gfx/qcms/transform-sse1.c

Tue, 06 Jan 2015 21:39:09 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Tue, 06 Jan 2015 21:39:09 +0100
branch
TOR_BUG_9701
changeset 8
97036ab72558
permissions
-rw-r--r--

Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 #include <xmmintrin.h>
     3 #include "qcmsint.h"
     5 /* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequence */
     6 #define FLOATSCALE  (float)(PRECACHE_OUTPUT_SIZE)
     7 #define CLAMPMAXVAL ( ((float) (PRECACHE_OUTPUT_SIZE - 1)) / PRECACHE_OUTPUT_SIZE )
     8 static const ALIGN float floatScaleX4[4] =
     9     { FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE};
    10 static const ALIGN float clampMaxValueX4[4] =
    11     { CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL};
    13 void qcms_transform_data_rgb_out_lut_sse1(qcms_transform *transform,
    14                                           unsigned char *src,
    15                                           unsigned char *dest,
    16                                           size_t length)
    17 {
    18     unsigned int i;
    19     float (*mat)[4] = transform->matrix;
    20     char input_back[32];
    21     /* Ensure we have a buffer that's 16 byte aligned regardless of the original
    22      * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
    23      * because they don't work on stack variables. gcc 4.4 does do the right thing
    24      * on x86 but that's too new for us right now. For more info: gcc bug #16660 */
    25     float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
    26     /* share input and output locations to save having to keep the
    27      * locations in separate registers */
    28     uint32_t const * output = (uint32_t*)input;
    30     /* deref *transform now to avoid it in loop */
    31     const float *igtbl_r = transform->input_gamma_table_r;
    32     const float *igtbl_g = transform->input_gamma_table_g;
    33     const float *igtbl_b = transform->input_gamma_table_b;
    35     /* deref *transform now to avoid it in loop */
    36     const uint8_t *otdata_r = &transform->output_table_r->data[0];
    37     const uint8_t *otdata_g = &transform->output_table_g->data[0];
    38     const uint8_t *otdata_b = &transform->output_table_b->data[0];
    40     /* input matrix values never change */
    41     const __m128 mat0  = _mm_load_ps(mat[0]);
    42     const __m128 mat1  = _mm_load_ps(mat[1]);
    43     const __m128 mat2  = _mm_load_ps(mat[2]);
    45     /* these values don't change, either */
    46     const __m128 max   = _mm_load_ps(clampMaxValueX4);
    47     const __m128 min   = _mm_setzero_ps();
    48     const __m128 scale = _mm_load_ps(floatScaleX4);
    50     /* working variables */
    51     __m128 vec_r, vec_g, vec_b, result;
    53     /* CYA */
    54     if (!length)
    55         return;
    57     /* one pixel is handled outside of the loop */
    58     length--;
    60     /* setup for transforming 1st pixel */
    61     vec_r = _mm_load_ss(&igtbl_r[src[0]]);
    62     vec_g = _mm_load_ss(&igtbl_g[src[1]]);
    63     vec_b = _mm_load_ss(&igtbl_b[src[2]]);
    64     src += 3;
    66     /* transform all but final pixel */
    68     for (i=0; i<length; i++)
    69     {
    70         /* position values from gamma tables */
    71         vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
    72         vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
    73         vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
    75         /* gamma * matrix */
    76         vec_r = _mm_mul_ps(vec_r, mat0);
    77         vec_g = _mm_mul_ps(vec_g, mat1);
    78         vec_b = _mm_mul_ps(vec_b, mat2);
    80         /* crunch, crunch, crunch */
    81         vec_r  = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
    82         vec_r  = _mm_max_ps(min, vec_r);
    83         vec_r  = _mm_min_ps(max, vec_r);
    84         result = _mm_mul_ps(vec_r, scale);
    86         /* store calc'd output tables indices */
    87         *((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
    88         result = _mm_movehl_ps(result, result);
    89         *((__m64 *)&output[2]) = _mm_cvtps_pi32(result) ;
    91         /* load for next loop while store completes */
    92         vec_r = _mm_load_ss(&igtbl_r[src[0]]);
    93         vec_g = _mm_load_ss(&igtbl_g[src[1]]);
    94         vec_b = _mm_load_ss(&igtbl_b[src[2]]);
    95         src += 3;
    97         /* use calc'd indices to output RGB values */
    98         dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
    99         dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
   100         dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
   101         dest += RGB_OUTPUT_COMPONENTS;
   102     }
   104     /* handle final (maybe only) pixel */
   106     vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
   107     vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
   108     vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
   110     vec_r = _mm_mul_ps(vec_r, mat0);
   111     vec_g = _mm_mul_ps(vec_g, mat1);
   112     vec_b = _mm_mul_ps(vec_b, mat2);
   114     vec_r  = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
   115     vec_r  = _mm_max_ps(min, vec_r);
   116     vec_r  = _mm_min_ps(max, vec_r);
   117     result = _mm_mul_ps(vec_r, scale);
   119     *((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
   120     result = _mm_movehl_ps(result, result);
   121     *((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
