Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
1 /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 * This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 #define FILTER_PROCESSING_SCALAR
8 #include "FilterProcessingSIMD-inl.h"
10 namespace mozilla {
11 namespace gfx {
13 void
14 FilterProcessing::ExtractAlpha_Scalar(const IntSize& size, uint8_t* sourceData, int32_t sourceStride, uint8_t* alphaData, int32_t alphaStride)
15 {
16 for (int32_t y = 0; y < size.height; y++) {
17 for (int32_t x = 0; x < size.width; x++) {
18 int32_t sourceIndex = y * sourceStride + 4 * x;
19 int32_t targetIndex = y * alphaStride + x;
20 alphaData[targetIndex] = sourceData[sourceIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
21 }
22 }
23 }
25 TemporaryRef<DataSourceSurface>
26 FilterProcessing::ConvertToB8G8R8A8_Scalar(SourceSurface* aSurface)
27 {
28 return ConvertToB8G8R8A8_SIMD<simd::Scalaru8x16_t>(aSurface);
29 }
31 template<BlendMode aBlendMode>
32 static TemporaryRef<DataSourceSurface>
33 ApplyBlending_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2)
34 {
35 IntSize size = aInput1->GetSize();
36 RefPtr<DataSourceSurface> target =
37 Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8);
38 if (!target) {
39 return nullptr;
40 }
42 uint8_t* source1Data = aInput1->GetData();
43 uint8_t* source2Data = aInput2->GetData();
44 uint8_t* targetData = target->GetData();
45 uint32_t targetStride = target->Stride();
46 uint32_t source1Stride = aInput1->Stride();
47 uint32_t source2Stride = aInput2->Stride();
49 for (int32_t y = 0; y < size.height; y++) {
50 for (int32_t x = 0; x < size.width; x++) {
51 uint32_t targetIndex = y * targetStride + 4 * x;
52 uint32_t source1Index = y * source1Stride + 4 * x;
53 uint32_t source2Index = y * source2Stride + 4 * x;
54 uint32_t qa = source1Data[source1Index + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
55 uint32_t qb = source2Data[source2Index + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
56 for (int32_t i = std::min(B8G8R8A8_COMPONENT_BYTEOFFSET_B, B8G8R8A8_COMPONENT_BYTEOFFSET_R);
57 i <= std::max(B8G8R8A8_COMPONENT_BYTEOFFSET_B, B8G8R8A8_COMPONENT_BYTEOFFSET_R); i++) {
58 uint32_t ca = source1Data[source1Index + i];
59 uint32_t cb = source2Data[source2Index + i];
60 uint32_t val;
61 switch (aBlendMode) {
62 case BLEND_MODE_MULTIPLY:
63 val = ((255 - qa) * cb + (255 - qb + cb) * ca);
64 break;
65 case BLEND_MODE_SCREEN:
66 val = 255 * (cb + ca) - ca * cb;
67 break;
68 case BLEND_MODE_DARKEN:
69 val = umin((255 - qa) * cb + 255 * ca,
70 (255 - qb) * ca + 255 * cb);
71 break;
72 case BLEND_MODE_LIGHTEN:
73 val = umax((255 - qa) * cb + 255 * ca,
74 (255 - qb) * ca + 255 * cb);
75 break;
76 default:
77 MOZ_CRASH();
78 }
79 val = umin(FilterProcessing::FastDivideBy255<unsigned>(val), 255U);
80 targetData[targetIndex + i] = static_cast<uint8_t>(val);
81 }
82 uint32_t alpha = 255 * 255 - (255 - qa) * (255 - qb);
83 targetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] =
84 FilterProcessing::FastDivideBy255<uint8_t>(alpha);
85 }
86 }
88 return target;
89 }
91 TemporaryRef<DataSourceSurface>
92 FilterProcessing::ApplyBlending_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2,
93 BlendMode aBlendMode)
94 {
95 switch (aBlendMode) {
96 case BLEND_MODE_MULTIPLY:
97 return gfx::ApplyBlending_Scalar<BLEND_MODE_MULTIPLY>(aInput1, aInput2);
98 case BLEND_MODE_SCREEN:
99 return gfx::ApplyBlending_Scalar<BLEND_MODE_SCREEN>(aInput1, aInput2);
100 case BLEND_MODE_DARKEN:
101 return gfx::ApplyBlending_Scalar<BLEND_MODE_DARKEN>(aInput1, aInput2);
102 case BLEND_MODE_LIGHTEN:
103 return gfx::ApplyBlending_Scalar<BLEND_MODE_LIGHTEN>(aInput1, aInput2);
104 default:
105 return nullptr;
106 }
107 }
109 template<MorphologyOperator Operator>
110 static void
111 ApplyMorphologyHorizontal_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
112 uint8_t* aDestData, int32_t aDestStride,
113 const IntRect& aDestRect, int32_t aRadius)
114 {
115 static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE ||
116 Operator == MORPHOLOGY_OPERATOR_DILATE,
117 "unexpected morphology operator");
