Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
1 /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 * This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 #include "gfxAlphaRecovery.h"
7 #include "gfxImageSurface.h"
8 #include "nsRect.h"
9 #include <emmintrin.h>
11 // This file should only be compiled on x86 and x64 systems. Additionally,
12 // you'll need to compile it with -msse2 if you're using GCC on x86.
14 #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_AMD64))
15 __declspec(align(16)) static uint32_t greenMaski[] =
16 { 0x0000ff00, 0x0000ff00, 0x0000ff00, 0x0000ff00 };
17 __declspec(align(16)) static uint32_t alphaMaski[] =
18 { 0xff000000, 0xff000000, 0xff000000, 0xff000000 };
19 #elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
20 static uint32_t greenMaski[] __attribute__ ((aligned (16))) =
21 { 0x0000ff00, 0x0000ff00, 0x0000ff00, 0x0000ff00 };
22 static uint32_t alphaMaski[] __attribute__ ((aligned (16))) =
23 { 0xff000000, 0xff000000, 0xff000000, 0xff000000 };
24 #elif defined(__SUNPRO_CC) && (defined(__i386) || defined(__x86_64__))
25 #pragma align 16 (greenMaski, alphaMaski)
26 static uint32_t greenMaski[] = { 0x0000ff00, 0x0000ff00, 0x0000ff00, 0x0000ff00 };
27 static uint32_t alphaMaski[] = { 0xff000000, 0xff000000, 0xff000000, 0xff000000 };
28 #endif
30 bool
31 gfxAlphaRecovery::RecoverAlphaSSE2(gfxImageSurface* blackSurf,
32 const gfxImageSurface* whiteSurf)
33 {
34 gfxIntSize size = blackSurf->GetSize();
36 if (size != whiteSurf->GetSize() ||
37 (blackSurf->Format() != gfxImageFormat::ARGB32 &&
38 blackSurf->Format() != gfxImageFormat::RGB24) ||
39 (whiteSurf->Format() != gfxImageFormat::ARGB32 &&
40 whiteSurf->Format() != gfxImageFormat::RGB24))
41 return false;
43 blackSurf->Flush();
44 whiteSurf->Flush();
46 unsigned char* blackData = blackSurf->Data();
47 unsigned char* whiteData = whiteSurf->Data();
49 if ((NS_PTR_TO_UINT32(blackData) & 0xf) != (NS_PTR_TO_UINT32(whiteData) & 0xf) ||
50 (blackSurf->Stride() - whiteSurf->Stride()) & 0xf) {
51 // Cannot keep these in alignment.
52 return false;
53 }
55 __m128i greenMask = _mm_load_si128((__m128i*)greenMaski);
56 __m128i alphaMask = _mm_load_si128((__m128i*)alphaMaski);
58 for (int32_t i = 0; i < size.height; ++i) {
59 int32_t j = 0;
60 // Loop single pixels until at 4 byte alignment.
61 while (NS_PTR_TO_UINT32(blackData) & 0xf && j < size.width) {
62 *((uint32_t*)blackData) =
63 RecoverPixel(*reinterpret_cast<uint32_t*>(blackData),
64 *reinterpret_cast<uint32_t*>(whiteData));
65 blackData += 4;
66 whiteData += 4;
67 j++;
68 }
69 // This extra loop allows the compiler to do some more clever registry
70 // management and makes it about 5% faster than with only the 4 pixel
71 // at a time loop.
72 for (; j < size.width - 8; j += 8) {
73 __m128i black1 = _mm_load_si128((__m128i*)blackData);
74 __m128i white1 = _mm_load_si128((__m128i*)whiteData);
75 __m128i black2 = _mm_load_si128((__m128i*)(blackData + 16));
76 __m128i white2 = _mm_load_si128((__m128i*)(whiteData + 16));
78 // Execute the same instructions as described in RecoverPixel, only
79 // using an SSE2 packed saturated subtract.
80 white1 = _mm_subs_epu8(white1, black1);
81 white2 = _mm_subs_epu8(white2, black2);
82 white1 = _mm_subs_epu8(greenMask, white1);
83 white2 = _mm_subs_epu8(greenMask, white2);
84 // Producing the final black pixel in an XMM register and storing
85 // that is actually faster than doing a masked store since that
86 // does an unaligned storage. We have the black pixel in a register
87 // anyway.
