toolkit/components/protobuf/google/protobuf/wire_format_lite.h

Fri, 16 Jan 2015 18:13:44 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Fri, 16 Jan 2015 18:13:44 +0100
branch
TOR_BUG_9701
changeset 14
925c144e1f1f
permissions
-rw-r--r--

Integrate suggestion from review to improve consistency with existing code.

     1 // Protocol Buffers - Google's data interchange format
     2 // Copyright 2008 Google Inc.  All rights reserved.
     3 // http://code.google.com/p/protobuf/
     4 //
     5 // Redistribution and use in source and binary forms, with or without
     6 // modification, are permitted provided that the following conditions are
     7 // met:
     8 //
     9 //     * Redistributions of source code must retain the above copyright
    10 // notice, this list of conditions and the following disclaimer.
    11 //     * Redistributions in binary form must reproduce the above
    12 // copyright notice, this list of conditions and the following disclaimer
    13 // in the documentation and/or other materials provided with the
    14 // distribution.
    15 //     * Neither the name of Google Inc. nor the names of its
    16 // contributors may be used to endorse or promote products derived from
    17 // this software without specific prior written permission.
    18 //
    19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    31 // Author: kenton@google.com (Kenton Varda)
    32 //         atenasio@google.com (Chris Atenasio) (ZigZag transform)
    33 //         wink@google.com (Wink Saville) (refactored from wire_format.h)
    34 //  Based on original Protocol Buffers design by
    35 //  Sanjay Ghemawat, Jeff Dean, and others.
    36 //
    37 // This header is logically internal, but is made public because it is used
    38 // from protocol-compiler-generated code, which may reside in other components.
    40 #ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
    41 #define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
    43 #include <string>
    44 #include <google/protobuf/message_lite.h>
    46 namespace google {
    48 namespace protobuf {
    49   template <typename T> class RepeatedField;  // repeated_field.h
    50   namespace io {
    51     class CodedInputStream;             // coded_stream.h
    52     class CodedOutputStream;            // coded_stream.h
    53   }
    54 }
    56 namespace protobuf {
    57 namespace internal {
    59 class StringPieceField;
    61 // This class is for internal use by the protocol buffer library and by
    62 // protocol-complier-generated message classes.  It must not be called
    63 // directly by clients.
    64 //
    65 // This class contains helpers for implementing the binary protocol buffer
    66 // wire format without the need for reflection. Use WireFormat when using
    67 // reflection.
    68 //
    69 // This class is really a namespace that contains only static methods.
    70 class LIBPROTOBUF_EXPORT WireFormatLite {
    71  public:
    73   // -----------------------------------------------------------------
    74   // Helper constants and functions related to the format.  These are
    75   // mostly meant for internal and generated code to use.
    77   // The wire format is composed of a sequence of tag/value pairs, each
    78   // of which contains the value of one field (or one element of a repeated
    79   // field).  Each tag is encoded as a varint.  The lower bits of the tag
    80   // identify its wire type, which specifies the format of the data to follow.
    81   // The rest of the bits contain the field number.  Each type of field (as
    82   // declared by FieldDescriptor::Type, in descriptor.h) maps to one of
    83   // these wire types.  Immediately following each tag is the field's value,
    84   // encoded in the format specified by the wire type.  Because the tag
    85   // identifies the encoding of this data, it is possible to skip
    86   // unrecognized fields for forwards compatibility.
    88   enum WireType {
    89     WIRETYPE_VARINT           = 0,
    90     WIRETYPE_FIXED64          = 1,
    91     WIRETYPE_LENGTH_DELIMITED = 2,
    92     WIRETYPE_START_GROUP      = 3,
    93     WIRETYPE_END_GROUP        = 4,
    94     WIRETYPE_FIXED32          = 5,
    95   };
    97   // Lite alternative to FieldDescriptor::Type.  Must be kept in sync.
