gfx/qcms/iccread.c

Tue, 06 Jan 2015 21:39:09 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Tue, 06 Jan 2015 21:39:09 +0100
branch
TOR_BUG_9701
changeset 8
97036ab72558
permissions
-rw-r--r--

Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 /* vim: set ts=8 sw=8 noexpandtab: */
     2 //  qcms
     3 //  Copyright (C) 2009 Mozilla Foundation
     4 //  Copyright (C) 1998-2007 Marti Maria
     5 //
     6 // Permission is hereby granted, free of charge, to any person obtaining 
     7 // a copy of this software and associated documentation files (the "Software"), 
     8 // to deal in the Software without restriction, including without limitation 
     9 // the rights to use, copy, modify, merge, publish, distribute, sublicense, 
    10 // and/or sell copies of the Software, and to permit persons to whom the Software 
    11 // is furnished to do so, subject to the following conditions:
    12 //
    13 // The above copyright notice and this permission notice shall be included in 
    14 // all copies or substantial portions of the Software.
    15 //
    16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
    17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
    18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
    19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
    20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
    21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
    22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    24 #include <math.h>
    25 #include <assert.h>
    26 #include <stdlib.h>
    27 #include <string.h> //memset
    28 #include "qcmsint.h"
    30 /* It might be worth having a unified limit on content controlled
    31  * allocation per profile. This would remove the need for many
    32  * of the arbitrary limits that we used */
    34 typedef uint32_t be32;
    35 typedef uint16_t be16;
    37 static be32 cpu_to_be32(uint32_t v)
    38 {
    39 #ifdef IS_LITTLE_ENDIAN
    40 	return ((v & 0xff) << 24) | ((v & 0xff00) << 8) | ((v & 0xff0000) >> 8) | ((v & 0xff000000) >> 24);
    41 #else
    42 	return v;
    43 #endif
    44 }
    46 static be16 cpu_to_be16(uint16_t v)
    47 {
    48 #ifdef IS_LITTLE_ENDIAN
    49 	return ((v & 0xff) << 8) | ((v & 0xff00) >> 8);
    50 #else
    51 	return v;
    52 #endif
    53 }
    55 static uint32_t be32_to_cpu(be32 v)
    56 {
    57 #ifdef IS_LITTLE_ENDIAN
    58 	return ((v & 0xff) << 24) | ((v & 0xff00) << 8) | ((v & 0xff0000) >> 8) | ((v & 0xff000000) >> 24);
    59 	//return __builtin_bswap32(v);
    60 #else
    61 	return v;
    62 #endif
    63 }
    65 static uint16_t be16_to_cpu(be16 v)
    66 {
    67 #ifdef IS_LITTLE_ENDIAN
    68 	return ((v & 0xff) << 8) | ((v & 0xff00) >> 8);
    69 #else
    70 	return v;
    71 #endif
    72 }
    74 /* a wrapper around the memory that we are going to parse
    75  * into a qcms_profile */
    76 struct mem_source
    77 {
    78 	const unsigned char *buf;
    79 	size_t size;
    80 	qcms_bool valid;
    81 	const char *invalid_reason;
    82 };
    84 static void invalid_source(struct mem_source *mem, const char *reason)
    85 {
    86 	mem->valid = false;
    87 	mem->invalid_reason = reason;
    88 }
    90 static uint32_t read_u32(struct mem_source *mem, size_t offset)
    91 {
    92 	/* Subtract from mem->size instead of the more intuitive adding to offset.
    93 	 * This avoids overflowing offset. The subtraction is safe because
    94 	 * mem->size is guaranteed to be > 4 */
    95 	if (offset > mem->size - 4) {
    96 		invalid_source(mem, "Invalid offset");
    97 		return 0;
    98 	} else {
    99 		be32 k;
   100 		memcpy(&k, mem->buf + offset, sizeof(k));
   101 		return be32_to_cpu(k);
   102 	}
   103 }
   105 static uint16_t read_u16(struct mem_source *mem, size_t offset)
   106 {
   107 	if (offset > mem->size - 2) {
   108 		invalid_source(mem, "Invalid offset");
   109 		return 0;
   110 	} else {
   111 		be16 k;
   112 		memcpy(&k, mem->buf + offset, sizeof(k));
   113 		return be16_to_cpu(k);
   114 	}
   115 }
   117 static uint8_t read_u8(struct mem_source *mem, size_t offset)
   118 {
   119 	if (offset > mem->size - 1) {
   120 		invalid_source(mem, "Invalid offset");
   121 		return 0;
   122 	} else {
   123 		return *(uint8_t*)(mem->buf + offset);
   124 	}
   125 }
   127 static s15Fixed16Number read_s15Fixed16Number(struct mem_source *mem, size_t offset)
   128 {
   129 	return read_u32(mem, offset);
   130 }
   132 static uInt8Number read_uInt8Number(struct mem_source *mem, size_t offset)
   133 {
   134 	return read_u8(mem, offset);
   135 }
   137 static uInt16Number read_uInt16Number(struct mem_source *mem, size_t offset)
   138 {
   139 	return read_u16(mem, offset);
   140 }
   142 static void write_u32(void *mem, size_t offset, uint32_t value)
   143 {
   144     *((uint32_t *)((unsigned char*)mem + offset)) = cpu_to_be32(value);
   145 }
   147 static void write_u16(void *mem, size_t offset, uint16_t value)
   148 {
   149     *((uint16_t *)((unsigned char*)mem + offset)) = cpu_to_be16(value);
   150 }
   152 #define BAD_VALUE_PROFILE NULL
   153 #define INVALID_PROFILE NULL
   154 #define NO_MEM_PROFILE NULL
   156 /* An arbitrary 4MB limit on profile size */
   157 #define MAX_PROFILE_SIZE 1024*1024*4
   158 #define MAX_TAG_COUNT 1024
   160 static void check_CMM_type_signature(struct mem_source *src)
   161 {
   162 	//uint32_t CMM_type_signature = read_u32(src, 4);
   163 	//TODO: do the check?
