gfx/qcms/transform_util.c

Tue, 06 Jan 2015 21:39:09 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Tue, 06 Jan 2015 21:39:09 +0100
branch
TOR_BUG_9701
changeset 8
97036ab72558
permissions
-rw-r--r--

Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 #define _ISOC99_SOURCE  /* for INFINITY */
     3 #include <math.h>
     4 #include <assert.h>
     5 #include <string.h> //memcpy
     6 #include "qcmsint.h"
     7 #include "transform_util.h"
     8 #include "matrix.h"
    10 #if !defined(INFINITY)
    11 #define INFINITY HUGE_VAL
    12 #endif
    14 #define PARAMETRIC_CURVE_TYPE 0x70617261 //'para'
    16 /* value must be a value between 0 and 1 */
    17 //XXX: is the above a good restriction to have?
    18 // the output range of this functions is 0..1
    19 float lut_interp_linear(double input_value, uint16_t *table, int length)
    20 {
    21 	int upper, lower;
    22 	float value;
    23 	input_value = input_value * (length - 1); // scale to length of the array
    24 	upper = ceil(input_value);
    25 	lower = floor(input_value);
    26 	//XXX: can we be more performant here?
    27 	value = table[upper]*(1. - (upper - input_value)) + table[lower]*(upper - input_value);
    28 	/* scale the value */
    29 	return value * (1.f/65535.f);
    30 }
    32 /* same as above but takes and returns a uint16_t value representing a range from 0..1 */
    33 uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
    34 {
    35 	/* Start scaling input_value to the length of the array: 65535*(length-1).
    36 	 * We'll divide out the 65535 next */
    37 	uint32_t value = (input_value * (length - 1));
    38 	uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */
    39 	uint32_t lower = value / 65535;           /* equivalent to floor(value/65535) */
    40 	/* interp is the distance from upper to value scaled to 0..65535 */
    41 	uint32_t interp = value % 65535;
    43 	value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535
    45 	return value;
    46 }
    48 /* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX
    49  * and returns a uint8_t value representing a range from 0..1 */
    50 static
    51 uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, int length)
    52 {
    53 	/* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1).
    54 	 * We'll divide out the PRECACHE_OUTPUT_MAX next */
    55 	uint32_t value = (input_value * (length - 1));
    57 	/* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */
    58 	uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX;
    59 	/* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */
    60 	uint32_t lower = value / PRECACHE_OUTPUT_MAX;
    61 	/* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */
    62 	uint32_t interp = value % PRECACHE_OUTPUT_MAX;
    64 	/* the table values range from 0..65535 */
    65 	value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX)
    67 	/* round and scale */
    68 	value += (PRECACHE_OUTPUT_MAX*65535/255)/2;
    69         value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255
    70 	return value;
    71 }
    73 /* value must be a value between 0 and 1 */
    74 //XXX: is the above a good restriction to have?
    75 float lut_interp_linear_float(float value, float *table, int length)
    76 {
    77         int upper, lower;
    78         value = value * (length - 1);
    79         upper = ceilf(value);
    80         lower = floorf(value);
    81         //XXX: can we be more performant here?