    98   enum FieldType {
    99     TYPE_DOUBLE         = 1,
   100     TYPE_FLOAT          = 2,
   101     TYPE_INT64          = 3,
   102     TYPE_UINT64         = 4,
   103     TYPE_INT32          = 5,
   104     TYPE_FIXED64        = 6,
   105     TYPE_FIXED32        = 7,
   106     TYPE_BOOL           = 8,
   107     TYPE_STRING         = 9,
   108     TYPE_GROUP          = 10,
   109     TYPE_MESSAGE        = 11,
   110     TYPE_BYTES          = 12,
   111     TYPE_UINT32         = 13,
   112     TYPE_ENUM           = 14,
   113     TYPE_SFIXED32       = 15,
   114     TYPE_SFIXED64       = 16,
   115     TYPE_SINT32         = 17,
   116     TYPE_SINT64         = 18,
   117     MAX_FIELD_TYPE      = 18,
   118   };
   120   // Lite alternative to FieldDescriptor::CppType.  Must be kept in sync.
   121   enum CppType {
   122     CPPTYPE_INT32       = 1,
   123     CPPTYPE_INT64       = 2,
   124     CPPTYPE_UINT32      = 3,
   125     CPPTYPE_UINT64      = 4,
   126     CPPTYPE_DOUBLE      = 5,
   127     CPPTYPE_FLOAT       = 6,
   128     CPPTYPE_BOOL        = 7,
   129     CPPTYPE_ENUM        = 8,
   130     CPPTYPE_STRING      = 9,
   131     CPPTYPE_MESSAGE     = 10,
   132     MAX_CPPTYPE         = 10,
   133   };
   135   // Helper method to get the CppType for a particular Type.
   136   static CppType FieldTypeToCppType(FieldType type);
   138   // Given a FieldSescriptor::Type return its WireType
   139   static inline WireFormatLite::WireType WireTypeForFieldType(
   140       WireFormatLite::FieldType type) {
   141     return kWireTypeForFieldType[type];
   142   }
   144   // Number of bits in a tag which identify the wire type.
   145   static const int kTagTypeBits = 3;
   146   // Mask for those bits.
   147   static const uint32 kTagTypeMask = (1 << kTagTypeBits) - 1;
   149   // Helper functions for encoding and decoding tags.  (Inlined below and in
   150   // _inl.h)
   151   //
   152   // This is different from MakeTag(field->number(), field->type()) in the case
   153   // of packed repeated fields.
   154   static uint32 MakeTag(int field_number, WireType type);
   155   static WireType GetTagWireType(uint32 tag);
   156   static int GetTagFieldNumber(uint32 tag);
   158   // Compute the byte size of a tag.  For groups, this includes both the start
   159   // and end tags.
   160   static inline int TagSize(int field_number, WireFormatLite::FieldType type);
   162   // Skips a field value with the given tag.  The input should start
   163   // positioned immediately after the tag.  Skipped values are simply discarded,
   164   // not recorded anywhere.  See WireFormat::SkipField() for a version that
   165   // records to an UnknownFieldSet.
   166   static bool SkipField(io::CodedInputStream* input, uint32 tag);
   168   // Reads and ignores a message from the input.  Skipped values are simply
   169   // discarded, not recorded anywhere.  See WireFormat::SkipMessage() for a
   170   // version that records to an UnknownFieldSet.
   171   static bool SkipMessage(io::CodedInputStream* input);
   173 // This macro does the same thing as WireFormatLite::MakeTag(), but the
   174 // result is usable as a compile-time constant, which makes it usable
   175 // as a switch case or a template input.  WireFormatLite::MakeTag() is more
   176 // type-safe, though, so prefer it if possible.