   165 }
   167 static void check_profile_version(struct mem_source *src)
   168 {
   170 	/*
   171 	uint8_t major_revision = read_u8(src, 8 + 0);
   172 	uint8_t minor_revision = read_u8(src, 8 + 1);
   173 	*/
   174 	uint8_t reserved1      = read_u8(src, 8 + 2);
   175 	uint8_t reserved2      = read_u8(src, 8 + 3);
   176 	/* Checking the version doesn't buy us anything
   177 	if (major_revision != 0x4) {
   178 		if (major_revision > 0x2)
   179 			invalid_source(src, "Unsupported major revision");
   180 		if (minor_revision > 0x40)
   181 			invalid_source(src, "Unsupported minor revision");
   182 	}
   183 	*/
   184 	if (reserved1 != 0 || reserved2 != 0)
   185 		invalid_source(src, "Invalid reserved bytes");
   186 }
   188 #define INPUT_DEVICE_PROFILE   0x73636e72 // 'scnr'
   189 #define DISPLAY_DEVICE_PROFILE 0x6d6e7472 // 'mntr'
   190 #define OUTPUT_DEVICE_PROFILE  0x70727472 // 'prtr'
   191 #define DEVICE_LINK_PROFILE    0x6c696e6b // 'link'
   192 #define COLOR_SPACE_PROFILE    0x73706163 // 'spac'
   193 #define ABSTRACT_PROFILE       0x61627374 // 'abst'
   194 #define NAMED_COLOR_PROFILE    0x6e6d636c // 'nmcl'
   196 static void read_class_signature(qcms_profile *profile, struct mem_source *mem)
   197 {
   198 	profile->class = read_u32(mem, 12);
   199 	switch (profile->class) {
   200 		case DISPLAY_DEVICE_PROFILE:
   201 		case INPUT_DEVICE_PROFILE:
   202 		case OUTPUT_DEVICE_PROFILE:
   203 		case COLOR_SPACE_PROFILE:
   204 			break;
   205 		default:
   206 			invalid_source(mem, "Invalid  Profile/Device Class signature");
   207 	}
   208 }
   210 static void read_color_space(qcms_profile *profile, struct mem_source *mem)
   211 {
   212 	profile->color_space = read_u32(mem, 16);
   213 	switch (profile->color_space) {
   214 		case RGB_SIGNATURE:
   215 		case GRAY_SIGNATURE:
   216 			break;
   217 		default:
   218 			invalid_source(mem, "Unsupported colorspace");
   219 	}
   220 }
   222 static void read_pcs(qcms_profile *profile, struct mem_source *mem)
   223 {
   224 	profile->pcs = read_u32(mem, 20);
   225 	switch (profile->pcs) {
   226 		case XYZ_SIGNATURE:
   227 		case LAB_SIGNATURE:
   228 			break;
   229 		default:
   230 			invalid_source(mem, "Unsupported pcs");
   231 	}
   232 }
   234 struct tag
   235 {
   236 	uint32_t signature;
   237 	uint32_t offset;
   238 	uint32_t size;
   239 };
   241 struct tag_index {
   242 	uint32_t count;
   243 	struct tag *tags;
   244 };
   246 static struct tag_index read_tag_table(qcms_profile *profile, struct mem_source *mem)
   247 {
   248 	struct tag_index index = {0, NULL};
   249 	unsigned int i;
   251 	index.count = read_u32(mem, 128);
   252 	if (index.count > MAX_TAG_COUNT) {
   253 		invalid_source(mem, "max number of tags exceeded");
   254 		return index;
   255 	}
   257 	index.tags = malloc(sizeof(struct tag)*index.count);
   258 	if (index.tags) {
   259 		for (i = 0; i < index.count; i++) {
   260 			index.tags[i].signature = read_u32(mem, 128 + 4 + 4*i*3);
   261 			index.tags[i].offset    = read_u32(mem, 128 + 4 + 4*i*3 + 4);
   262 			index.tags[i].size      = read_u32(mem, 128 + 4 + 4*i*3 + 8);
   263 		}
   264 	}
   266 	return index;
   267 }
   269 // Checks a profile for obvious inconsistencies and returns
   270 // true if the profile looks bogus and should probably be
   271 // ignored.
   272 qcms_bool qcms_profile_is_bogus(qcms_profile *profile)
   273 {
   274        float sum[3], target[3], tolerance[3];
   275        float rX, rY, rZ, gX, gY, gZ, bX, bY, bZ;
   276        bool negative;
   277        unsigned i;
   279        // We currently only check the bogosity of RGB profiles
   280        if (profile->color_space != RGB_SIGNATURE)
   281 	       return false;
   283        if (profile->A2B0 || profile->B2A0)
   284                return false;
   286        rX = s15Fixed16Number_to_float(profile->redColorant.X);
   287        rY = s15Fixed16Number_to_float(profile->redColorant.Y);
   288        rZ = s15Fixed16Number_to_float(profile->redColorant.Z);
   290        gX = s15Fixed16Number_to_float(profile->greenColorant.X);
   291        gY = s15Fixed16Number_to_float(profile->greenColorant.Y);
   292        gZ = s15Fixed16Number_to_float(profile->greenColorant.Z);
   294        bX = s15Fixed16Number_to_float(profile->blueColorant.X);
   295        bY = s15Fixed16Number_to_float(profile->blueColorant.Y);
   296        bZ = s15Fixed16Number_to_float(profile->blueColorant.Z);
   298        // Check if any of the XYZ values are negative (see mozilla bug 498245)
   299        // CIEXYZ tristimulus values cannot be negative according to the spec.
   300        negative =
   301 	       (rX < 0) || (rY < 0) || (rZ < 0) ||
   302 	       (gX < 0) || (gY < 0) || (gZ < 0) ||
   303 	       (bX < 0) || (bY < 0) || (bZ < 0);
   305        if (negative)
   306 	       return true;
   309        // Sum the values; they should add up to something close to white
   310        sum[0] = rX + gX + bX;
   311        sum[1] = rY + gY + bY;
   312        sum[2] = rZ + gZ + bZ;
   314        // Build our target vector (see mozilla bug 460629)
   315        target[0] = 0.96420;
   316        target[1] = 1.00000;
   317        target[2] = 0.82491;
   319        // Our tolerance vector - Recommended by Chris Murphy based on
   320        // conversion from the LAB space criterion of no more than 3 in any one
   321        // channel. This is similar to, but slightly more tolerant than Adobe's
   322        // criterion.
