gfx/2d/convolver.cpp

Tue, 06 Jan 2015 21:39:09 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Tue, 06 Jan 2015 21:39:09 +0100
branch
TOR_BUG_9701
changeset 8
97036ab72558
permissions
-rw-r--r--

Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 // Copyright (c) 2006-2011 The Chromium Authors. All rights reserved.
     2 //
     3 // Redistribution and use in source and binary forms, with or without
     4 // modification, are permitted provided that the following conditions
     5 // are met:
     6 //  * Redistributions of source code must retain the above copyright
     7 //    notice, this list of conditions and the following disclaimer.
     8 //  * Redistributions in binary form must reproduce the above copyright
     9 //    notice, this list of conditions and the following disclaimer in
    10 //    the documentation and/or other materials provided with the
    11 //    distribution.
    12 //  * Neither the name of Google, Inc. nor the names of its contributors
    13 //    may be used to endorse or promote products derived from this
    14 //    software without specific prior written permission.
    15 //
    16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
    19 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
    20 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
    21 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
    22 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
    23 // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
    24 // AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
    25 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
    26 // OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    27 // SUCH DAMAGE.
    29 #include "convolver.h"
    31 #include <algorithm>
    33 #include "skia/SkTypes.h"
    35 // note: SIMD_SSE2 is not enabled because of bugs, apparently
    37 #if defined(SIMD_SSE2)
    38 #include <emmintrin.h>  // ARCH_CPU_X86_FAMILY was defined in build/config.h
    39 #endif
    41 #if defined(SK_CPU_LENDIAN)
    42 #define R_OFFSET_IDX 0
    43 #define G_OFFSET_IDX 1
    44 #define B_OFFSET_IDX 2
    45 #define A_OFFSET_IDX 3
    46 #else
    47 #define R_OFFSET_IDX 3
    48 #define G_OFFSET_IDX 2
    49 #define B_OFFSET_IDX 1
    50 #define A_OFFSET_IDX 0
    51 #endif
    53 namespace skia {
    55 namespace {
    57 // Converts the argument to an 8-bit unsigned value by clamping to the range
    58 // 0-255.
    59 inline unsigned char ClampTo8(int a) {
    60   if (static_cast<unsigned>(a) < 256)
    61     return a;  // Avoid the extra check in the common case.
    62   if (a < 0)
    63     return 0;
    64   return 255;
    65 }
    67 // Stores a list of rows in a circular buffer. The usage is you write into it
    68 // by calling AdvanceRow. It will keep track of which row in the buffer it
    69 // should use next, and the total number of rows added.
    70 class CircularRowBuffer {
    71  public:
    72   // The number of pixels in each row is given in |source_row_pixel_width|.
    73   // The maximum number of rows needed in the buffer is |max_y_filter_size|
    74   // (we only need to store enough rows for the biggest filter).
    75   //
    76   // We use the |first_input_row| to compute the coordinates of all of the
    77   // following rows returned by Advance().
    78   CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size,
    79                     int first_input_row)
    80       : row_byte_width_(dest_row_pixel_width * 4),
    81         num_rows_(max_y_filter_size),
    82         next_row_(0),
    83         next_row_coordinate_(first_input_row) {
    84     buffer_.resize(row_byte_width_ * max_y_filter_size);
    85     row_addresses_.resize(num_rows_);
    86   }
    88   // Moves to the next row in the buffer, returning a pointer to the beginning
    89   // of it.
    90   unsigned char* AdvanceRow() {
    91     unsigned char* row = &buffer_[next_row_ * row_byte_width_];
    92     next_row_coordinate_++;
    94     // Set the pointer to the next row to use, wrapping around if necessary.
    95     next_row_++;
    96     if (next_row_ == num_rows_)
    97       next_row_ = 0;
    98     return row;
    99   }
   101   // Returns a pointer to an "unrolled" array of rows. These rows will start
   102   // at the y coordinate placed into |*first_row_index| and will continue in
   103   // order for the maximum number of rows in this circular buffer.
   104   //
   105   // The |first_row_index_| may be negative. This means the circular buffer
   106   // starts before the top of the image (it hasn't been filled yet).
   107   unsigned char* const* GetRowAddresses(int* first_row_index) {
   108     // Example for a 4-element circular buffer holding coords 6-9.
   109     //   Row 0   Coord 8
   110     //   Row 1   Coord 9
   111     //   Row 2   Coord 6  <- next_row_ = 2, next_row_coordinate_ = 10.
   112     //   Row 3   Coord 7
   113     //
   114     // The "next" row is also the first (lowest) coordinate. This computation
   115     // may yield a negative value, but that's OK, the math will work out
   116     // since the user of this buffer will compute the offset relative
   117     // to the first_row_index and the negative rows will never be used.