   177 #define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE)                  \
   178   static_cast<uint32>(                                                   \
   179     ((FIELD_NUMBER) << ::google::protobuf::internal::WireFormatLite::kTagTypeBits) \
   180       | (TYPE))
   182   // These are the tags for the old MessageSet format, which was defined as:
   183   //   message MessageSet {
   184   //     repeated group Item = 1 {
   185   //       required int32 type_id = 2;
   186   //       required string message = 3;
   187   //     }
   188   //   }
   189   static const int kMessageSetItemNumber = 1;
   190   static const int kMessageSetTypeIdNumber = 2;
   191   static const int kMessageSetMessageNumber = 3;
   192   static const int kMessageSetItemStartTag =
   193     GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetItemNumber,
   194                                 WireFormatLite::WIRETYPE_START_GROUP);
   195   static const int kMessageSetItemEndTag =
   196     GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetItemNumber,
   197                                 WireFormatLite::WIRETYPE_END_GROUP);
   198   static const int kMessageSetTypeIdTag =
   199     GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetTypeIdNumber,
   200                                 WireFormatLite::WIRETYPE_VARINT);
   201   static const int kMessageSetMessageTag =
   202     GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetMessageNumber,
   203                                 WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
   205   // Byte size of all tags of a MessageSet::Item combined.
   206   static const int kMessageSetItemTagsSize;
   208   // Helper functions for converting between floats/doubles and IEEE-754
   209   // uint32s/uint64s so that they can be written.  (Assumes your platform
   210   // uses IEEE-754 floats.)
   211   static uint32 EncodeFloat(float value);
   212   static float DecodeFloat(uint32 value);
   213   static uint64 EncodeDouble(double value);
   214   static double DecodeDouble(uint64 value);
   216   // Helper functions for mapping signed integers to unsigned integers in
   217   // such a way that numbers with small magnitudes will encode to smaller
   218   // varints.  If you simply static_cast a negative number to an unsigned
   219   // number and varint-encode it, it will always take 10 bytes, defeating
   220   // the purpose of varint.  So, for the "sint32" and "sint64" field types,
   221   // we ZigZag-encode the values.
   222   static uint32 ZigZagEncode32(int32 n);
   223   static int32  ZigZagDecode32(uint32 n);
   224   static uint64 ZigZagEncode64(int64 n);
   225   static int64  ZigZagDecode64(uint64 n);
   227   // =================================================================
   228   // Methods for reading/writing individual field.  The implementations
   229   // of these methods are defined in wire_format_lite_inl.h; you must #include
   230   // that file to use these.
   232 // Avoid ugly line wrapping
   233 #define input  io::CodedInputStream*  input
   234 #define output io::CodedOutputStream* output
   235 #define field_number int field_number
   236 #define INL GOOGLE_ATTRIBUTE_ALWAYS_INLINE
   238   // Read fields, not including tags.  The assumption is that you already
   239   // read the tag to determine what field to read.
   241   // For primitive fields, we just use a templatized routine parameterized by
   242   // the represented type and the FieldType. These are specialized with the
   243   // appropriate definition for each declared type.
   244   template <typename CType, enum FieldType DeclaredType>
   245   static inline bool ReadPrimitive(input, CType* value) INL;
   247   // Reads repeated primitive values, with optimizations for repeats.
   248   // tag_size and tag should both be compile-time constants provided by the
   249   // protocol compiler.
   250   template <typename CType, enum FieldType DeclaredType>
   251   static inline bool ReadRepeatedPrimitive(int tag_size,
   252                                            uint32 tag,
   253                                            input,
   254                                            RepeatedField<CType>* value) INL;
   256   // Identical to ReadRepeatedPrimitive, except will not inline the
   257   // implementation.
   258   template <typename CType, enum FieldType DeclaredType>
   259   static bool ReadRepeatedPrimitiveNoInline(int tag_size,
   260                                             uint32 tag,
   261                                             input,
   262                                             RepeatedField<CType>* value);
   264   // Reads a primitive value directly from the provided buffer. It returns a
   265   // pointer past the segment of data that was read.
   266   //
   267   // This is only implemented for the types with fixed wire size, e.g.
   268   // float, double, and the (s)fixed* types.