   323        tolerance[0] = 0.02;
   324        tolerance[1] = 0.02;
   325        tolerance[2] = 0.04;
   327        // Compare with our tolerance
   328        for (i = 0; i < 3; ++i) {
   329            if (!(((sum[i] - tolerance[i]) <= target[i]) &&
   330                  ((sum[i] + tolerance[i]) >= target[i])))
   331                return true;
   332        }
   334        // All Good
   335        return false;
   336 }
   338 #define TAG_bXYZ 0x6258595a
   339 #define TAG_gXYZ 0x6758595a
   340 #define TAG_rXYZ 0x7258595a
   341 #define TAG_rTRC 0x72545243
   342 #define TAG_bTRC 0x62545243
   343 #define TAG_gTRC 0x67545243
   344 #define TAG_kTRC 0x6b545243
   345 #define TAG_A2B0 0x41324230
   346 #define TAG_B2A0 0x42324130
   347 #define TAG_CHAD 0x63686164
   349 static struct tag *find_tag(struct tag_index index, uint32_t tag_id)
   350 {
   351 	unsigned int i;
   352 	struct tag *tag = NULL;
   353 	for (i = 0; i < index.count; i++) {
   354 		if (index.tags[i].signature == tag_id) {
   355 			return &index.tags[i];
   356 		}
   357 	}
   358 	return tag;
   359 }
   361 #define XYZ_TYPE		0x58595a20 // 'XYZ '
   362 #define CURVE_TYPE		0x63757276 // 'curv'
   363 #define PARAMETRIC_CURVE_TYPE	0x70617261 // 'para'
   364 #define LUT16_TYPE		0x6d667432 // 'mft2'
   365 #define LUT8_TYPE		0x6d667431 // 'mft1'
   366 #define LUT_MAB_TYPE		0x6d414220 // 'mAB '
   367 #define LUT_MBA_TYPE		0x6d424120 // 'mBA '
   368 #define CHROMATIC_TYPE		0x73663332 // 'sf32'
   370 static struct matrix read_tag_s15Fixed16ArrayType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
   371 {
   372 	struct tag *tag = find_tag(index, tag_id);
   373 	struct matrix matrix;
   374 	if (tag) {
   375 		uint8_t i;
   376 		uint32_t offset = tag->offset;
   377 		uint32_t type = read_u32(src, offset);
   379 		// Check mandatory type signature for s16Fixed16ArrayType
   380 		if (type != CHROMATIC_TYPE) {
   381 			invalid_source(src, "unexpected type, expected 'sf32'");
   382 		}
   384 		for (i = 0; i < 9; i++) {
   385 			matrix.m[i/3][i%3] = s15Fixed16Number_to_float(read_s15Fixed16Number(src, offset+8+i*4));
   386 		}
   387 		matrix.invalid = false;
   388 	} else {
   389 		matrix.invalid = true;
   390 		invalid_source(src, "missing sf32tag");
   391 	}
   392 	return matrix;
   393 }
   395 static struct XYZNumber read_tag_XYZType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
   396 {
   397 	struct XYZNumber num = {0, 0, 0};
   398 	struct tag *tag = find_tag(index, tag_id);
   399 	if (tag) {
   400 		uint32_t offset = tag->offset;
   402 		uint32_t type = read_u32(src, offset);
   403 		if (type != XYZ_TYPE)
   404 			invalid_source(src, "unexpected type, expected XYZ");
   405 		num.X = read_s15Fixed16Number(src, offset+8);
   406 		num.Y = read_s15Fixed16Number(src, offset+12);
   407 		num.Z = read_s15Fixed16Number(src, offset+16);
   408 	} else {
   409 		invalid_source(src, "missing xyztag");
   410 	}
   411 	return num;
   412 }
   414 // Read the tag at a given offset rather then the tag_index. 
   415 // This method is used when reading mAB tags where nested curveType are
   416 // present that are not part of the tag_index.
   417 static struct curveType *read_curveType(struct mem_source *src, uint32_t offset, uint32_t *len)
   418 {
   419 	static const uint32_t COUNT_TO_LENGTH[5] = {1, 3, 4, 5, 7};
   420 	struct curveType *curve = NULL;
   421 	uint32_t type = read_u32(src, offset);
   422 	uint32_t count;
   423 	uint32_t i;
   425 	if (type != CURVE_TYPE && type != PARAMETRIC_CURVE_TYPE) {
   426 		invalid_source(src, "unexpected type, expected CURV or PARA");
   427 		return NULL;
   428 	}
   430 	if (type == CURVE_TYPE) {
   431 		count = read_u32(src, offset+8);
   433 #define MAX_CURVE_ENTRIES 40000 //arbitrary
   434 		if (count > MAX_CURVE_ENTRIES) {
   435 			invalid_source(src, "curve size too large");
   436 			return NULL;
   437 		}
   438 		curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*count);
   439 		if (!curve)
   440 			return NULL;
   442 		curve->count = count;
   443 		curve->type = CURVE_TYPE;
   445 		for (i=0; i<count; i++) {
   446 			curve->data[i] = read_u16(src, offset + 12 + i*2);
   447 		}
   448 		*len = 12 + count * 2;
   449 	} else { //PARAMETRIC_CURVE_TYPE
   450 		count = read_u16(src, offset+8);
   452 		if (count > 4) {
   453 			invalid_source(src, "parametric function type not supported.");
   454 			return NULL;
   455 		}
   457 		curve = malloc(sizeof(struct curveType));
   458 		if (!curve)
   459 			return NULL;
   461 		curve->count = count;
   462 		curve->type = PARAMETRIC_CURVE_TYPE;
   464 		for (i=0; i < COUNT_TO_LENGTH[count]; i++) {
   465 			curve->parameter[i] = s15Fixed16Number_to_float(read_s15Fixed16Number(src, offset + 12 + i*4));	
   466 		}
   467 		*len = 12 + COUNT_TO_LENGTH[count] * 4;
   469 		if ((count == 1 || count == 2)) {
   470 			/* we have a type 1 or type 2 function that has a division by 'a' */
   471 			float a = curve->parameter[1];
   472 			if (a == 0.f)
   473 				invalid_source(src, "parametricCurve definition causes division by zero.");
   474 		}
   475 	}
   477 	return curve;
   478 }
   480 static struct curveType *read_tag_curveType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
   481 {
   482 	struct tag *tag = find_tag(index, tag_id);
   483 	struct curveType *curve = NULL;
   484 	if (tag) {
   485 		uint32_t len;
   486 		return read_curveType(src, tag->offset, &len);
   487 	} else {
   488 		invalid_source(src, "missing curvetag");
   489 	}
   491 	return curve;
   492 }
   494 #define MAX_CLUT_SIZE 500000 // arbitrary
   495 #define MAX_CHANNELS 10 // arbitrary
   496 static void read_nested_curveType(struct mem_source *src, struct curveType *(*curveArray)[MAX_CHANNELS], uint8_t num_channels, uint32_t curve_offset)
   497 {
   498 	uint32_t channel_offset = 0;
   499 	int i;
   500 	for (i = 0; i < num_channels; i++) {
   501 		uint32_t tag_len;
   503 		(*curveArray)[i] = read_curveType(src, curve_offset + channel_offset, &tag_len);
   504 		if (!(*curveArray)[i]) {
   505 			invalid_source(src, "invalid nested curveType curve");
   506 		}
   508 		channel_offset += tag_len;
   509 		// 4 byte aligned
   510 		if ((tag_len % 4) != 0)
   511 			channel_offset += 4 - (tag_len % 4);
   512 	}
   514 }
   516 static void mAB_release(struct lutmABType *lut)
   517 {
   518 	uint8_t i;
   520 	for (i = 0; i < lut->num_in_channels; i++){
   521 		free(lut->a_curves[i]);
   522 	}
   523 	for (i = 0; i < lut->num_out_channels; i++){
   524 		free(lut->b_curves[i]);
   525 		free(lut->m_curves[i]);
   526 	}
   527 	free(lut);
   528 }
   530 /* See section 10.10 for specs */
   531 static struct lutmABType *read_tag_lutmABType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
   532 {
   533 	struct tag *tag = find_tag(index, tag_id);
   534 	uint32_t offset = tag->offset;
   535 	uint32_t a_curve_offset, b_curve_offset, m_curve_offset;
   536 	uint32_t matrix_offset;
   537 	uint32_t clut_offset;
   538 	uint32_t clut_size = 1;
   539 	uint8_t clut_precision;
   540 	uint32_t type = read_u32(src, offset);
   541 	uint8_t num_in_channels, num_out_channels;
   542 	struct lutmABType *lut;
   543 	uint32_t i;
   545 	if (type != LUT_MAB_TYPE && type != LUT_MBA_TYPE) {
   546 		return NULL;
   547 	}
   549 	num_in_channels = read_u8(src, offset + 8);
   550 	num_out_channels = read_u8(src, offset + 8);
   551 	if (num_in_channels > MAX_CHANNELS || num_out_channels > MAX_CHANNELS)
   552 		return NULL;
   554 	// We require 3in/out channels since we only support RGB->XYZ (or RGB->LAB)
   555 	// XXX: If we remove this restriction make sure that the number of channels
   556 	//      is less or equal to the maximum number of mAB curves in qcmsint.h
   557 	//      also check for clut_size overflow.