    82         value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value);
    83         /* scale the value */
    84         return value;
    85 }
    87 #if 0
    88 /* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient
    89  * because we can avoid the divisions and use a shifting instead */
    90 /* same as above but takes and returns a uint16_t value representing a range from 0..1 */
    91 uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
    92 {
    93 	uint32_t value = (input_value * (length - 1));
    94 	uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */
    95 	uint32_t lower = value / 4096;           /* equivalent to floor(value/4096) */
    96 	uint32_t interp = value % 4096;
    98 	value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096
   100 	return value;
   101 }
   102 #endif
   104 void compute_curve_gamma_table_type1(float gamma_table[256], uint16_t gamma)
   105 {
   106 	unsigned int i;
   107 	float gamma_float = u8Fixed8Number_to_float(gamma);
   108 	for (i = 0; i < 256; i++) {
   109                 // 0..1^(0..255 + 255/256) will always be between 0 and 1
   110 		gamma_table[i] = pow(i/255., gamma_float);
   111 	}
   112 }
   114 void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length)
   115 {
   116 	unsigned int i;
   117 	for (i = 0; i < 256; i++) {
   118 		gamma_table[i] = lut_interp_linear(i/255., table, length);
   119 	}
   120 }
   122 void compute_curve_gamma_table_type_parametric(float gamma_table[256], float parameter[7], int count)
   123 {
   124         size_t X;
   125         float interval;
   126         float a, b, c, e, f;
   127         float y = parameter[0];
   128         if (count == 0) {
   129                 a = 1;
   130                 b = 0;
   131                 c = 0;
   132                 e = 0;
   133                 f = 0;
   134                 interval = -INFINITY;
   135         } else if(count == 1) {
   136                 a = parameter[1];
   137                 b = parameter[2];
   138                 c = 0;
   139                 e = 0;
   140                 f = 0;
   141                 interval = -1 * parameter[2] / parameter[1];
   142         } else if(count == 2) {
   143                 a = parameter[1];
   144                 b = parameter[2];
   145                 c = 0;
   146                 e = parameter[3];
   147                 f = parameter[3];
   148                 interval = -1 * parameter[2] / parameter[1];
   149         } else if(count == 3) {
   150                 a = parameter[1];
   151                 b = parameter[2];
   152                 c = parameter[3];
   153                 e = -c;
   154                 f = 0;
   155                 interval = parameter[4];
   156         } else if(count == 4) {
   157                 a = parameter[1];
   158                 b = parameter[2];
   159                 c = parameter[3];
   160                 e = parameter[5] - c;
   161                 f = parameter[6];
   162                 interval = parameter[4];
   163         } else {
   164                 assert(0 && "invalid parametric function type.");
   165                 a = 1;
   166                 b = 0;
   167                 c = 0;
   168                 e = 0;
   169                 f = 0;
   170                 interval = -INFINITY;
   171         }       
   172         for (X = 0; X < 256; X++) {
   173                 if (X >= interval) {
   174                         // XXX The equations are not exactly as definied in the spec but are
   175                         //     algebraic equivilent.
   176                         // TODO Should division by 255 be for the whole expression.
   177                         gamma_table[X] = clamp_float(pow(a * X / 255. + b, y) + c + e);
   178                 } else {
   179                         gamma_table[X] = clamp_float(c * X / 255. + f);
   180                 }
   181         }
   182 }
   184 void compute_curve_gamma_table_type0(float gamma_table[256])
   185 {
   186 	unsigned int i;
   187 	for (i = 0; i < 256; i++) {
   188 		gamma_table[i] = i/255.;
   189 	}
   190 }
   192 float *build_input_gamma_table(struct curveType *TRC)
   193 {
   194 	float *gamma_table;
   196 	if (!TRC) return NULL;
   197 	gamma_table = malloc(sizeof(float)*256);
   198 	if (gamma_table) {
   199 		if (TRC->type == PARAMETRIC_CURVE_TYPE) {
   200 			compute_curve_gamma_table_type_parametric(gamma_table, TRC->parameter, TRC->count);
   201 		} else {
   202 			if (TRC->count == 0) {
   203 				compute_curve_gamma_table_type0(gamma_table);
   204 			} else if (TRC->count == 1) {
   205 				compute_curve_gamma_table_type1(gamma_table, TRC->data[0]);
   206 			} else {
   207 				compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count);
   208 			}
   209 		}
   210 	}
   211         return gamma_table;
   212 }
   214 struct matrix build_colorant_matrix(qcms_profile *p)
   215 {
   216 	struct matrix result;
   217 	result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X);
   218 	result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X);
   219 	result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X);
   220 	result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y);
   221 	result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y);
   222 	result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y);
   223 	result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z);
   224 	result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z);
   225 	result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z);
   226 	result.invalid = false;
   227 	return result;
   228 }
   230 /* The following code is copied nearly directly from lcms.
   231  * I think it could be much better. For example, Argyll seems to have better code in
   232  * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way
   233  * to a working solution and allows for easy comparing with lcms. */
   234 uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length)
   235 {
   236         int l = 1;
   237         int r = 0x10000;
   238         int x = 0, res;       // 'int' Give spacing for negative values
   239         int NumZeroes, NumPoles;
   240         int cell0, cell1;
   241         double val2;
   242         double y0, y1, x0, x1;
   243         double a, b, f;
   245         // July/27 2001 - Expanded to handle degenerated curves with an arbitrary
   246         // number of elements containing 0 at the begining of the table (Zeroes)
   247         // and another arbitrary number of poles (FFFFh) at the end.
   248         // First the zero and pole extents are computed, then value is compared.