   269   template <typename CType, enum FieldType DeclaredType>
   270   static inline const uint8* ReadPrimitiveFromArray(const uint8* buffer,
   271                                                     CType* value) INL;
   273   // Reads a primitive packed field.
   274   //
   275   // This is only implemented for packable types.
   276   template <typename CType, enum FieldType DeclaredType>
   277   static inline bool ReadPackedPrimitive(input,
   278                                          RepeatedField<CType>* value) INL;
   280   // Identical to ReadPackedPrimitive, except will not inline the
   281   // implementation.
   282   template <typename CType, enum FieldType DeclaredType>
   283   static bool ReadPackedPrimitiveNoInline(input, RepeatedField<CType>* value);
   285   // Read a packed enum field. Values for which is_valid() returns false are
   286   // dropped.
   287   static bool ReadPackedEnumNoInline(input,
   288                                      bool (*is_valid)(int),
   289                                      RepeatedField<int>* value);
   291   static bool ReadString(input, string* value);
   292   static bool ReadBytes (input, string* value);
   294   static inline bool ReadGroup  (field_number, input, MessageLite* value);
   295   static inline bool ReadMessage(input, MessageLite* value);
   297   // Like above, but de-virtualize the call to MergePartialFromCodedStream().
   298   // The pointer must point at an instance of MessageType, *not* a subclass (or
   299   // the subclass must not override MergePartialFromCodedStream()).
   300   template<typename MessageType>
   301   static inline bool ReadGroupNoVirtual(field_number, input,
   302                                         MessageType* value);
   303   template<typename MessageType>
   304   static inline bool ReadMessageNoVirtual(input, MessageType* value);
   306   // Write a tag.  The Write*() functions typically include the tag, so
   307   // normally there's no need to call this unless using the Write*NoTag()
   308   // variants.
   309   static inline void WriteTag(field_number, WireType type, output) INL;
   311   // Write fields, without tags.
   312   static inline void WriteInt32NoTag   (int32 value, output) INL;
   313   static inline void WriteInt64NoTag   (int64 value, output) INL;
   314   static inline void WriteUInt32NoTag  (uint32 value, output) INL;
   315   static inline void WriteUInt64NoTag  (uint64 value, output) INL;
   316   static inline void WriteSInt32NoTag  (int32 value, output) INL;
   317   static inline void WriteSInt64NoTag  (int64 value, output) INL;
   318   static inline void WriteFixed32NoTag (uint32 value, output) INL;
   319   static inline void WriteFixed64NoTag (uint64 value, output) INL;
   320   static inline void WriteSFixed32NoTag(int32 value, output) INL;
   321   static inline void WriteSFixed64NoTag(int64 value, output) INL;
   322   static inline void WriteFloatNoTag   (float value, output) INL;
   323   static inline void WriteDoubleNoTag  (double value, output) INL;
   324   static inline void WriteBoolNoTag    (bool value, output) INL;
   325   static inline void WriteEnumNoTag    (int value, output) INL;
   327   // Write fields, including tags.
   328   static void WriteInt32   (field_number,  int32 value, output);
   329   static void WriteInt64   (field_number,  int64 value, output);
   330   static void WriteUInt32  (field_number, uint32 value, output);
   331   static void WriteUInt64  (field_number, uint64 value, output);
   332   static void WriteSInt32  (field_number,  int32 value, output);
   333   static void WriteSInt64  (field_number,  int64 value, output);
   334   static void WriteFixed32 (field_number, uint32 value, output);
   335   static void WriteFixed64 (field_number, uint64 value, output);
   336   static void WriteSFixed32(field_number,  int32 value, output);
   337   static void WriteSFixed64(field_number,  int64 value, output);
   338   static void WriteFloat   (field_number,  float value, output);
   339   static void WriteDouble  (field_number, double value, output);
   340   static void WriteBool    (field_number,   bool value, output);
   341   static void WriteEnum    (field_number,    int value, output);
   343   static void WriteString(field_number, const string& value, output);
   344   static void WriteBytes (field_number, const string& value, output);
   346   static void WriteGroup(
   347     field_number, const MessageLite& value, output);
   348   static void WriteMessage(
   349     field_number, const MessageLite& value, output);
   350   // Like above, but these will check if the output stream has enough
   351   // space to write directly to a flat array.