   118     *first_row_index = next_row_coordinate_ - num_rows_;
   120     int cur_row = next_row_;
   121     for (int i = 0; i < num_rows_; i++) {
   122       row_addresses_[i] = &buffer_[cur_row * row_byte_width_];
   124       // Advance to the next row, wrapping if necessary.
   125       cur_row++;
   126       if (cur_row == num_rows_)
   127         cur_row = 0;
   128     }
   129     return &row_addresses_[0];
   130   }
   132  private:
   133   // The buffer storing the rows. They are packed, each one row_byte_width_.
   134   std::vector<unsigned char> buffer_;
   136   // Number of bytes per row in the |buffer_|.
   137   int row_byte_width_;
   139   // The number of rows available in the buffer.
   140   int num_rows_;
   142   // The next row index we should write into. This wraps around as the
   143   // circular buffer is used.
   144   int next_row_;
   146   // The y coordinate of the |next_row_|. This is incremented each time a
   147   // new row is appended and does not wrap.
   148   int next_row_coordinate_;
   150   // Buffer used by GetRowAddresses().
   151   std::vector<unsigned char*> row_addresses_;
   152 };
   154 // Convolves horizontally along a single row. The row data is given in
   155 // |src_data| and continues for the num_values() of the filter.
   156 template<bool has_alpha>
   157 // This function is miscompiled with gcc 4.5 with pgo. See bug 827946.
   158 #if defined(__GNUC__) && defined(MOZ_GCC_VERSION_AT_LEAST)
   159 #if MOZ_GCC_VERSION_AT_LEAST(4, 5, 0) && !MOZ_GCC_VERSION_AT_LEAST(4, 6, 0)
   160 __attribute__((optimize("-O1")))
   161 #endif
   162 #endif
   163 void ConvolveHorizontally(const unsigned char* src_data,
   164                           const ConvolutionFilter1D& filter,
   165                           unsigned char* out_row) {
   166   // Loop over each pixel on this row in the output image.
   167   int num_values = filter.num_values();
   168   for (int out_x = 0; out_x < num_values; out_x++) {
   169     // Get the filter that determines the current output pixel.
   170     int filter_offset, filter_length;
   171     const ConvolutionFilter1D::Fixed* filter_values =
   172         filter.FilterForValue(out_x, &filter_offset, &filter_length);
   174     // Compute the first pixel in this row that the filter affects. It will
   175     // touch |filter_length| pixels (4 bytes each) after this.
   176     const unsigned char* row_to_filter = &src_data[filter_offset * 4];
   178     // Apply the filter to the row to get the destination pixel in |accum|.
   179     int accum[4] = {0};
   180     for (int filter_x = 0; filter_x < filter_length; filter_x++) {
   181       ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x];
   182       accum[0] += cur_filter * row_to_filter[filter_x * 4 + R_OFFSET_IDX];
   183       accum[1] += cur_filter * row_to_filter[filter_x * 4 + G_OFFSET_IDX];
   184       accum[2] += cur_filter * row_to_filter[filter_x * 4 + B_OFFSET_IDX];
   185       if (has_alpha)
   186         accum[3] += cur_filter * row_to_filter[filter_x * 4 + A_OFFSET_IDX];
   187     }
   189     // Bring this value back in range. All of the filter scaling factors
   190     // are in fixed point with kShiftBits bits of fractional part.
   191     accum[0] >>= ConvolutionFilter1D::kShiftBits;
   192     accum[1] >>= ConvolutionFilter1D::kShiftBits;
   193     accum[2] >>= ConvolutionFilter1D::kShiftBits;
   194     if (has_alpha)
   195       accum[3] >>= ConvolutionFilter1D::kShiftBits;
   197     // Store the new pixel.
   198     out_row[out_x * 4 + R_OFFSET_IDX] = ClampTo8(accum[0]);
   199     out_row[out_x * 4 + G_OFFSET_IDX] = ClampTo8(accum[1]);
   200     out_row[out_x * 4 + B_OFFSET_IDX] = ClampTo8(accum[2]);
   201     if (has_alpha)
   202       out_row[out_x * 4 + A_OFFSET_IDX] = ClampTo8(accum[3]);
   203   }
   204 }
   206 // Does vertical convolution to produce one output row. The filter values and
   207 // length are given in the first two parameters. These are applied to each
   208 // of the rows pointed to in the |source_data_rows| array, with each row
   209 // being |pixel_width| wide.
   210 //
   211 // The output must have room for |pixel_width * 4| bytes.
   212 template<bool has_alpha>
   213 void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
   214                         int filter_length,
   215                         unsigned char* const* source_data_rows,
   216                         int pixel_width,
   217                         unsigned char* out_row) {
   218   // We go through each column in the output and do a vertical convolution,
   219   // generating one output pixel each time.
   220   for (int out_x = 0; out_x < pixel_width; out_x++) {
   221     // Compute the number of bytes over in each row that the current column
   222     // we're convolving starts at. The pixel will cover the next 4 bytes.