   558 	if (num_in_channels != 3 || num_out_channels != 3)
   559 		return NULL;
   561 	// some of this data is optional and is denoted by a zero offset
   562 	// we also use this to track their existance
   563 	a_curve_offset = read_u32(src, offset + 28);
   564 	clut_offset = read_u32(src, offset + 24);
   565 	m_curve_offset = read_u32(src, offset + 20);
   566 	matrix_offset = read_u32(src, offset + 16);
   567 	b_curve_offset = read_u32(src, offset + 12);
   569 	// Convert offsets relative to the tag to relative to the profile
   570 	// preserve zero for optional fields
   571 	if (a_curve_offset)
   572 		a_curve_offset += offset;
   573 	if (clut_offset)
   574 		clut_offset += offset;
   575 	if (m_curve_offset)
   576 		m_curve_offset += offset;
   577 	if (matrix_offset)
   578 		matrix_offset += offset;
   579 	if (b_curve_offset)
   580 		b_curve_offset += offset;
   582 	if (clut_offset) {
   583 		assert (num_in_channels == 3);
   584 		// clut_size can not overflow since lg(256^num_in_channels) = 24 bits.
   585 		for (i = 0; i < num_in_channels; i++) {
   586 			clut_size *= read_u8(src, clut_offset + i);
   587 		}
   588 	} else {
   589 		clut_size = 0;
   590 	}
   592 	// 24bits * 3 won't overflow either
   593 	clut_size = clut_size * num_out_channels;
   595 	if (clut_size > MAX_CLUT_SIZE)
   596 		return NULL;
   598 	lut = malloc(sizeof(struct lutmABType) + (clut_size) * sizeof(float));
   599 	if (!lut)
   600 		return NULL;
   601 	// we'll fill in the rest below
   602 	memset(lut, 0, sizeof(struct lutmABType));
   603 	lut->clut_table   = &lut->clut_table_data[0];
   605 	for (i = 0; i < num_in_channels; i++) {
   606 		lut->num_grid_points[i] = read_u8(src, clut_offset + i);
   607 	}
   609 	// Reverse the processing of transformation elements for mBA type.
   610 	lut->reversed = (type == LUT_MBA_TYPE);
   612 	lut->num_in_channels = num_in_channels;
   613 	lut->num_out_channels = num_out_channels;
   615 	if (matrix_offset) {
   616 		// read the matrix if we have it
   617 		lut->e00 = read_s15Fixed16Number(src, matrix_offset+4*0);
   618 		lut->e01 = read_s15Fixed16Number(src, matrix_offset+4*1);
   619 		lut->e02 = read_s15Fixed16Number(src, matrix_offset+4*2);
   620 		lut->e10 = read_s15Fixed16Number(src, matrix_offset+4*3);
   621 		lut->e11 = read_s15Fixed16Number(src, matrix_offset+4*4);
   622 		lut->e12 = read_s15Fixed16Number(src, matrix_offset+4*5);
   623 		lut->e20 = read_s15Fixed16Number(src, matrix_offset+4*6);
   624 		lut->e21 = read_s15Fixed16Number(src, matrix_offset+4*7);
   625 		lut->e22 = read_s15Fixed16Number(src, matrix_offset+4*8);
   626 		lut->e03 = read_s15Fixed16Number(src, matrix_offset+4*9);
   627 		lut->e13 = read_s15Fixed16Number(src, matrix_offset+4*10);
   628 		lut->e23 = read_s15Fixed16Number(src, matrix_offset+4*11);
   629 	}
   631 	if (a_curve_offset) {
   632 		read_nested_curveType(src, &lut->a_curves, num_in_channels, a_curve_offset);
   633 	}
   634 	if (m_curve_offset) {
   635 		read_nested_curveType(src, &lut->m_curves, num_out_channels, m_curve_offset);
   636 	}
   637 	if (b_curve_offset) {
   638 		read_nested_curveType(src, &lut->b_curves, num_out_channels, b_curve_offset);
   639 	} else {
   640 		invalid_source(src, "B curves required");
   641 	}
   643 	if (clut_offset) {
   644 		clut_precision = read_u8(src, clut_offset + 16);
   645 		if (clut_precision == 1) {
   646 			for (i = 0; i < clut_size; i++) {
   647 				lut->clut_table[i] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + 20 + i*1));
   648 			}
   649 		} else if (clut_precision == 2) {
   650 			for (i = 0; i < clut_size; i++) {
   651 				lut->clut_table[i] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + 20 + i*2));
   652 			}
   653 		} else {
   654 			invalid_source(src, "Invalid clut precision");
   655 		}
   656 	}
   658 	if (!src->valid) {
   659 		mAB_release(lut);
   660 		return NULL;
   661 	}
   663 	return lut;
   664 }
   666 static struct lutType *read_tag_lutType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
   667 {
   668 	struct tag *tag = find_tag(index, tag_id);
   669 	uint32_t offset = tag->offset;
   670 	uint32_t type = read_u32(src, offset);
   671 	uint16_t num_input_table_entries;
   672 	uint16_t num_output_table_entries;
   673 	uint8_t in_chan, grid_points, out_chan;
   674 	uint32_t clut_offset, output_offset;
   675 	uint32_t clut_size;
   676 	size_t entry_size;
   677 	struct lutType *lut;
   678 	uint32_t i;
   680 	/* I'm not sure why the spec specifies a fixed number of entries for LUT8 tables even though
   681 	 * they have room for the num_entries fields */
   682 	if (type == LUT8_TYPE) {
   683 		num_input_table_entries = 256;
   684 		num_output_table_entries = 256;
   685 		entry_size = 1;
   686 	} else if (type == LUT16_TYPE) {
   687 		num_input_table_entries  = read_u16(src, offset + 48);
   688 		num_output_table_entries = read_u16(src, offset + 50);
   689 		entry_size = 2;
   690 	} else {