   352   static void WriteGroupMaybeToArray(
   353     field_number, const MessageLite& value, output);
   354   static void WriteMessageMaybeToArray(
   355     field_number, const MessageLite& value, output);
   357   // Like above, but de-virtualize the call to SerializeWithCachedSizes().  The
   358   // pointer must point at an instance of MessageType, *not* a subclass (or
   359   // the subclass must not override SerializeWithCachedSizes()).
   360   template<typename MessageType>
   361   static inline void WriteGroupNoVirtual(
   362     field_number, const MessageType& value, output);
   363   template<typename MessageType>
   364   static inline void WriteMessageNoVirtual(
   365     field_number, const MessageType& value, output);
   367 #undef output
   368 #define output uint8* target
   370   // Like above, but use only *ToArray methods of CodedOutputStream.
   371   static inline uint8* WriteTagToArray(field_number, WireType type, output) INL;
   373   // Write fields, without tags.
   374   static inline uint8* WriteInt32NoTagToArray   (int32 value, output) INL;
   375   static inline uint8* WriteInt64NoTagToArray   (int64 value, output) INL;
   376   static inline uint8* WriteUInt32NoTagToArray  (uint32 value, output) INL;
   377   static inline uint8* WriteUInt64NoTagToArray  (uint64 value, output) INL;
   378   static inline uint8* WriteSInt32NoTagToArray  (int32 value, output) INL;
   379   static inline uint8* WriteSInt64NoTagToArray  (int64 value, output) INL;
   380   static inline uint8* WriteFixed32NoTagToArray (uint32 value, output) INL;
   381   static inline uint8* WriteFixed64NoTagToArray (uint64 value, output) INL;
   382   static inline uint8* WriteSFixed32NoTagToArray(int32 value, output) INL;
   383   static inline uint8* WriteSFixed64NoTagToArray(int64 value, output) INL;
   384   static inline uint8* WriteFloatNoTagToArray   (float value, output) INL;
   385   static inline uint8* WriteDoubleNoTagToArray  (double value, output) INL;
   386   static inline uint8* WriteBoolNoTagToArray    (bool value, output) INL;
   387   static inline uint8* WriteEnumNoTagToArray    (int value, output) INL;
   389   // Write fields, including tags.
   390   static inline uint8* WriteInt32ToArray(
   391     field_number, int32 value, output) INL;
   392   static inline uint8* WriteInt64ToArray(
   393     field_number, int64 value, output) INL;
   394   static inline uint8* WriteUInt32ToArray(
   395     field_number, uint32 value, output) INL;
   396   static inline uint8* WriteUInt64ToArray(
   397     field_number, uint64 value, output) INL;
   398   static inline uint8* WriteSInt32ToArray(
   399     field_number, int32 value, output) INL;
   400   static inline uint8* WriteSInt64ToArray(
   401     field_number, int64 value, output) INL;
   402   static inline uint8* WriteFixed32ToArray(
   403     field_number, uint32 value, output) INL;
   404   static inline uint8* WriteFixed64ToArray(
   405     field_number, uint64 value, output) INL;
   406   static inline uint8* WriteSFixed32ToArray(
   407     field_number, int32 value, output) INL;
   408   static inline uint8* WriteSFixed64ToArray(
   409     field_number, int64 value, output) INL;
   410   static inline uint8* WriteFloatToArray(
   411     field_number, float value, output) INL;
   412   static inline uint8* WriteDoubleToArray(
   413     field_number, double value, output) INL;
   414   static inline uint8* WriteBoolToArray(
   415     field_number, bool value, output) INL;
   416   static inline uint8* WriteEnumToArray(
   417     field_number, int value, output) INL;
   419   static inline uint8* WriteStringToArray(
   420     field_number, const string& value, output) INL;
   421   static inline uint8* WriteBytesToArray(
   422     field_number, const string& value, output) INL;
   424   static inline uint8* WriteGroupToArray(
   425       field_number, const MessageLite& value, output) INL;
   426   static inline uint8* WriteMessageToArray(
   427       field_number, const MessageLite& value, output) INL;
   429   // Like above, but de-virtualize the call to SerializeWithCachedSizes().  The
   430   // pointer must point at an instance of MessageType, *not* a subclass (or
   431   // the subclass must not override SerializeWithCachedSizes()).