   223     int byte_offset = out_x * 4;
   225     // Apply the filter to one column of pixels.
   226     int accum[4] = {0};
   227     for (int filter_y = 0; filter_y < filter_length; filter_y++) {
   228       ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y];
   229       accum[0] += cur_filter 
   230 	* source_data_rows[filter_y][byte_offset + R_OFFSET_IDX];
   231       accum[1] += cur_filter 
   232 	* source_data_rows[filter_y][byte_offset + G_OFFSET_IDX];
   233       accum[2] += cur_filter 
   234 	* source_data_rows[filter_y][byte_offset + B_OFFSET_IDX];
   235       if (has_alpha)
   236         accum[3] += cur_filter 
   237 	  * source_data_rows[filter_y][byte_offset + A_OFFSET_IDX];
   238     }
   240     // Bring this value back in range. All of the filter scaling factors
   241     // are in fixed point with kShiftBits bits of precision.
   242     accum[0] >>= ConvolutionFilter1D::kShiftBits;
   243     accum[1] >>= ConvolutionFilter1D::kShiftBits;
   244     accum[2] >>= ConvolutionFilter1D::kShiftBits;
   245     if (has_alpha)
   246       accum[3] >>= ConvolutionFilter1D::kShiftBits;
   248     // Store the new pixel.
   249     out_row[byte_offset + R_OFFSET_IDX] = ClampTo8(accum[0]);
   250     out_row[byte_offset + G_OFFSET_IDX] = ClampTo8(accum[1]);
   251     out_row[byte_offset + B_OFFSET_IDX] = ClampTo8(accum[2]);
   252     if (has_alpha) {
   253       unsigned char alpha = ClampTo8(accum[3]);
   255       // Make sure the alpha channel doesn't come out smaller than any of the
   256       // color channels. We use premultipled alpha channels, so this should
   257       // never happen, but rounding errors will cause this from time to time.
   258       // These "impossible" colors will cause overflows (and hence random pixel
   259       // values) when the resulting bitmap is drawn to the screen.
   260       //
   261       // We only need to do this when generating the final output row (here).
   262       int max_color_channel = std::max(out_row[byte_offset + R_OFFSET_IDX],
   263           std::max(out_row[byte_offset + G_OFFSET_IDX], out_row[byte_offset + B_OFFSET_IDX]));
   264       if (alpha < max_color_channel)
   265         out_row[byte_offset + A_OFFSET_IDX] = max_color_channel;
   266       else
   267         out_row[byte_offset + A_OFFSET_IDX] = alpha;
   268     } else {
   269       // No alpha channel, the image is opaque.
   270       out_row[byte_offset + A_OFFSET_IDX] = 0xff;
   271     }
   272   }
   273 }
   276 // Convolves horizontally along a single row. The row data is given in
   277 // |src_data| and continues for the num_values() of the filter.
   278 void ConvolveHorizontally_SSE2(const unsigned char* src_data,
   279                                const ConvolutionFilter1D& filter,
   280                                unsigned char* out_row) {
   281 #if defined(SIMD_SSE2)
   282   int num_values = filter.num_values();
   284   int filter_offset, filter_length;
   285   __m128i zero = _mm_setzero_si128();
   286   __m128i mask[4];
   287   // |mask| will be used to decimate all extra filter coefficients that are
   288   // loaded by SIMD when |filter_length| is not divisible by 4.
   289   // mask[0] is not used in following algorithm.
   290   mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
   291   mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
   292   mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
   294   // Output one pixel each iteration, calculating all channels (RGBA) together.
   295   for (int out_x = 0; out_x < num_values; out_x++) {
   296     const ConvolutionFilter1D::Fixed* filter_values =
   297         filter.FilterForValue(out_x, &filter_offset, &filter_length);
   299     __m128i accum = _mm_setzero_si128();
   301     // Compute the first pixel in this row that the filter affects. It will
   302     // touch |filter_length| pixels (4 bytes each) after this.
   303     const __m128i* row_to_filter =
   304         reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
   306     // We will load and accumulate with four coefficients per iteration.
   307     for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
   309       // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
   310       __m128i coeff, coeff16;
   311       // [16] xx xx xx xx c3 c2 c1 c0
   312       coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
   313       // [16] xx xx xx xx c1 c1 c0 c0
   314       coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
   315       // [16] c1 c1 c1 c1 c0 c0 c0 c0
   316       coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
   318       // Load four pixels => unpack the first two pixels to 16 bits =>
   319       // multiply with coefficients => accumulate the convolution result.