119 for (int32_t y = aDestRect.y; y < aDestRect.YMost(); y++) {
120 int32_t startX = aDestRect.x - aRadius;
121 int32_t endX = aDestRect.x + aRadius;
122 for (int32_t x = aDestRect.x; x < aDestRect.XMost(); x++, startX++, endX++) {
123 int32_t sourceIndex = y * aSourceStride + 4 * startX;
124 uint8_t u[4];
125 for (size_t i = 0; i < 4; i++) {
126 u[i] = aSourceData[sourceIndex + i];
127 }
128 sourceIndex += 4;
129 for (int32_t ix = startX + 1; ix <= endX; ix++, sourceIndex += 4) {
130 for (size_t i = 0; i < 4; i++) {
131 if (Operator == MORPHOLOGY_OPERATOR_ERODE) {
132 u[i] = umin(u[i], aSourceData[sourceIndex + i]);
133 } else {
134 u[i] = umax(u[i], aSourceData[sourceIndex + i]);
135 }
136 }
137 }
139 int32_t destIndex = y * aDestStride + 4 * x;
140 for (size_t i = 0; i < 4; i++) {
141 aDestData[destIndex+i] = u[i];
142 }
143 }
144 }
145 }
147 void
148 FilterProcessing::ApplyMorphologyHorizontal_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
149 uint8_t* aDestData, int32_t aDestStride,
150 const IntRect& aDestRect, int32_t aRadius,
151 MorphologyOperator aOp)
152 {
153 if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
154 gfx::ApplyMorphologyHorizontal_Scalar<MORPHOLOGY_OPERATOR_ERODE>(
155 aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
156 } else {
157 gfx::ApplyMorphologyHorizontal_Scalar<MORPHOLOGY_OPERATOR_DILATE>(
158 aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
159 }
160 }
162 template<MorphologyOperator Operator>
163 static void ApplyMorphologyVertical_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
164 uint8_t* aDestData, int32_t aDestStride,
165 const IntRect& aDestRect, int32_t aRadius)
166 {
167 static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE ||
168 Operator == MORPHOLOGY_OPERATOR_DILATE,
169 "unexpected morphology operator");
171 int32_t startY = aDestRect.y - aRadius;
172 int32_t endY = aDestRect.y + aRadius;
173 for (int32_t y = aDestRect.y; y < aDestRect.YMost(); y++, startY++, endY++) {
174 for (int32_t x = aDestRect.x; x < aDestRect.XMost(); x++) {
175 int32_t sourceIndex = startY * aSourceStride + 4 * x;
176 uint8_t u[4];
177 for (size_t i = 0; i < 4; i++) {
178 u[i] = aSourceData[sourceIndex + i];
179 }
180 sourceIndex += aSourceStride;
181 for (int32_t iy = startY + 1; iy <= endY; iy++, sourceIndex += aSourceStride) {
182 for (size_t i = 0; i < 4; i++) {
183 if (Operator == MORPHOLOGY_OPERATOR_ERODE) {
184 u[i] = umin(u[i], aSourceData[sourceIndex + i]);
185 } else {
186 u[i] = umax(u[i], aSourceData[sourceIndex + i]);
187 }
188 }
189 }
191 int32_t destIndex = y * aDestStride + 4 * x;
192 for (size_t i = 0; i < 4; i++) {
193 aDestData[destIndex+i] = u[i];
194 }
195 }
196 }
197 }
199 void
200 FilterProcessing::ApplyMorphologyVertical_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
201 uint8_t* aDestData, int32_t aDestStride,
202 const IntRect& aDestRect, int32_t aRadius,
203 MorphologyOperator aOp)
204 {
205 if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
206 gfx::ApplyMorphologyVertical_Scalar<MORPHOLOGY_OPERATOR_ERODE>(
207 aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
208 } else {
209 gfx::ApplyMorphologyVertical_Scalar<MORPHOLOGY_OPERATOR_DILATE>(
210 aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
211 }
212 }
214 TemporaryRef<DataSourceSurface>
215 FilterProcessing::ApplyColorMatrix_Scalar(DataSourceSurface* aInput, const Matrix5x4 &aMatrix)
216 {
217 return ApplyColorMatrix_SIMD<simd::Scalari32x4_t,simd::Scalari16x8_t,simd::Scalaru8x16_t>(aInput, aMatrix);
218 }
220 void
221 FilterProcessing::ApplyComposition_Scalar(DataSourceSurface* aSource, DataSourceSurface* aDest,
222 CompositeOperator aOperator)
223 {
224 return ApplyComposition_SIMD<simd::Scalari32x4_t,simd::Scalaru16x8_t,simd::Scalaru8x16_t>(aSource, aDest, aOperator);
225 }
227 void
228 FilterProcessing::SeparateColorChannels_Scalar(const IntSize &size, uint8_t* sourceData, int32_t sourceStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data, int32_t channelStride)
229 {
230 for (int32_t y = 0; y < size.height; y++) {
231 for (int32_t x = 0; x < size.width; x++) {