   432   template<typename MessageType>
   433   static inline uint8* WriteGroupNoVirtualToArray(
   434     field_number, const MessageType& value, output) INL;
   435   template<typename MessageType>
   436   static inline uint8* WriteMessageNoVirtualToArray(
   437     field_number, const MessageType& value, output) INL;
   439 #undef output
   440 #undef input
   441 #undef INL
   443 #undef field_number
   445   // Compute the byte size of a field.  The XxSize() functions do NOT include
   446   // the tag, so you must also call TagSize().  (This is because, for repeated
   447   // fields, you should only call TagSize() once and multiply it by the element
   448   // count, but you may have to call XxSize() for each individual element.)
   449   static inline int Int32Size   ( int32 value);
   450   static inline int Int64Size   ( int64 value);
   451   static inline int UInt32Size  (uint32 value);
   452   static inline int UInt64Size  (uint64 value);
   453   static inline int SInt32Size  ( int32 value);
   454   static inline int SInt64Size  ( int64 value);
   455   static inline int EnumSize    (   int value);
   457   // These types always have the same size.
   458   static const int kFixed32Size  = 4;
   459   static const int kFixed64Size  = 8;
   460   static const int kSFixed32Size = 4;
   461   static const int kSFixed64Size = 8;
   462   static const int kFloatSize    = 4;
   463   static const int kDoubleSize   = 8;
   464   static const int kBoolSize     = 1;
   466   static inline int StringSize(const string& value);
   467   static inline int BytesSize (const string& value);
   469   static inline int GroupSize  (const MessageLite& value);
   470   static inline int MessageSize(const MessageLite& value);
   472   // Like above, but de-virtualize the call to ByteSize().  The
   473   // pointer must point at an instance of MessageType, *not* a subclass (or
   474   // the subclass must not override ByteSize()).
   475   template<typename MessageType>
   476   static inline int GroupSizeNoVirtual  (const MessageType& value);
   477   template<typename MessageType>
   478   static inline int MessageSizeNoVirtual(const MessageType& value);
   480  private:
   481   // A helper method for the repeated primitive reader. This method has
   482   // optimizations for primitive types that have fixed size on the wire, and
   483   // can be read using potentially faster paths.
   484   template <typename CType, enum FieldType DeclaredType>
   485   static inline bool ReadRepeatedFixedSizePrimitive(
   486       int tag_size,
   487       uint32 tag,
   488       google::protobuf::io::CodedInputStream* input,
   489       RepeatedField<CType>* value) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
   491   static const CppType kFieldTypeToCppTypeMap[];
   492   static const WireFormatLite::WireType kWireTypeForFieldType[];
   494   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite);
   495 };
   497 // A class which deals with unknown values.  The default implementation just
   498 // discards them.  WireFormat defines a subclass which writes to an
   499 // UnknownFieldSet.  This class is used by ExtensionSet::ParseField(), since
   500 // ExtensionSet is part of the lite library but UnknownFieldSet is not.
   501 class LIBPROTOBUF_EXPORT FieldSkipper {
   502  public:
   503   FieldSkipper() {}
   504   virtual ~FieldSkipper() {}
   506   // Skip a field whose tag has already been consumed.
   507   virtual bool SkipField(io::CodedInputStream* input, uint32 tag);
   509   // Skip an entire message or group, up to an end-group tag (which is consumed)
   510   // or end-of-stream.