   320       // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
   321       __m128i src8 = _mm_loadu_si128(row_to_filter);
   322       // [16] a1 b1 g1 r1 a0 b0 g0 r0
   323       __m128i src16 = _mm_unpacklo_epi8(src8, zero);
   324       __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
   325       __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
   326       // [32]  a0*c0 b0*c0 g0*c0 r0*c0
   327       __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
   328       accum = _mm_add_epi32(accum, t);
   329       // [32]  a1*c1 b1*c1 g1*c1 r1*c1
   330       t = _mm_unpackhi_epi16(mul_lo, mul_hi);
   331       accum = _mm_add_epi32(accum, t);
   333       // Duplicate 3rd and 4th coefficients for all channels =>
   334       // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
   335       // => accumulate the convolution results.
   336       // [16] xx xx xx xx c3 c3 c2 c2
   337       coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
   338       // [16] c3 c3 c3 c3 c2 c2 c2 c2
   339       coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
   340       // [16] a3 g3 b3 r3 a2 g2 b2 r2
   341       src16 = _mm_unpackhi_epi8(src8, zero);
   342       mul_hi = _mm_mulhi_epi16(src16, coeff16);
   343       mul_lo = _mm_mullo_epi16(src16, coeff16);
   344       // [32]  a2*c2 b2*c2 g2*c2 r2*c2
   345       t = _mm_unpacklo_epi16(mul_lo, mul_hi);
   346       accum = _mm_add_epi32(accum, t);
   347       // [32]  a3*c3 b3*c3 g3*c3 r3*c3
   348       t = _mm_unpackhi_epi16(mul_lo, mul_hi);
   349       accum = _mm_add_epi32(accum, t);
   351       // Advance the pixel and coefficients pointers.
   352       row_to_filter += 1;
   353       filter_values += 4;
   354     }
   356     // When |filter_length| is not divisible by 4, we need to decimate some of
   357     // the filter coefficient that was loaded incorrectly to zero; Other than
   358     // that the algorithm is same with above, exceot that the 4th pixel will be
   359     // always absent.
   360     int r = filter_length&3;
   361     if (r) {
   362       // Note: filter_values must be padded to align_up(filter_offset, 8).
   363       __m128i coeff, coeff16;
   364       coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
   365       // Mask out extra filter taps.
   366       coeff = _mm_and_si128(coeff, mask[r]);
   367       coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
   368       coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
   370       // Note: line buffer must be padded to align_up(filter_offset, 16).
   371       // We resolve this by use C-version for the last horizontal line.
   372       __m128i src8 = _mm_loadu_si128(row_to_filter);
   373       __m128i src16 = _mm_unpacklo_epi8(src8, zero);
   374       __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
   375       __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
   376       __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
   377       accum = _mm_add_epi32(accum, t);
   378       t = _mm_unpackhi_epi16(mul_lo, mul_hi);
   379       accum = _mm_add_epi32(accum, t);
   381       src16 = _mm_unpackhi_epi8(src8, zero);
   382       coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
   383       coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
   384       mul_hi = _mm_mulhi_epi16(src16, coeff16);
   385       mul_lo = _mm_mullo_epi16(src16, coeff16);
   386       t = _mm_unpacklo_epi16(mul_lo, mul_hi);
   387       accum = _mm_add_epi32(accum, t);
   388     }
   390     // Shift right for fixed point implementation.
   391     accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);
   393     // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
   394     accum = _mm_packs_epi32(accum, zero);
   395     // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
   396     accum = _mm_packus_epi16(accum, zero);
   398     // Store the pixel value of 32 bits.
   399     *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
   400     out_row += 4;
   401   }
   402 #endif
   403 }
   405 // Convolves horizontally along four rows. The row data is given in
   406 // |src_data| and continues for the num_values() of the filter.
   407 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
   408 // refer to that function for detailed comments.
   409 void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4],
   410                                 const ConvolutionFilter1D& filter,
   411                                 unsigned char* out_row[4]) {
   412 #if defined(SIMD_SSE2)
   413   int num_values = filter.num_values();
   415   int filter_offset, filter_length;
   416   __m128i zero = _mm_setzero_si128();
   417   __m128i mask[4];
   418   // |mask| will be used to decimate all extra filter coefficients that are
   419   // loaded by SIMD when |filter_length| is not divisible by 4.
   420   // mask[0] is not used in following algorithm.
   421   mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
   422   mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
   423   mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
   425   // Output one pixel each iteration, calculating all channels (RGBA) together.
   426   for (int out_x = 0; out_x < num_values; out_x++) {
   427     const ConvolutionFilter1D::Fixed* filter_values =
   428         filter.FilterForValue(out_x, &filter_offset, &filter_length);
   430     // four pixels in a column per iteration.
   431     __m128i accum0 = _mm_setzero_si128();
   432     __m128i accum1 = _mm_setzero_si128();
   433     __m128i accum2 = _mm_setzero_si128();
   434     __m128i accum3 = _mm_setzero_si128();
   435     int start = (filter_offset<<2);
   436     // We will load and accumulate with four coefficients per iteration.