   691 		assert(0); // the caller checks that this doesn't happen
   692 		invalid_source(src, "Unexpected lut type");
   693 		return NULL;
   694 	}
   696 	in_chan     = read_u8(src, offset + 8);
   697 	out_chan    = read_u8(src, offset + 9);
   698 	grid_points = read_u8(src, offset + 10);
   700 	clut_size = pow(grid_points, in_chan);
   701 	if (clut_size > MAX_CLUT_SIZE) {
   702 		return NULL;
   703 	}
   705 	if (in_chan != 3 || out_chan != 3) {
   706 		return NULL;
   707 	}
   709 	lut = malloc(sizeof(struct lutType) + (num_input_table_entries * in_chan + clut_size*out_chan + num_output_table_entries * out_chan)*sizeof(float));
   710 	if (!lut) {
   711 		return NULL;
   712 	}
   714 	/* compute the offsets of tables */
   715 	lut->input_table  = &lut->table_data[0];
   716 	lut->clut_table   = &lut->table_data[in_chan*num_input_table_entries];
   717 	lut->output_table = &lut->table_data[in_chan*num_input_table_entries + clut_size*out_chan];
   719 	lut->num_input_table_entries  = num_input_table_entries;
   720 	lut->num_output_table_entries = num_output_table_entries;
   721 	lut->num_input_channels   = read_u8(src, offset + 8);
   722 	lut->num_output_channels  = read_u8(src, offset + 9);
   723 	lut->num_clut_grid_points = read_u8(src, offset + 10);
   724 	lut->e00 = read_s15Fixed16Number(src, offset+12);
   725 	lut->e01 = read_s15Fixed16Number(src, offset+16);
   726 	lut->e02 = read_s15Fixed16Number(src, offset+20);
   727 	lut->e10 = read_s15Fixed16Number(src, offset+24);
   728 	lut->e11 = read_s15Fixed16Number(src, offset+28);
   729 	lut->e12 = read_s15Fixed16Number(src, offset+32);
   730 	lut->e20 = read_s15Fixed16Number(src, offset+36);
   731 	lut->e21 = read_s15Fixed16Number(src, offset+40);
   732 	lut->e22 = read_s15Fixed16Number(src, offset+44);
   734 	for (i = 0; i < lut->num_input_table_entries * in_chan; i++) {
   735 		if (type == LUT8_TYPE) {
   736 			lut->input_table[i] = uInt8Number_to_float(read_uInt8Number(src, offset + 52 + i * entry_size));
   737 		} else {
   738 			lut->input_table[i] = uInt16Number_to_float(read_uInt16Number(src, offset + 52 + i * entry_size));
   739 		}
   740 	}
   742 	clut_offset = offset + 52 + lut->num_input_table_entries * in_chan * entry_size;
   743 	for (i = 0; i < clut_size * out_chan; i+=3) {
   744 		if (type == LUT8_TYPE) {
   745 			lut->clut_table[i+0] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 0));
   746 			lut->clut_table[i+1] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 1));
   747 			lut->clut_table[i+2] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 2));
   748 		} else {
   749 			lut->clut_table[i+0] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 0));
   750 			lut->clut_table[i+1] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 2));
   751 			lut->clut_table[i+2] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 4));
   752 		}
   753 	}
   755 	output_offset = clut_offset + clut_size * out_chan * entry_size;
   756 	for (i = 0; i < lut->num_output_table_entries * out_chan; i++) {
   757 		if (type == LUT8_TYPE) {
   758 			lut->output_table[i] = uInt8Number_to_float(read_uInt8Number(src, output_offset + i*entry_size));
   759 		} else {
   760 			lut->output_table[i] = uInt16Number_to_float(read_uInt16Number(src, output_offset + i*entry_size));
   761 		}
   762 	}
   764 	return lut;
   765 }
   767 static void read_rendering_intent(qcms_profile *profile, struct mem_source *src)
   768 {
   769 	profile->rendering_intent = read_u32(src, 64);
   770 	switch (profile->rendering_intent) {
   771 		case QCMS_INTENT_PERCEPTUAL:
   772 		case QCMS_INTENT_SATURATION:
   773 		case QCMS_INTENT_RELATIVE_COLORIMETRIC:
   774 		case QCMS_INTENT_ABSOLUTE_COLORIMETRIC:
   775 			break;
   776 		default:
   777 			invalid_source(src, "unknown rendering intent");
   778 	}
   779 }
   781 qcms_profile *qcms_profile_create(void)
   782 {
   783 	return calloc(sizeof(qcms_profile), 1);
   784 }
   788 /* build sRGB gamma table */
   789 /* based on cmsBuildParametricGamma() */
   790 static uint16_t *build_sRGB_gamma_table(int num_entries)
   791 {
   792 	int i;
   793 	/* taken from lcms: Build_sRGBGamma() */
   794 	double gamma = 2.4;
   795 	double a = 1./1.055;
   796 	double b = 0.055/1.055;
   797 	double c = 1./12.92;
   798 	double d = 0.04045;
   800 	uint16_t *table = malloc(sizeof(uint16_t) * num_entries);
   801 	if (!table)
   802 		return NULL;
   804 	for (i=0; i<num_entries; i++) {
   805 		double x = (double)i / (num_entries-1);
   806 		double y, output;
   807 		// IEC 61966-2.1 (sRGB)
   808 		// Y = (aX + b)^Gamma | X >= d
   809 		// Y = cX             | X < d
   810 		if (x >= d) {
   811 			double e = (a*x + b);
   812 			if (e > 0)
   813 				y = pow(e, gamma);
   814 			else
   815 				y = 0;
   816 		} else {
   817 			y = c*x;
   818 		}
   820 		// Saturate -- this could likely move to a separate function
   821 		output = y * 65535. + .5;
   822 		if (output > 65535.)