   511   virtual bool SkipMessage(io::CodedInputStream* input);
   513   // Deal with an already-parsed unrecognized enum value.  The default
   514   // implementation does nothing, but the UnknownFieldSet-based implementation
   515   // saves it as an unknown varint.
   516   virtual void SkipUnknownEnum(int field_number, int value);
   517 };
   519 // inline methods ====================================================
   521 inline WireFormatLite::CppType
   522 WireFormatLite::FieldTypeToCppType(FieldType type) {
   523   return kFieldTypeToCppTypeMap[type];
   524 }
   526 inline uint32 WireFormatLite::MakeTag(int field_number, WireType type) {
   527   return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type);
   528 }
   530 inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32 tag) {
   531   return static_cast<WireType>(tag & kTagTypeMask);
   532 }
   534 inline int WireFormatLite::GetTagFieldNumber(uint32 tag) {
   535   return static_cast<int>(tag >> kTagTypeBits);
   536 }
   538 inline int WireFormatLite::TagSize(int field_number,
   539                                    WireFormatLite::FieldType type) {
   540   int result = io::CodedOutputStream::VarintSize32(
   541     field_number << kTagTypeBits);
   542   if (type == TYPE_GROUP) {
   543     // Groups have both a start and an end tag.
   544     return result * 2;
   545   } else {
   546     return result;
   547   }
   548 }
   550 inline uint32 WireFormatLite::EncodeFloat(float value) {
   551   union {float f; uint32 i;};
   552   f = value;
   553   return i;
   554 }
   556 inline float WireFormatLite::DecodeFloat(uint32 value) {
   557   union {float f; uint32 i;};
   558   i = value;
   559   return f;
   560 }
   562 inline uint64 WireFormatLite::EncodeDouble(double value) {
   563   union {double f; uint64 i;};
   564   f = value;
   565   return i;
   566 }
   568 inline double WireFormatLite::DecodeDouble(uint64 value) {
   569   union {double f; uint64 i;};
   570   i = value;
   571   return f;
   572 }
   574 // ZigZag Transform:  Encodes signed integers so that they can be
   575 // effectively used with varint encoding.
   576 //
   577 // varint operates on unsigned integers, encoding smaller numbers into
   578 // fewer bytes.  If you try to use it on a signed integer, it will treat
   579 // this number as a very large unsigned integer, which means that even
   580 // small signed numbers like -1 will take the maximum number of bytes
   581 // (10) to encode.  ZigZagEncode() maps signed integers to unsigned
   582 // in such a way that those with a small absolute value will have smaller
   583 // encoded values, making them appropriate for encoding using varint.
   584 //
   585 //       int32 ->     uint32
   586 // -------------------------
   587 //           0 ->          0
   588 //          -1 ->          1
   589 //           1 ->          2
   590 //          -2 ->          3
   591 //         ... ->        ...
   592 //  2147483647 -> 4294967294
   593 // -2147483648 -> 4294967295
   594 //
   595 //        >> encode >>
   596 //        << decode <<
   598 inline uint32 WireFormatLite::ZigZagEncode32(int32 n) {
   599   // Note:  the right-shift must be arithmetic
   600   return (n << 1) ^ (n >> 31);
   601 }
   603 inline int32 WireFormatLite::ZigZagDecode32(uint32 n) {
   604   return (n >> 1) ^ -static_cast<int32>(n & 1);
   605 }
   607 inline uint64 WireFormatLite::ZigZagEncode64(int64 n) {
   608   // Note:  the right-shift must be arithmetic
   609   return (n << 1) ^ (n >> 63);
   610 }
   612 inline int64 WireFormatLite::ZigZagDecode64(uint64 n) {
   613   return (n >> 1) ^ -static_cast<int64>(n & 1);
   614 }
   616 }  // namespace internal
   617 }  // namespace protobuf
   619 }  // namespace google
   620 #endif  // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__

mercurial