   437     for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
   438       __m128i coeff, coeff16lo, coeff16hi;
   439       // [16] xx xx xx xx c3 c2 c1 c0
   440       coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
   441       // [16] xx xx xx xx c1 c1 c0 c0
   442       coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
   443       // [16] c1 c1 c1 c1 c0 c0 c0 c0
   444       coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
   445       // [16] xx xx xx xx c3 c3 c2 c2
   446       coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
   447       // [16] c3 c3 c3 c3 c2 c2 c2 c2
   448       coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
   450       __m128i src8, src16, mul_hi, mul_lo, t;
   452 #define ITERATION(src, accum)                                          \
   453       src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src));   \
   454       src16 = _mm_unpacklo_epi8(src8, zero);                           \
   455       mul_hi = _mm_mulhi_epi16(src16, coeff16lo);                      \
   456       mul_lo = _mm_mullo_epi16(src16, coeff16lo);                      \
   457       t = _mm_unpacklo_epi16(mul_lo, mul_hi);                          \
   458       accum = _mm_add_epi32(accum, t);                                 \
   459       t = _mm_unpackhi_epi16(mul_lo, mul_hi);                          \
   460       accum = _mm_add_epi32(accum, t);                                 \
   461       src16 = _mm_unpackhi_epi8(src8, zero);                           \
   462       mul_hi = _mm_mulhi_epi16(src16, coeff16hi);                      \
   463       mul_lo = _mm_mullo_epi16(src16, coeff16hi);                      \
   464       t = _mm_unpacklo_epi16(mul_lo, mul_hi);                          \
   465       accum = _mm_add_epi32(accum, t);                                 \
   466       t = _mm_unpackhi_epi16(mul_lo, mul_hi);                          \
   467       accum = _mm_add_epi32(accum, t)
   469       ITERATION(src_data[0] + start, accum0);
   470       ITERATION(src_data[1] + start, accum1);
   471       ITERATION(src_data[2] + start, accum2);
   472       ITERATION(src_data[3] + start, accum3);
   474       start += 16;
   475       filter_values += 4;
   476     }
   478     int r = filter_length & 3;
   479     if (r) {
   480       // Note: filter_values must be padded to align_up(filter_offset, 8);
   481       __m128i coeff;
   482       coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
   483       // Mask out extra filter taps.
   484       coeff = _mm_and_si128(coeff, mask[r]);
   486       __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
   487       /* c1 c1 c1 c1 c0 c0 c0 c0 */
   488       coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
   489       __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
   490       coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
   492       __m128i src8, src16, mul_hi, mul_lo, t;
   494       ITERATION(src_data[0] + start, accum0);
   495       ITERATION(src_data[1] + start, accum1);
   496       ITERATION(src_data[2] + start, accum2);
   497       ITERATION(src_data[3] + start, accum3);
   498     }
   500     accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
   501     accum0 = _mm_packs_epi32(accum0, zero);
   502     accum0 = _mm_packus_epi16(accum0, zero);
   503     accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
   504     accum1 = _mm_packs_epi32(accum1, zero);
   505     accum1 = _mm_packus_epi16(accum1, zero);
   506     accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
   507     accum2 = _mm_packs_epi32(accum2, zero);
   508     accum2 = _mm_packus_epi16(accum2, zero);
   509     accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
   510     accum3 = _mm_packs_epi32(accum3, zero);
   511     accum3 = _mm_packus_epi16(accum3, zero);
   513     *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
   514     *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
   515     *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
   516     *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
   518     out_row[0] += 4;
   519     out_row[1] += 4;
   520     out_row[2] += 4;
   521     out_row[3] += 4;
   522   }
   523 #endif
   524 }
   526 // Does vertical convolution to produce one output row. The filter values and
   527 // length are given in the first two parameters. These are applied to each
   528 // of the rows pointed to in the |source_data_rows| array, with each row
   529 // being |pixel_width| wide.
   530 //
   531 // The output must have room for |pixel_width * 4| bytes.
   532 template<bool has_alpha>
   533 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
   534                              int filter_length,
   535                              unsigned char* const* source_data_rows,
   536                              int pixel_width,
   537                              unsigned char* out_row) {
   538 #if defined(SIMD_SSE2)
   539   int width = pixel_width & ~3;
   541   __m128i zero = _mm_setzero_si128();
   542   __m128i accum0, accum1, accum2, accum3, coeff16;
   543   const __m128i* src;
   544   // Output four pixels per iteration (16 bytes).
   545   for (int out_x = 0; out_x < width; out_x += 4) {
   547     // Accumulated result for each pixel. 32 bits per RGBA channel.
   548     accum0 = _mm_setzero_si128();
   549     accum1 = _mm_setzero_si128();
   550     accum2 = _mm_setzero_si128();
   551     accum3 = _mm_setzero_si128();
   553     // Convolve with one filter coefficient per iteration.
   554     for (int filter_y = 0; filter_y < filter_length; filter_y++) {
   556       // Duplicate the filter coefficient 8 times.