   823 			output = 65535;
   824 		if (output < 0)
   825 			output = 0;
   826 		table[i] = (uint16_t)floor(output);
   827 	}
   828 	return table;
   829 }
   831 static struct curveType *curve_from_table(uint16_t *table, int num_entries)
   832 {
   833 	struct curveType *curve;
   834 	int i;
   835 	curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*num_entries);
   836 	if (!curve)
   837 		return NULL;
   838 	curve->type = CURVE_TYPE;
   839 	curve->count = num_entries;
   840 	for (i = 0; i < num_entries; i++) {
   841 		curve->data[i] = table[i];
   842 	}
   843 	return curve;
   844 }
   846 static uint16_t float_to_u8Fixed8Number(float a)
   847 {
   848 	if (a > (255.f + 255.f/256))
   849 		return 0xffff;
   850 	else if (a < 0.f)
   851 		return 0;
   852 	else
   853 		return floorf(a*256.f + .5f);
   854 }
   856 static struct curveType *curve_from_gamma(float gamma)
   857 {
   858 	struct curveType *curve;
   859 	int num_entries = 1;
   860 	curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*num_entries);
   861 	if (!curve)
   862 		return NULL;
   863 	curve->count = num_entries;
   864 	curve->data[0] = float_to_u8Fixed8Number(gamma);
   865   	curve->type = CURVE_TYPE;
   866 	return curve;
   867 }
   869 //XXX: it would be nice if we had a way of ensuring
   870 // everything in a profile was initialized regardless of how it was created
   872 //XXX: should this also be taking a black_point?
   873 /* similar to CGColorSpaceCreateCalibratedRGB */
   874 qcms_profile* qcms_profile_create_rgb_with_gamma(
   875 		qcms_CIE_xyY white_point,
   876 		qcms_CIE_xyYTRIPLE primaries,
   877 		float gamma)
   878 {
   879 	qcms_profile* profile = qcms_profile_create();
   880 	if (!profile)
   881 		return NO_MEM_PROFILE;
   883 	//XXX: should store the whitepoint
   884 	if (!set_rgb_colorants(profile, white_point, primaries)) {
   885 		qcms_profile_release(profile);
   886 		return INVALID_PROFILE;
   887 	}
   889 	profile->redTRC = curve_from_gamma(gamma);
   890 	profile->blueTRC = curve_from_gamma(gamma);
   891 	profile->greenTRC = curve_from_gamma(gamma);
   893 	if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) {
   894 		qcms_profile_release(profile);
   895 		return NO_MEM_PROFILE;
   896 	}
   897 	profile->class = DISPLAY_DEVICE_PROFILE;
   898 	profile->rendering_intent = QCMS_INTENT_PERCEPTUAL;
   899 	profile->color_space = RGB_SIGNATURE;
   900 	return profile;
   901 }
   903 qcms_profile* qcms_profile_create_rgb_with_table(
   904 		qcms_CIE_xyY white_point,
   905 		qcms_CIE_xyYTRIPLE primaries,
   906 		uint16_t *table, int num_entries)
   907 {
   908 	qcms_profile* profile = qcms_profile_create();
   909 	if (!profile)
   910 		return NO_MEM_PROFILE;
   912 	//XXX: should store the whitepoint
   913 	if (!set_rgb_colorants(profile, white_point, primaries)) {
   914 		qcms_profile_release(profile);
   915 		return INVALID_PROFILE;
   916 	}
   918 	profile->redTRC = curve_from_table(table, num_entries);
   919 	profile->blueTRC = curve_from_table(table, num_entries);
   920 	profile->greenTRC = curve_from_table(table, num_entries);
   922 	if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) {
   923 		qcms_profile_release(profile);
   924 		return NO_MEM_PROFILE;
   925 	}
   926 	profile->class = DISPLAY_DEVICE_PROFILE;
   927 	profile->rendering_intent = QCMS_INTENT_PERCEPTUAL;
   928 	profile->color_space = RGB_SIGNATURE;
   929 	return profile;
   930 }
   932 /* from lcms: cmsWhitePointFromTemp */
   933 /* tempK must be >= 4000. and <= 25000.
   934  * Invalid values of tempK will return
   935  * (x,y,Y) = (-1.0, -1.0, -1.0)
   936  * similar to argyll: icx_DTEMP2XYZ() */
   937 static qcms_CIE_xyY white_point_from_temp(int temp_K)
   938 {
   939 	qcms_CIE_xyY white_point;
   940 	double x, y;
   941 	double T, T2, T3;
   942 	// double M1, M2;
   944 	// No optimization provided.
   945 	T = temp_K;
   946 	T2 = T*T;            // Square
   947 	T3 = T2*T;           // Cube
   949 	// For correlated color temperature (T) between 4000K and 7000K:
   950 	if (T >= 4000. && T <= 7000.) {
   951 		x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
   952 	} else {
   953 		// or for correlated color temperature (T) between 7000K and 25000K:
   954 		if (T > 7000.0 && T <= 25000.0) {
   955 			x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
   956 		} else {
   957 			// Invalid tempK
   958 			white_point.x = -1.0;
   959 			white_point.y = -1.0;
   960 			white_point.Y = -1.0;
   962 			assert(0 && "invalid temp");
   964 			return white_point;
   965 		}
   966 	}
   968 	// Obtain y(x)
   970 	y = -3.000*(x*x) + 2.870*x - 0.275;
   972 	// wave factors (not used, but here for futures extensions)
   974 	// M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
   975 	// M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);
   977 	// Fill white_point struct
   978 	white_point.x = x;
   979 	white_point.y = y;
   980 	white_point.Y = 1.0;
   982 	return white_point;
   983 }
   985 qcms_profile* qcms_profile_sRGB(void)
   986 {
   987 	qcms_profile *profile;
   988 	uint16_t *table;
   990 	qcms_CIE_xyYTRIPLE Rec709Primaries = {
   991 		{0.6400, 0.3300, 1.0},
   992 		{0.3000, 0.6000, 1.0},
   993 		{0.1500, 0.0600, 1.0}
   994 	};
   995 	qcms_CIE_xyY D65;
   997 	D65 = white_point_from_temp(6504);
   999 	table = build_sRGB_gamma_table(1024);
  1001 	if (!table)
  1002 		return NO_MEM_PROFILE;
  1004 	profile = qcms_profile_create_rgb_with_table(D65, Rec709Primaries, table, 1024);
  1005 	free(table);
  1006 	return profile;
  1010 /* qcms_profile_from_memory does not hold a reference to the memory passed in */
  1011 qcms_profile* qcms_profile_from_memory(const void *mem, size_t size)
  1013 	uint32_t length;
  1014 	struct mem_source source;
  1015 	struct mem_source *src = &source;
  1016 	struct tag_index index;
  1017 	qcms_profile *profile;
  1019 	source.buf = mem;
  1020 	source.size = size;
  1021 	source.valid = true;
  1023 	if (size < 4)
  1024 		return INVALID_PROFILE;
  1026 	length = read_u32(src, 0);
  1027 	if (length <= size) {
  1028 		// shrink the area that we can read if appropriate
  1029 		source.size = length;
  1030 	} else {
  1031 		return INVALID_PROFILE;
  1034 	/* ensure that the profile size is sane so it's easier to reason about */
  1035 	if (source.size <= 64 || source.size >= MAX_PROFILE_SIZE)
  1036 		return INVALID_PROFILE;
  1038 	profile = qcms_profile_create();
  1039 	if (!profile)
  1040 		return NO_MEM_PROFILE;
  1042 	check_CMM_type_signature(src);
  1043 	check_profile_version(src);
  1044 	read_class_signature(profile, src);
  1045 	read_rendering_intent(profile, src);
  1046 	read_color_space(profile, src);
  1047 	read_pcs(profile, src);
  1048 	//TODO read rest of profile stuff
  1050 	if (!src->valid)