   123     dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
   124     dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
   125     dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
   127     _mm_empty();
   128 }
   130 void qcms_transform_data_rgba_out_lut_sse1(qcms_transform *transform,
   131                                            unsigned char *src,
   132                                            unsigned char *dest,
   133                                            size_t length)
   134 {
   135     unsigned int i;
   136     float (*mat)[4] = transform->matrix;
   137     char input_back[32];
   138     /* Ensure we have a buffer that's 16 byte aligned regardless of the original
   139      * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
   140      * because they don't work on stack variables. gcc 4.4 does do the right thing
   141      * on x86 but that's too new for us right now. For more info: gcc bug #16660 */
   142     float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
   143     /* share input and output locations to save having to keep the
   144      * locations in separate registers */
   145     uint32_t const * output = (uint32_t*)input;
   147     /* deref *transform now to avoid it in loop */
   148     const float *igtbl_r = transform->input_gamma_table_r;
   149     const float *igtbl_g = transform->input_gamma_table_g;
   150     const float *igtbl_b = transform->input_gamma_table_b;
   152     /* deref *transform now to avoid it in loop */
   153     const uint8_t *otdata_r = &transform->output_table_r->data[0];
   154     const uint8_t *otdata_g = &transform->output_table_g->data[0];
   155     const uint8_t *otdata_b = &transform->output_table_b->data[0];
   157     /* input matrix values never change */
   158     const __m128 mat0  = _mm_load_ps(mat[0]);
   159     const __m128 mat1  = _mm_load_ps(mat[1]);
   160     const __m128 mat2  = _mm_load_ps(mat[2]);
   162     /* these values don't change, either */
   163     const __m128 max   = _mm_load_ps(clampMaxValueX4);
   164     const __m128 min   = _mm_setzero_ps();
   165     const __m128 scale = _mm_load_ps(floatScaleX4);
   167     /* working variables */
   168     __m128 vec_r, vec_g, vec_b, result;
   169     unsigned char alpha;
   171     /* CYA */
   172     if (!length)
   173         return;
   175     /* one pixel is handled outside of the loop */
   176     length--;
   178     /* setup for transforming 1st pixel */
   179     vec_r = _mm_load_ss(&igtbl_r[src[0]]);
   180     vec_g = _mm_load_ss(&igtbl_g[src[1]]);
   181     vec_b = _mm_load_ss(&igtbl_b[src[2]]);
   182     alpha = src[3];
   183     src += 4;
   185     /* transform all but final pixel */
   187     for (i=0; i<length; i++)
   188     {
   189         /* position values from gamma tables */
   190         vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
   191         vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
   192         vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
   194         /* gamma * matrix */
   195         vec_r = _mm_mul_ps(vec_r, mat0);
   196         vec_g = _mm_mul_ps(vec_g, mat1);
   197         vec_b = _mm_mul_ps(vec_b, mat2);
   199         /* store alpha for this pixel; load alpha for next */
   200         dest[OUTPUT_A_INDEX] = alpha;
   201         alpha   = src[3];
   203         /* crunch, crunch, crunch */
   204         vec_r  = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
   205         vec_r  = _mm_max_ps(min, vec_r);
   206         vec_r  = _mm_min_ps(max, vec_r);
   207         result = _mm_mul_ps(vec_r, scale);
   209         /* store calc'd output tables indices */
   210         *((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
   211         result = _mm_movehl_ps(result, result);
   212         *((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
   214         /* load gamma values for next loop while store completes */
   215         vec_r = _mm_load_ss(&igtbl_r[src[0]]);
   216         vec_g = _mm_load_ss(&igtbl_g[src[1]]);
   217         vec_b = _mm_load_ss(&igtbl_b[src[2]]);
   218         src += 4;
   220         /* use calc'd indices to output RGB values */
   221         dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
   222         dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
   223         dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
   224         dest += 4;
   225     }
   227     /* handle final (maybe only) pixel */
   229     vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
   230     vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
   231     vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
   233     vec_r = _mm_mul_ps(vec_r, mat0);
   234     vec_g = _mm_mul_ps(vec_g, mat1);
   235     vec_b = _mm_mul_ps(vec_b, mat2);
   237     dest[OUTPUT_A_INDEX] = alpha;
   239     vec_r  = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
   240     vec_r  = _mm_max_ps(min, vec_r);
   241     vec_r  = _mm_min_ps(max, vec_r);
   242     result = _mm_mul_ps(vec_r, scale);
   244     *((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
   245     result = _mm_movehl_ps(result, result);
   246     *((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
   248     dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
   249     dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
   250     dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
   252     _mm_empty();
   253 }

mercurial