   557       // [16] cj cj cj cj cj cj cj cj
   558       coeff16 = _mm_set1_epi16(filter_values[filter_y]);
   560       // Load four pixels (16 bytes) together.
   561       // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
   562       src = reinterpret_cast<const __m128i*>(
   563           &source_data_rows[filter_y][out_x << 2]);
   564       __m128i src8 = _mm_loadu_si128(src);
   566       // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
   567       // multiply with current coefficient => accumulate the result.
   568       // [16] a1 b1 g1 r1 a0 b0 g0 r0
   569       __m128i src16 = _mm_unpacklo_epi8(src8, zero);
   570       __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
   571       __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
   572       // [32] a0 b0 g0 r0
   573       __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
   574       accum0 = _mm_add_epi32(accum0, t);
   575       // [32] a1 b1 g1 r1
   576       t = _mm_unpackhi_epi16(mul_lo, mul_hi);
   577       accum1 = _mm_add_epi32(accum1, t);
   579       // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
   580       // multiply with current coefficient => accumulate the result.
   581       // [16] a3 b3 g3 r3 a2 b2 g2 r2
   582       src16 = _mm_unpackhi_epi8(src8, zero);
   583       mul_hi = _mm_mulhi_epi16(src16, coeff16);
   584       mul_lo = _mm_mullo_epi16(src16, coeff16);
   585       // [32] a2 b2 g2 r2
   586       t = _mm_unpacklo_epi16(mul_lo, mul_hi);
   587       accum2 = _mm_add_epi32(accum2, t);
   588       // [32] a3 b3 g3 r3
   589       t = _mm_unpackhi_epi16(mul_lo, mul_hi);
   590       accum3 = _mm_add_epi32(accum3, t);
   591     }
   593     // Shift right for fixed point implementation.
   594     accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
   595     accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
   596     accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
   597     accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
   599     // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
   600     // [16] a1 b1 g1 r1 a0 b0 g0 r0
   601     accum0 = _mm_packs_epi32(accum0, accum1);
   602     // [16] a3 b3 g3 r3 a2 b2 g2 r2
   603     accum2 = _mm_packs_epi32(accum2, accum3);
   605     // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
   606     // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
   607     accum0 = _mm_packus_epi16(accum0, accum2);
   609     if (has_alpha) {
   610       // Compute the max(ri, gi, bi) for each pixel.
   611       // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
   612       __m128i a = _mm_srli_epi32(accum0, 8);
   613       // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
   614       __m128i b = _mm_max_epu8(a, accum0);  // Max of r and g.
   615       // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
   616       a = _mm_srli_epi32(accum0, 16);
   617       // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
   618       b = _mm_max_epu8(a, b);  // Max of r and g and b.
   619       // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
   620       b = _mm_slli_epi32(b, 24);
   622       // Make sure the value of alpha channel is always larger than maximum
   623       // value of color channels.
   624       accum0 = _mm_max_epu8(b, accum0);
   625     } else {
   626       // Set value of alpha channels to 0xFF.
   627       __m128i mask = _mm_set1_epi32(0xff000000);
   628       accum0 = _mm_or_si128(accum0, mask);
   629     }
   631     // Store the convolution result (16 bytes) and advance the pixel pointers.
   632     _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
   633     out_row += 16;
   634   }
   636   // When the width of the output is not divisible by 4, We need to save one
   637   // pixel (4 bytes) each time. And also the fourth pixel is always absent.
   638   if (pixel_width & 3) {
   639     accum0 = _mm_setzero_si128();
   640     accum1 = _mm_setzero_si128();
   641     accum2 = _mm_setzero_si128();
   642     for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
   643       coeff16 = _mm_set1_epi16(filter_values[filter_y]);
   644       // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
   645       src = reinterpret_cast<const __m128i*>(
   646           &source_data_rows[filter_y][width<<2]);
   647       __m128i src8 = _mm_loadu_si128(src);
   648       // [16] a1 b1 g1 r1 a0 b0 g0 r0
   649       __m128i src16 = _mm_unpacklo_epi8(src8, zero);
   650       __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
   651       __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
   652       // [32] a0 b0 g0 r0
   653       __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
   654       accum0 = _mm_add_epi32(accum0, t);
   655       // [32] a1 b1 g1 r1
   656       t = _mm_unpackhi_epi16(mul_lo, mul_hi);
   657       accum1 = _mm_add_epi32(accum1, t);
   658       // [16] a3 b3 g3 r3 a2 b2 g2 r2
   659       src16 = _mm_unpackhi_epi8(src8, zero);
   660       mul_hi = _mm_mulhi_epi16(src16, coeff16);
   661       mul_lo = _mm_mullo_epi16(src16, coeff16);
   662       // [32] a2 b2 g2 r2
   663       t = _mm_unpacklo_epi16(mul_lo, mul_hi);
   664       accum2 = _mm_add_epi32(accum2, t);
   665     }
   667     accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
   668     accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
   669     accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
   670     // [16] a1 b1 g1 r1 a0 b0 g0 r0
   671     accum0 = _mm_packs_epi32(accum0, accum1);
   672     // [16] a3 b3 g3 r3 a2 b2 g2 r2
   673     accum2 = _mm_packs_epi32(accum2, zero);
   674     // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
   675     accum0 = _mm_packus_epi16(accum0, accum2);
   676     if (has_alpha) {
   677       // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
   678       __m128i a = _mm_srli_epi32(accum0, 8);
   679       // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
   680       __m128i b = _mm_max_epu8(a, accum0);  // Max of r and g.