   250         NumZeroes = 0;
   251         while (LutTable[NumZeroes] == 0 && NumZeroes < length-1)
   252                         NumZeroes++;
   254         // There are no zeros at the beginning and we are trying to find a zero, so
   255         // return anything. It seems zero would be the less destructive choice
   256 	/* I'm not sure that this makes sense, but oh well... */
   257         if (NumZeroes == 0 && Value == 0)
   258             return 0;
   260         NumPoles = 0;
   261         while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1)
   262                         NumPoles++;
   264         // Does the curve belong to this case?
   265         if (NumZeroes > 1 || NumPoles > 1)
   266         {               
   267                 int a, b;
   269                 // Identify if value fall downto 0 or FFFF zone             
   270                 if (Value == 0) return 0;
   271                // if (Value == 0xFFFF) return 0xFFFF;
   273                 // else restrict to valid zone
   275                 a = ((NumZeroes-1) * 0xFFFF) / (length-1);               
   276                 b = ((length-1 - NumPoles) * 0xFFFF) / (length-1);
   278                 l = a - 1;
   279                 r = b + 1;
   280         }
   283         // Seems not a degenerated case... apply binary search
   285         while (r > l) {
   287                 x = (l + r) / 2;
   289 		res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length);
   291                 if (res == Value) {
   293                     // Found exact match. 
   295                     return (uint16_fract_t) (x - 1);
   296                 }
   298                 if (res > Value) r = x - 1;
   299                 else l = x + 1;
   300         }
   302         // Not found, should we interpolate?
   305         // Get surrounding nodes
   307         val2 = (length-1) * ((double) (x - 1) / 65535.0);
   309         cell0 = (int) floor(val2);
   310         cell1 = (int) ceil(val2);
   312         if (cell0 == cell1) return (uint16_fract_t) x;
   314         y0 = LutTable[cell0] ;
   315         x0 = (65535.0 * cell0) / (length-1); 
   317         y1 = LutTable[cell1] ;
   318         x1 = (65535.0 * cell1) / (length-1);
   320         a = (y1 - y0) / (x1 - x0);
   321         b = y0 - a * x0;
   323         if (fabs(a) < 0.01) return (uint16_fract_t) x;
   325         f = ((Value - b) / a);
   327         if (f < 0.0) return (uint16_fract_t) 0;
   328         if (f >= 65535.0) return (uint16_fract_t) 0xFFFF;
   330         return (uint16_fract_t) floor(f + 0.5);                        
   332 }
   334 /*
   335  The number of entries needed to invert a lookup table should not
   336  necessarily be the same as the original number of entries.  This is
   337  especially true of lookup tables that have a small number of entries.
   339  For example:
   340  Using a table like:
   341     {0, 3104, 14263, 34802, 65535}
   342  invert_lut will produce an inverse of:
   343     {3, 34459, 47529, 56801, 65535}
   344  which has an maximum error of about 9855 (pixel difference of ~38.346)
   346  For now, we punt the decision of output size to the caller. */
   347 static uint16_t *invert_lut(uint16_t *table, int length, int out_length)
   348 {
   349         int i;
   350         /* for now we invert the lut by creating a lut of size out_length
   351          * and attempting to lookup a value for each entry using lut_inverse_interp16 */
   352         uint16_t *output = malloc(sizeof(uint16_t)*out_length);
   353         if (!output)
   354                 return NULL;
   356         for (i = 0; i < out_length; i++) {
   357                 double x = ((double) i * 65535.) / (double) (out_length - 1);
   358                 uint16_fract_t input = floor(x + .5);
   359                 output[i] = lut_inverse_interp16(input, table, length);
   360         }
   361         return output;
   362 }
   364 static void compute_precache_pow(uint8_t *output, float gamma)
   365 {
   366 	uint32_t v = 0;
   367 	for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
   368 		//XXX: don't do integer/float conversion... and round?
   369 		output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma);
   370 	}
   371 }
   373 void compute_precache_lut(uint8_t *output, uint16_t *table, int length)
   374 {
   375 	uint32_t v = 0;
   376 	for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
   377 		output[v] = lut_interp_linear_precache_output(v, table, length);
   378 	}
   379 }
   381 void compute_precache_linear(uint8_t *output)
   382 {
   383 	uint32_t v = 0;
   384 	for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
   385 		//XXX: round?