  1051 		goto invalid_profile;
  1053 	index = read_tag_table(profile, src);
  1054 	if (!src->valid || !index.tags)
  1055 		goto invalid_tag_table;
  1057 	if (find_tag(index, TAG_CHAD)) {
  1058 		profile->chromaticAdaption = read_tag_s15Fixed16ArrayType(src, index, TAG_CHAD);
  1059 	} else {
  1060 		profile->chromaticAdaption.invalid = true; //Signal the data is not present
  1063 	if (profile->class == DISPLAY_DEVICE_PROFILE || profile->class == INPUT_DEVICE_PROFILE ||
  1064             profile->class == OUTPUT_DEVICE_PROFILE  || profile->class == COLOR_SPACE_PROFILE) {
  1065 		if (profile->color_space == RGB_SIGNATURE) {
  1066 			if (find_tag(index, TAG_A2B0)) {
  1067 				if (read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT8_TYPE ||
  1068 				    read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT16_TYPE) {
  1069 					profile->A2B0 = read_tag_lutType(src, index, TAG_A2B0);
  1070 				} else if (read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT_MAB_TYPE) {
  1071 					profile->mAB = read_tag_lutmABType(src, index, TAG_A2B0);
  1074 			if (find_tag(index, TAG_B2A0)) {
  1075 				if (read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT8_TYPE ||
  1076 				    read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT16_TYPE) {
  1077 					profile->B2A0 = read_tag_lutType(src, index, TAG_B2A0);
  1078 				} else if (read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT_MBA_TYPE) {
  1079 					profile->mBA = read_tag_lutmABType(src, index, TAG_B2A0);
  1082 			if (find_tag(index, TAG_rXYZ) || !qcms_supports_iccv4) {
  1083 				profile->redColorant = read_tag_XYZType(src, index, TAG_rXYZ);
  1084 				profile->greenColorant = read_tag_XYZType(src, index, TAG_gXYZ);
  1085 				profile->blueColorant = read_tag_XYZType(src, index, TAG_bXYZ);
  1088 			if (!src->valid)
  1089 				goto invalid_tag_table;
  1091 			if (find_tag(index, TAG_rTRC) || !qcms_supports_iccv4) {
  1092 				profile->redTRC = read_tag_curveType(src, index, TAG_rTRC);
  1093 				profile->greenTRC = read_tag_curveType(src, index, TAG_gTRC);
  1094 				profile->blueTRC = read_tag_curveType(src, index, TAG_bTRC);
  1096 				if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC)
  1097 					goto invalid_tag_table;
  1099 		} else if (profile->color_space == GRAY_SIGNATURE) {
  1101 			profile->grayTRC = read_tag_curveType(src, index, TAG_kTRC);
  1102 			if (!profile->grayTRC)
  1103 				goto invalid_tag_table;
  1105 		} else {
  1106 			assert(0 && "read_color_space protects against entering here");
  1107 			goto invalid_tag_table;
  1109 	} else {
  1110 		goto invalid_tag_table;
  1113 	if (!src->valid)
  1114 		goto invalid_tag_table;
  1116 	free(index.tags);
  1118 	return profile;
  1120 invalid_tag_table:
  1121 	free(index.tags);
  1122 invalid_profile:
  1123 	qcms_profile_release(profile);
  1124 	return INVALID_PROFILE;
  1127 qcms_intent qcms_profile_get_rendering_intent(qcms_profile *profile)
  1129 	return profile->rendering_intent;
  1132 icColorSpaceSignature
  1133 qcms_profile_get_color_space(qcms_profile *profile)
  1135 	return profile->color_space;
  1138 static void lut_release(struct lutType *lut)
  1140 	free(lut);
  1143 void qcms_profile_release(qcms_profile *profile)
  1145 	if (profile->output_table_r)
  1146 		precache_release(profile->output_table_r);
  1147 	if (profile->output_table_g)
  1148 		precache_release(profile->output_table_g);
  1149 	if (profile->output_table_b)
  1150 		precache_release(profile->output_table_b);
  1152 	if (profile->A2B0)
  1153 		lut_release(profile->A2B0);
  1154 	if (profile->B2A0)
  1155 		lut_release(profile->B2A0);
  1157 	if (profile->mAB)
  1158 		mAB_release(profile->mAB);
  1159 	if (profile->mBA)
  1160 		mAB_release(profile->mBA);
  1162 	free(profile->redTRC);
  1163 	free(profile->blueTRC);
  1164 	free(profile->greenTRC);
  1165 	free(profile->grayTRC);
  1166 	free(profile);
  1170 #include <stdio.h>
  1171 static void qcms_data_from_file(FILE *file, void **mem, size_t *size)
  1173 	uint32_t length, remaining_length;
  1174 	size_t read_length;
  1175 	be32 length_be;
  1176 	void *data;
  1178 	*mem = NULL;
  1179 	*size = 0;
  1181 	if (fread(&length_be, 1, sizeof(length_be), file) != sizeof(length_be))
  1182 		return;
  1184 	length = be32_to_cpu(length_be);
  1185 	if (length > MAX_PROFILE_SIZE || length < sizeof(length_be))
  1186 		return;
  1188 	/* allocate room for the entire profile */
  1189 	data = malloc(length);
  1190 	if (!data)
  1191 		return;
  1193 	/* copy in length to the front so that the buffer will contain the entire profile */
  1194 	*((be32*)data) = length_be;
  1195 	remaining_length = length - sizeof(length_be);
  1197 	/* read the rest profile */
  1198 	read_length = fread((unsigned char*)data + sizeof(length_be), 1, remaining_length, file);
  1199 	if (read_length != remaining_length) {
  1200 		free(data);
  1201 		return;
  1204 	/* successfully get the profile.*/
  1205 	*mem = data;
  1206 	*size = length;
  1209 qcms_profile* qcms_profile_from_file(FILE *file)
  1211 	size_t length;
  1212 	qcms_profile *profile;
  1213 	void *data;
  1215 	qcms_data_from_file(file, &data, &length);
  1216 	if ((data == NULL) || (length == 0))
  1217 		return INVALID_PROFILE;
  1219 	profile = qcms_profile_from_memory(data, length);
  1220 	free(data);
  1221 	return profile;
  1224 qcms_profile* qcms_profile_from_path(const char *path)
  1226 	qcms_profile *profile = NULL;
  1227 	FILE *file = fopen(path, "rb");
  1228 	if (file) {
  1229 		profile = qcms_profile_from_file(file);
  1230 		fclose(file);
  1232 	return profile;
  1235 void qcms_data_from_path(const char *path, void **mem, size_t *size)
  1237 	FILE *file = NULL;
  1238 	*mem = NULL;
  1239 	*size  = 0;
  1241 	file = fopen(path, "rb");
  1242 	if (file) {
  1243 		qcms_data_from_file(file, mem, size);
  1244 		fclose(file);
  1248 #ifdef _WIN32
  1249 /* Unicode path version */
  1250 qcms_profile* qcms_profile_from_unicode_path(const wchar_t *path)
  1252 	qcms_profile *profile = NULL;
  1253 	FILE *file = _wfopen(path, L"rb");
  1254 	if (file) {
  1255 		profile = qcms_profile_from_file(file);
  1256 		fclose(file);
  1258 	return profile;
  1261 void qcms_data_from_unicode_path(const wchar_t *path, void **mem, size_t *size)
  1263 	FILE *file = NULL;
  1264 	*mem = NULL;
  1265 	*size  = 0;
  1267 	file = _wfopen(path, L"rb");
  1268 	if (file) {
  1269 		qcms_data_from_file(file, mem, size);
  1270 		fclose(file);
  1273 #endif
  1275 /*
  1276 * This function constructs an ICC profile memory with given header and tag data,
  1277 * which can be read via qcms_profile_from_memory(). that means, we must satisfy
  1278 * the profiler header type check (which seems not complete till now) and proper
  1279 * information to read data from the tag table and tag data elements memory.