   681       // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
   682       a = _mm_srli_epi32(accum0, 16);
   683       // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
   684       b = _mm_max_epu8(a, b);  // Max of r and g and b.
   685       // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
   686       b = _mm_slli_epi32(b, 24);
   687       accum0 = _mm_max_epu8(b, accum0);
   688     } else {
   689       __m128i mask = _mm_set1_epi32(0xff000000);
   690       accum0 = _mm_or_si128(accum0, mask);
   691     }
   693     for (int out_x = width; out_x < pixel_width; out_x++) {
   694       *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
   695       accum0 = _mm_srli_si128(accum0, 4);
   696       out_row += 4;
   697     }
   698   }
   699 #endif
   700 }
   702 }  // namespace
   704 // ConvolutionFilter1D ---------------------------------------------------------
   706 ConvolutionFilter1D::ConvolutionFilter1D()
   707     : max_filter_(0) {
   708 }
   710 ConvolutionFilter1D::~ConvolutionFilter1D() {
   711 }
   713 void ConvolutionFilter1D::AddFilter(int filter_offset,
   714                                     const float* filter_values,
   715                                     int filter_length) {
   716   SkASSERT(filter_length > 0);
   718   std::vector<Fixed> fixed_values;
   719   fixed_values.reserve(filter_length);
   721   for (int i = 0; i < filter_length; ++i)
   722     fixed_values.push_back(FloatToFixed(filter_values[i]));
   724   AddFilter(filter_offset, &fixed_values[0], filter_length);
   725 }
   727 void ConvolutionFilter1D::AddFilter(int filter_offset,
   728                                     const Fixed* filter_values,
   729                                     int filter_length) {
   730   // It is common for leading/trailing filter values to be zeros. In such
   731   // cases it is beneficial to only store the central factors.
   732   // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
   733   // a 1080p image this optimization gives a ~10% speed improvement.
   734   int first_non_zero = 0;
   735   while (first_non_zero < filter_length && filter_values[first_non_zero] == 0)
   736     first_non_zero++;
   738   if (first_non_zero < filter_length) {
   739     // Here we have at least one non-zero factor.
   740     int last_non_zero = filter_length - 1;
   741     while (last_non_zero >= 0 && filter_values[last_non_zero] == 0)
   742       last_non_zero--;
   744     filter_offset += first_non_zero;
   745     filter_length = last_non_zero + 1 - first_non_zero;
   746     SkASSERT(filter_length > 0);
   748     for (int i = first_non_zero; i <= last_non_zero; i++)
   749       filter_values_.push_back(filter_values[i]);
   750   } else {
   751     // Here all the factors were zeroes.
   752     filter_length = 0;
   753   }
   755   FilterInstance instance;
   757   // We pushed filter_length elements onto filter_values_
   758   instance.data_location = (static_cast<int>(filter_values_.size()) -
   759                             filter_length);
   760   instance.offset = filter_offset;
   761   instance.length = filter_length;
   762   filters_.push_back(instance);
   764   max_filter_ = std::max(max_filter_, filter_length);
   765 }
   767 void BGRAConvolve2D(const unsigned char* source_data,
   768                     int source_byte_row_stride,
   769                     bool source_has_alpha,
   770                     const ConvolutionFilter1D& filter_x,
   771                     const ConvolutionFilter1D& filter_y,
   772                     int output_byte_row_stride,
   773                     unsigned char* output,
   774                     bool use_sse2) {
   775 #if !defined(SIMD_SSE2)
   776   // Even we have runtime support for SSE2 instructions, since the binary
   777   // was not built with SSE2 support, we had to fallback to C version.
   778   use_sse2 = false;
   779 #endif
   781   int max_y_filter_size = filter_y.max_filter();
   783   // The next row in the input that we will generate a horizontally
   784   // convolved row for. If the filter doesn't start at the beginning of the
   785   // image (this is the case when we are only resizing a subset), then we
   786   // don't want to generate any output rows before that. Compute the starting
   787   // row for convolution as the first pixel for the first vertical filter.