232 int32_t sourceIndex = y * sourceStride + 4 * x;
233 int32_t targetIndex = y * channelStride + x;
234 channel0Data[targetIndex] = sourceData[sourceIndex];
235 channel1Data[targetIndex] = sourceData[sourceIndex+1];
236 channel2Data[targetIndex] = sourceData[sourceIndex+2];
237 channel3Data[targetIndex] = sourceData[sourceIndex+3];
238 }
239 }
240 }
242 void
243 FilterProcessing::CombineColorChannels_Scalar(const IntSize &size, int32_t resultStride, uint8_t* resultData, int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data)
244 {
245 for (int32_t y = 0; y < size.height; y++) {
246 for (int32_t x = 0; x < size.width; x++) {
247 int32_t resultIndex = y * resultStride + 4 * x;
248 int32_t channelIndex = y * channelStride + x;
249 resultData[resultIndex] = channel0Data[channelIndex];
250 resultData[resultIndex+1] = channel1Data[channelIndex];
251 resultData[resultIndex+2] = channel2Data[channelIndex];
252 resultData[resultIndex+3] = channel3Data[channelIndex];
253 }
254 }
255 }
257 void
258 FilterProcessing::DoPremultiplicationCalculation_Scalar(const IntSize& aSize,
259 uint8_t* aTargetData, int32_t aTargetStride,
260 uint8_t* aSourceData, int32_t aSourceStride)
261 {
262 for (int32_t y = 0; y < aSize.height; y++) {
263 for (int32_t x = 0; x < aSize.width; x++) {
264 int32_t inputIndex = y * aSourceStride + 4 * x;
265 int32_t targetIndex = y * aTargetStride + 4 * x;
266 uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
267 aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
268 FastDivideBy255<uint8_t>(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alpha);
269 aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
270 FastDivideBy255<uint8_t>(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alpha);
271 aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
272 FastDivideBy255<uint8_t>(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alpha);
273 aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha;
274 }
275 }
276 }
278 void
279 FilterProcessing::DoUnpremultiplicationCalculation_Scalar(
280 const IntSize& aSize,
281 uint8_t* aTargetData, int32_t aTargetStride,
282 uint8_t* aSourceData, int32_t aSourceStride)
283 {
284 for (int32_t y = 0; y < aSize.height; y++) {
285 for (int32_t x = 0; x < aSize.width; x++) {
286 int32_t inputIndex = y * aSourceStride + 4 * x;
287 int32_t targetIndex = y * aTargetStride + 4 * x;
288 uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
289 uint16_t alphaFactor = sAlphaFactors[alpha];
290 // inputColor * alphaFactor + 128 is guaranteed to fit into uint16_t
291 // because the input is premultiplied and thus inputColor <= inputAlpha.
292 // The maximum value this can attain is 65520 (which is less than 65535)
293 // for color == alpha == 244:
294 // 244 * sAlphaFactors[244] + 128 == 244 * 268 + 128 == 65520
295 aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
296 (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alphaFactor + 128) >> 8;
297 aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
298 (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alphaFactor + 128) >> 8;
299 aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
300 (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alphaFactor + 128) >> 8;
301 aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha;
302 }
303 }
304 }
306 TemporaryRef<DataSourceSurface>
307 FilterProcessing::RenderTurbulence_Scalar(const IntSize &aSize, const Point &aOffset, const Size &aBaseFrequency,
308 int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect &aTileRect)
309 {
310 return RenderTurbulence_SIMD<simd::Scalarf32x4_t,simd::Scalari32x4_t,simd::Scalaru8x16_t>(
311 aSize, aOffset, aBaseFrequency, aSeed, aNumOctaves, aType, aStitch, aTileRect);
312 }
314 TemporaryRef<DataSourceSurface>
315 FilterProcessing::ApplyArithmeticCombine_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2, Float aK1, Float aK2, Float aK3, Float aK4)
316 {
317 return ApplyArithmeticCombine_SIMD<simd::Scalari32x4_t,simd::Scalari16x8_t,simd::Scalaru8x16_t>(aInput1, aInput2, aK1, aK2, aK3, aK4);
318 }
320 } // namespace mozilla
321 } // namespace gfx