gfx/2d/PathHelpers.cpp

Tue, 06 Jan 2015 21:39:09 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Tue, 06 Jan 2015 21:39:09 +0100
branch
TOR_BUG_9701
changeset 8
97036ab72558
permissions
-rw-r--r--

Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
     2  * This Source Code Form is subject to the terms of the Mozilla Public
     3  * License, v. 2.0. If a copy of the MPL was not distributed with this
     4  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     6 #include "PathHelpers.h"
     8 namespace mozilla {
     9 namespace gfx {
    11 void
    12 AppendRoundedRectToPath(PathBuilder* aPathBuilder,
    13                         const Rect& aRect,
    14                         // paren's needed due to operator precedence:
    15                         const Size(& aCornerRadii)[4],
    16                         bool aDrawClockwise)
    17 {
    18   // For CW drawing, this looks like:
    19   //
    20   //  ...******0**      1    C
    21   //              ****
    22   //                  ***    2
    23   //                     **
    24   //                       *
    25   //                        *
    26   //                         3
    27   //                         *
    28   //                         *
    29   //
    30   // Where 0, 1, 2, 3 are the control points of the Bezier curve for
    31   // the corner, and C is the actual corner point.
    32   //
    33   // At the start of the loop, the current point is assumed to be
    34   // the point adjacent to the top left corner on the top
    35   // horizontal.  Note that corner indices start at the top left and
    36   // continue clockwise, whereas in our loop i = 0 refers to the top
    37   // right corner.
    38   //
    39   // When going CCW, the control points are swapped, and the first
    40   // corner that's drawn is the top left (along with the top segment).
    41   //
    42   // There is considerable latitude in how one chooses the four
    43   // control points for a Bezier curve approximation to an ellipse.
    44   // For the overall path to be continuous and show no corner at the
    45   // endpoints of the arc, points 0 and 3 must be at the ends of the
    46   // straight segments of the rectangle; points 0, 1, and C must be
    47   // collinear; and points 3, 2, and C must also be collinear.  This
    48   // leaves only two free parameters: the ratio of the line segments
    49   // 01 and 0C, and the ratio of the line segments 32 and 3C.  See
    50   // the following papers for extensive discussion of how to choose
    51   // these ratios:
    52   //
    53   //   Dokken, Tor, et al. "Good approximation of circles by
    54   //      curvature-continuous Bezier curves."  Computer-Aided
    55   //      Geometric Design 7(1990) 33--41.
    56   //   Goldapp, Michael. "Approximation of circular arcs by cubic
    57   //      polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
    58   //   Maisonobe, Luc. "Drawing an elliptical arc using polylines,
    59   //      quadratic, or cubic Bezier curves."
    60   //      http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
    61   //
    62   // We follow the approach in section 2 of Goldapp (least-error,
    63   // Hermite-type approximation) and make both ratios equal to
    64   //
    65   //          2   2 + n - sqrt(2n + 28)
    66   //  alpha = - * ---------------------
    67   //          3           n - 4
    68   //
    69   // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
    70   //
    71   // This is the result of Goldapp's equation (10b) when the angle
    72   // swept out by the arc is pi/2, and the parameter "a-bar" is the
    73   // expression given immediately below equation (21).
    74   //
    75   // Using this value, the maximum radial error for a circle, as a
    76   // fraction of the radius, is on the order of 0.2 x 10^-3.
    77   // Neither Dokken nor Goldapp discusses error for a general
    78   // ellipse; Maisonobe does, but his choice of control points
    79   // follows different constraints, and Goldapp's expression for
    80   // 'alpha' gives much smaller radial error, even for very flat
    81   // ellipses, than Maisonobe's equivalent.
    82   //
    83   // For the various corners and for each axis, the sign of this
    84   // constant changes, or it might be 0 -- it's multiplied by the
    85   // appropriate multiplier from the list before using.
    87   const Float alpha = Float(0.55191497064665766025);
    89   typedef struct { Float a, b; } twoFloats;
    91   twoFloats cwCornerMults[4] = { { -1,  0 },    // cc == clockwise
    92                                  {  0, -1 },
    93                                  { +1,  0 },
    94                                  {  0, +1 } };
    95   twoFloats ccwCornerMults[4] = { { +1,  0 },   // ccw == counter-clockwise
    96                                   {  0, -1 },
    97                                   { -1,  0 },
    98                                   {  0, +1 } };
   100   twoFloats *cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;
   102   Point cornerCoords[] = { aRect.TopLeft(), aRect.TopRight(),
   103                            aRect.BottomRight(), aRect.BottomLeft() };
   105   Point pc, p0, p1, p2, p3;
   107   // The indexes of the corners:
   108   const int kTopLeft = 0, kTopRight = 1;
   110   if (aDrawClockwise) {
   111     aPathBuilder->MoveTo(Point(aRect.X() + aCornerRadii[kTopLeft].width,
   112                                aRect.Y()));
   113   } else {
   114     aPathBuilder->MoveTo(Point(aRect.X() + aRect.Width() - aCornerRadii[kTopRight].width,
   115                                aRect.Y()));
   116   }
   118   for (int i = 0; i < 4; ++i) {
   119     // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
   120     int c = aDrawClockwise ? ((i+1) % 4) : ((4-i) % 4);
   122     // i+2 and i+3 respectively.  These are used to index into the corner
   123     // multiplier table, and were deduced by calculating out the long form
   124     // of each corner and finding a pattern in the signs and values.
   125     int i2 = (i+2) % 4;
   126     int i3 = (i+3) % 4;
   128     pc = cornerCoords[c];
   130     if (aCornerRadii[c].width > 0.0 && aCornerRadii[c].height > 0.0) {
   131       p0.x = pc.x + cornerMults[i].a * aCornerRadii[c].width;
   132       p0.y = pc.y + cornerMults[i].b * aCornerRadii[c].height;
   134       p3.x = pc.x + cornerMults[i3].a * aCornerRadii[c].width;
   135       p3.y = pc.y + cornerMults[i3].b * aCornerRadii[c].height;
   137       p1.x = p0.x + alpha * cornerMults[i2].a * aCornerRadii[c].width;
   138       p1.y = p0.y + alpha * cornerMults[i2].b * aCornerRadii[c].height;
   140       p2.x = p3.x - alpha * cornerMults[i3].a * aCornerRadii[c].width;
   141       p2.y = p3.y - alpha * cornerMults[i3].b * aCornerRadii[c].height;
   143       aPathBuilder->LineTo(p0);
   144       aPathBuilder->BezierTo(p1, p2, p3);
   145     } else {
   146       aPathBuilder->LineTo(pc);
   147     }
   148   }
   150   aPathBuilder->Close();
   151 }
   153 void
   154 AppendEllipseToPath(PathBuilder* aPathBuilder,
   155                     const Point& aCenter,
   156                     const Size& aDimensions)
   157 {
   158   Size halfDim = aDimensions / 2.0;
   159   Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions);
   160   Size radii[] = { halfDim, halfDim, halfDim, halfDim };
   162   AppendRoundedRectToPath(aPathBuilder, rect, radii);
   163 }
   165 } // namespace gfx
   166 } // namespace mozilla

mercurial