   788   int filter_offset, filter_length;
   789   const ConvolutionFilter1D::Fixed* filter_values =
   790       filter_y.FilterForValue(0, &filter_offset, &filter_length);
   791   int next_x_row = filter_offset;
   793   // We loop over each row in the input doing a horizontal convolution. This
   794   // will result in a horizontally convolved image. We write the results into
   795   // a circular buffer of convolved rows and do vertical convolution as rows
   796   // are available. This prevents us from having to store the entire
   797   // intermediate image and helps cache coherency.
   798   // We will need four extra rows to allow horizontal convolution could be done
   799   // simultaneously. We also padding each row in row buffer to be aligned-up to
   800   // 16 bytes.
   801   // TODO(jiesun): We do not use aligned load from row buffer in vertical
   802   // convolution pass yet. Somehow Windows does not like it.
   803   int row_buffer_width = (filter_x.num_values() + 15) & ~0xF;
   804   int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0);
   805   CircularRowBuffer row_buffer(row_buffer_width,
   806                                row_buffer_height,
   807                                filter_offset);
   809   // Loop over every possible output row, processing just enough horizontal
   810   // convolutions to run each subsequent vertical convolution.
   811   SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
   812   int num_output_rows = filter_y.num_values();
   814   // We need to check which is the last line to convolve before we advance 4
   815   // lines in one iteration.
   816   int last_filter_offset, last_filter_length;
   817   filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset,
   818                           &last_filter_length);
   820   for (int out_y = 0; out_y < num_output_rows; out_y++) {
   821     filter_values = filter_y.FilterForValue(out_y,
   822                                             &filter_offset, &filter_length);
   824     // Generate output rows until we have enough to run the current filter.
   825     if (use_sse2) {
   826       while (next_x_row < filter_offset + filter_length) {
   827         if (next_x_row + 3 < last_filter_offset + last_filter_length - 1) {
   828           const unsigned char* src[4];
   829           unsigned char* out_row[4];
   830           for (int i = 0; i < 4; ++i) {
   831             src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
   832             out_row[i] = row_buffer.AdvanceRow();
   833           }
   834           ConvolveHorizontally4_SSE2(src, filter_x, out_row);
   835           next_x_row += 4;
   836         } else {
   837           // For the last row, SSE2 load possibly to access data beyond the
   838           // image area. therefore we use C version here. 
   839           if (next_x_row == last_filter_offset + last_filter_length - 1) {
   840             if (source_has_alpha) {
   841               ConvolveHorizontally<true>(
   842                   &source_data[next_x_row * source_byte_row_stride],
   843                   filter_x, row_buffer.AdvanceRow());
   844             } else {
   845               ConvolveHorizontally<false>(
   846                   &source_data[next_x_row * source_byte_row_stride],
   847                   filter_x, row_buffer.AdvanceRow());
   848             }
   849           } else {
   850             ConvolveHorizontally_SSE2(
   851                 &source_data[next_x_row * source_byte_row_stride],
   852                 filter_x, row_buffer.AdvanceRow());
   853           }
   854           next_x_row++;
   855         }
   856       }
   857     } else {
   858       while (next_x_row < filter_offset + filter_length) {
   859         if (source_has_alpha) {
   860           ConvolveHorizontally<true>(
   861               &source_data[next_x_row * source_byte_row_stride],
   862               filter_x, row_buffer.AdvanceRow());
   863         } else {
   864           ConvolveHorizontally<false>(
   865               &source_data[next_x_row * source_byte_row_stride],
   866               filter_x, row_buffer.AdvanceRow());
   867         }
   868         next_x_row++;
   869       }
   870     }
   872     // Compute where in the output image this row of final data will go.
   873     unsigned char* cur_output_row = &output[out_y * output_byte_row_stride];
   875     // Get the list of rows that the circular buffer has, in order.
   876     int first_row_in_circular_buffer;
   877     unsigned char* const* rows_to_convolve =
   878         row_buffer.GetRowAddresses(&first_row_in_circular_buffer);
   880     // Now compute the start of the subset of those rows that the filter
   881     // needs.
   882     unsigned char* const* first_row_for_filter =
   883         &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
   885     if (source_has_alpha) {
   886       if (use_sse2) {
   887         ConvolveVertically_SSE2<true>(filter_values, filter_length,
   888                                       first_row_for_filter,
   889                                       filter_x.num_values(), cur_output_row);
   890       } else {
   891         ConvolveVertically<true>(filter_values, filter_length,
   892                                  first_row_for_filter,
   893                                  filter_x.num_values(), cur_output_row);
   894       }
   895     } else {
   896       if (use_sse2) {
   897         ConvolveVertically_SSE2<false>(filter_values, filter_length,
   898                                        first_row_for_filter,
   899                                        filter_x.num_values(), cur_output_row);
   900       } else {
   901         ConvolveVertically<false>(filter_values, filter_length,
   902                                  first_row_for_filter,
   903                                  filter_x.num_values(), cur_output_row);
   904       }
   905     }
   906   }
   907 }
   909 }  // namespace skia

mercurial