   386 		output[v] = v / (PRECACHE_OUTPUT_SIZE/256);
   387 	}
   388 }
   390 qcms_bool compute_precache(struct curveType *trc, uint8_t *output)
   391 {
   393         if (trc->type == PARAMETRIC_CURVE_TYPE) {
   394                         float gamma_table[256];
   395                         uint16_t gamma_table_uint[256];
   396                         uint16_t i;
   397                         uint16_t *inverted;
   398                         int inverted_size = 256;
   400                         compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count);
   401                         for(i = 0; i < 256; i++) {
   402                                 gamma_table_uint[i] = (uint16_t)(gamma_table[i] * 65535);
   403                         }
   405                         //XXX: the choice of a minimum of 256 here is not backed by any theory, 
   406                         //     measurement or data, howeve r it is what lcms uses.
   407                         //     the maximum number we would need is 65535 because that's the 
   408                         //     accuracy used for computing the pre cache table
   409                         if (inverted_size < 256)
   410                                 inverted_size = 256;
   412                         inverted = invert_lut(gamma_table_uint, 256, inverted_size);
   413                         if (!inverted)
   414                                 return false;
   415                         compute_precache_lut(output, inverted, inverted_size);
   416                         free(inverted);
   417         } else {
   418                 if (trc->count == 0) {
   419                         compute_precache_linear(output);
   420                 } else if (trc->count == 1) {
   421                         compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0]));
   422                 } else {
   423                         uint16_t *inverted;
   424                         int inverted_size = trc->count;
   425                         //XXX: the choice of a minimum of 256 here is not backed by any theory, 
   426                         //     measurement or data, howeve r it is what lcms uses.
   427                         //     the maximum number we would need is 65535 because that's the 
   428                         //     accuracy used for computing the pre cache table
   429                         if (inverted_size < 256)
   430                                 inverted_size = 256;
   432                         inverted = invert_lut(trc->data, trc->count, inverted_size);
   433                         if (!inverted)
   434                                 return false;
   435                         compute_precache_lut(output, inverted, inverted_size);
   436                         free(inverted);
   437                 }
   438         }
   439         return true;
   440 }
   443 static uint16_t *build_linear_table(int length)
   444 {
   445         int i;
   446         uint16_t *output = malloc(sizeof(uint16_t)*length);
   447         if (!output)
   448                 return NULL;
   450         for (i = 0; i < length; i++) {
   451                 double x = ((double) i * 65535.) / (double) (length - 1);
   452                 uint16_fract_t input = floor(x + .5);
   453                 output[i] = input;
   454         }
   455         return output;
   456 }
   458 static uint16_t *build_pow_table(float gamma, int length)
   459 {
   460         int i;
   461         uint16_t *output = malloc(sizeof(uint16_t)*length);
   462         if (!output)
   463                 return NULL;
   465         for (i = 0; i < length; i++) {
   466                 uint16_fract_t result;
   467                 double x = ((double) i) / (double) (length - 1);
   468                 x = pow(x, gamma);                //XXX turn this conversion into a function
   469                 result = floor(x*65535. + .5);
   470                 output[i] = result;
   471         }
   472         return output;
   473 }
   475 void build_output_lut(struct curveType *trc,
   476                 uint16_t **output_gamma_lut, size_t *output_gamma_lut_length)
   477 {
   478         if (trc->type == PARAMETRIC_CURVE_TYPE) {
   479                 float gamma_table[256];
   480                 uint16_t i;
   481                 uint16_t *output = malloc(sizeof(uint16_t)*256);
   483                 if (!output) {
   484                         *output_gamma_lut = NULL;
   485                         return;
   486                 }
   488                 compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count);
   489                 *output_gamma_lut_length = 256;
   490                 for(i = 0; i < 256; i++) {
   491                         output[i] = (uint16_t)(gamma_table[i] * 65535);
   492                 }
   493                 *output_gamma_lut = output;
   494         } else {
   495                 if (trc->count == 0) {
   496                         *output_gamma_lut = build_linear_table(4096);
   497                         *output_gamma_lut_length = 4096;
   498                 } else if (trc->count == 1) {
   499                         float gamma = 1./u8Fixed8Number_to_float(trc->data[0]);
   500                         *output_gamma_lut = build_pow_table(gamma, 4096);
   501                         *output_gamma_lut_length = 4096;
   502                 } else {
   503                         //XXX: the choice of a minimum of 256 here is not backed by any theory, 
   504                         //     measurement or data, however it is what lcms uses.
   505                         *output_gamma_lut_length = trc->count;
   506                         if (*output_gamma_lut_length < 256)
   507                                 *output_gamma_lut_length = 256;
   509                         *output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length);
   510                 }
   511         }
   513 }

mercurial