  1281 * To construct a valid ICC profile, its divided into three steps :
  1282 *	(1) construct the r/g/bXYZ part
  1283 *	(2) construct the r/g/bTRC part
  1284 *	(3) construct the profile header
  1285 * this is a hardcode step just for "create_rgb_with_gamma", it is the only
  1286 * requirement till now, maybe we can make this method more general in future,
  1288 * NOTE : some of the parameters below are hardcode, please refer to the ICC documentation.
  1289 */
  1290 #define ICC_PROFILE_HEADER_LENGTH 128
  1291 void qcms_data_create_rgb_with_gamma(qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries, float gamma, void **mem, size_t *size)
  1293 	uint32_t length, offset, index, xyz_count, trc_count;
  1294 	size_t tag_table_offset, tag_data_offset;
  1295 	void *data;
  1296 	struct matrix colorants;
  1298 	uint32_t TAG_XYZ[3] = {TAG_rXYZ, TAG_gXYZ, TAG_bXYZ};
  1299 	uint32_t TAG_TRC[3] = {TAG_rTRC, TAG_gTRC, TAG_bTRC};
  1301 	if ((mem == NULL) || (size == NULL))
  1302 		return;
  1304 	*mem = NULL;
  1305 	*size = 0;
  1307 	/* 
  1308 	* total length = icc profile header(128) + tag count(4) + 
  1309 	* (tag table item (12) * total tag (6 = 3 rTRC + 3 rXYZ)) + rTRC elements data (3 * 20)
  1310 	* + rXYZ elements data (3*16), and all tag data elements must start at the 4-byte boundary.
  1311 	*/
  1312 	xyz_count = 3; // rXYZ, gXYZ, bXYZ
  1313 	trc_count = 3; // rTRC, gTRC, bTRC
  1314 	length =  ICC_PROFILE_HEADER_LENGTH + 4 + (12 * (xyz_count + trc_count)) + (xyz_count * 20) + (trc_count * 16);
  1316 	// reserve the total memory.
  1317 	data = malloc(length);
  1318 	if (!data)
  1319 		return;
  1320 	memset(data, 0, length);
  1322 	// Part1 : write rXYZ, gXYZ and bXYZ
  1323 	if (!get_rgb_colorants(&colorants, white_point, primaries)) {
  1324 		free(data);
  1325 		return;
  1328 	 // the position of first tag's signature in tag table
  1329 	tag_table_offset = ICC_PROFILE_HEADER_LENGTH + 4;
  1330 	tag_data_offset = ICC_PROFILE_HEADER_LENGTH + 4 +
  1331 	   (12 * (xyz_count + trc_count)); // the start of tag data elements.
  1333 	for (index = 0; index < xyz_count; ++index) {
  1334 		// tag table
  1335 		write_u32(data, tag_table_offset, TAG_XYZ[index]);
  1336 		write_u32(data, tag_table_offset+4, tag_data_offset);
  1337 		write_u32(data, tag_table_offset+8, 20); // 20 bytes per TAG_(r/g/b)XYZ tag element
  1339 		// tag data element
  1340 		write_u32(data, tag_data_offset, XYZ_TYPE);
  1341 		// reserved 4 bytes.
  1342 		write_u32(data, tag_data_offset+8, double_to_s15Fixed16Number(colorants.m[0][index]));
  1343 		write_u32(data, tag_data_offset+12, double_to_s15Fixed16Number(colorants.m[1][index]));
  1344 		write_u32(data, tag_data_offset+16, double_to_s15Fixed16Number(colorants.m[2][index]));
  1346 		tag_table_offset += 12;
  1347 		tag_data_offset += 20;
  1350 	// Part2 : write rTRC, gTRC and bTRC
  1351 	for (index = 0; index < trc_count; ++index) {
  1352 		// tag table
  1353 		write_u32(data, tag_table_offset, TAG_TRC[index]);
  1354 		write_u32(data, tag_table_offset+4, tag_data_offset);
  1355 		write_u32(data, tag_table_offset+8, 14); // 14 bytes per TAG_(r/g/b)TRC element
  1357 		// tag data element
  1358 		write_u32(data, tag_data_offset, CURVE_TYPE);
  1359 		// reserved 4 bytes.
  1360 		write_u32(data, tag_data_offset+8, 1); // count
  1361 		write_u16(data, tag_data_offset+12, float_to_u8Fixed8Number(gamma));
  1363 		tag_table_offset += 12;
  1364 		tag_data_offset += 16;
  1367 	/* Part3 : write profile header
  1369 	 * Important header fields are left empty. This generates a profile for internal use only.
  1370 	 * We should be generating: Profile version (04300000h), Profile signature (acsp), 
  1371 	 * PCS illumiant field. Likewise mandatory profile tags are omitted.
  1372 	 */
  1373 	write_u32(data, 0, length); // the total length of this memory
  1374 	write_u32(data, 12, DISPLAY_DEVICE_PROFILE); // profile->class
  1375 	write_u32(data, 16, RGB_SIGNATURE); // profile->color_space
  1376 	write_u32(data, 20, XYZ_SIGNATURE); // profile->pcs
  1377 	write_u32(data, 64, QCMS_INTENT_PERCEPTUAL); // profile->rendering_intent
  1379 	write_u32(data, ICC_PROFILE_HEADER_LENGTH, 6); // total tag count
  1381 	// prepare the result
  1382 	*mem = data;
  1383 	*size = length;

mercurial