-tiles[3].scale.x*tiles[3].slice.x, -tiles[3].scale.y*tiles[3].slice.y)
290 dest_tiles[(i+1)*tiles_h-1].offset = Point(-tiles[5].scale.x*tiles[5].slice.x, -tiles[5].scale.y*tiles[5].slice.y)
292 # middle
293 for i in range(1, tiles_v-1):
294 for j in range(1, tiles_h-1):
295 dest_tiles[i*tiles_h+j].size = Size(tiles[4].scale.x*props.size.width, tiles[4].scale.y*props.size.height)
296 dest_tiles[i*tiles_h+j].offset = Point(-tiles[4].scale.x*tiles[4].slice.x, -tiles[4].scale.y*tiles[4].slice.y)
297 dest_tiles[i*tiles_h+j].dest_size = dest_tile_size
299 # edge and middle tiles are centered with border-image-repeat: repeat
300 # we need to change the offset to take account of this and change the dest_size
301 # of the tiles at the sides of the edges if they are clipped
302 if props.repeat == "repeat":
303 diff_h = ((tiles_h-2)*dest_tile_size.width - tiles[4].border_width.width()) / 2
304 diff_v = ((tiles_v-2)*dest_tile_size.height - tiles[4].border_width.height()) / 2
305 for i in range(0, tiles_h):
306 dest_tiles[tiles_h + i].dest_size.height -= diff_v
307 dest_tiles[tiles_h + i].offset.y -= diff_v #* tiles[4].scale.y
308 dest_tiles[(tiles_v-2)*tiles_h + i].dest_size.height -= diff_v
309 for i in range(0, tiles_v):
310 dest_tiles[i*tiles_h + 1].dest_size.width -= diff_h
311 dest_tiles[i*tiles_h + 1].offset.x -= diff_h #* tiles[4].scale.x
312 dest_tiles[(i+1)*tiles_h-2].dest_size.width -= diff_h
314 # output the table to simulate the border
315 print "<table>"
316 for i in range(tiles_h):
317 print "<col style=\"width: " + str(dest_tiles[i].dest_size.width) + "px;\">"
318 for i in range(tiles_v):
319 print "<tr style=\"height: " + str(dest_tiles[i*tiles_h].dest_size.height) + "px;\">"
320 for j in range(tiles_h):
321 width = dest_tiles[i*tiles_h+j].size.width
322 height = dest_tiles[i*tiles_h+j].size.height
323 # catch any tiles with negative widths/heights
324 # this happends when the total of the border-image-slices > borde drawing area
325 if width <= 0 or height <= 0:
326 print " <td style=\"background: white;\"></td>"
327 else:
328 print " <td style=\"background-image: " + props.source + "; background-size: " + str(width) + "px " + str(height) + "px; background-position: " + str(dest_tiles[i*tiles_h+j].offset.x) + "px " + str(dest_tiles[i*tiles_h+j].offset.y) + "px;\"></td>"
329 print "</tr>"
330 print "</table>"
333 # start here
334 args = sys.argv[1:]
335 if len(args) == 0:
336 print "whoops: no source file"
337 exit(1)
340 props = parse(args[0])
341 if not check_parse(props):
342 print dir(props)
343 exit(1)
344 props = normalise(props)
345 if not check_normalise(props):
346 exit(1)
347 compute(props)