88 black1 = _mm_andnot_si128(alphaMask, black1);
89 black2 = _mm_andnot_si128(alphaMask, black2);
90 white1 = _mm_slli_si128(white1, 2);
91 white2 = _mm_slli_si128(white2, 2);
92 white1 = _mm_and_si128(alphaMask, white1);
93 white2 = _mm_and_si128(alphaMask, white2);
94 black1 = _mm_or_si128(white1, black1);
95 black2 = _mm_or_si128(white2, black2);
97 _mm_store_si128((__m128i*)blackData, black1);
98 _mm_store_si128((__m128i*)(blackData + 16), black2);
99 blackData += 32;
100 whiteData += 32;
101 }
102 for (; j < size.width - 4; j += 4) {
103 __m128i black = _mm_load_si128((__m128i*)blackData);
104 __m128i white = _mm_load_si128((__m128i*)whiteData);
106 white = _mm_subs_epu8(white, black);
107 white = _mm_subs_epu8(greenMask, white);
108 black = _mm_andnot_si128(alphaMask, black);
109 white = _mm_slli_si128(white, 2);
110 white = _mm_and_si128(alphaMask, white);
111 black = _mm_or_si128(white, black);
112 _mm_store_si128((__m128i*)blackData, black);
113 blackData += 16;
114 whiteData += 16;
115 }
116 // Loop single pixels until we're done.
117 while (j < size.width) {
118 *((uint32_t*)blackData) =
119 RecoverPixel(*reinterpret_cast<uint32_t*>(blackData),
120 *reinterpret_cast<uint32_t*>(whiteData));
121 blackData += 4;
122 whiteData += 4;
123 j++;
124 }
125 blackData += blackSurf->Stride() - j * 4;
126 whiteData += whiteSurf->Stride() - j * 4;
127 }
129 blackSurf->MarkDirty();
131 return true;
132 }
134 static int32_t
135 ByteAlignment(int32_t aAlignToLog2, int32_t aX, int32_t aY=0, int32_t aStride=1)
136 {
137 return (aX + aStride * aY) & ((1 << aAlignToLog2) - 1);
138 }
140 /*static*/ nsIntRect
141 gfxAlphaRecovery::AlignRectForSubimageRecovery(const nsIntRect& aRect,
142 gfxImageSurface* aSurface)
143 {
144 NS_ASSERTION(gfxImageFormat::ARGB32 == aSurface->Format(),
145 "Thebes grew support for non-ARGB32 COLOR_ALPHA?");
146 static const int32_t kByteAlignLog2 = GoodAlignmentLog2();
147 static const int32_t bpp = 4;
148 static const int32_t pixPerAlign = (1 << kByteAlignLog2) / bpp;
149 //
150 // We're going to create a subimage of the surface with size
151 // <sw,sh> for alpha recovery, and want a SIMD fast-path. The
152 // rect <x,y, w,h> /needs/ to be redrawn, but it might not be
153 // properly aligned for SIMD. So we want to find a rect <x',y',
154 // w',h'> that's a superset of what needs to be redrawn but is
155 // properly aligned. Proper alignment is
156 //
157 // BPP * (x' + y' * sw) \cong 0 (mod ALIGN)
158 // BPP * w' \cong BPP * sw (mod ALIGN)
159 //
160 // (We assume the pixel at surface <0,0> is already ALIGN'd.)
161 // That rect (obviously) has to fit within the surface bounds, and
162 // we should also minimize the extra pixels redrawn only for
163 // alignment's sake. So we also want
164 //
165 // minimize <x',y', w',h'>
166 // 0 <= x' <= x
167 // 0 <= y' <= y
168 // w <= w' <= sw
169 // h <= h' <= sh
170 //
171 // This is a messy integer non-linear programming problem, except
172 // ... we can assume that ALIGN/BPP is a very small constant. So,
173 // brute force is viable. The algorithm below will find a
174 // solution if one exists, but isn't guaranteed to find the
175 // minimum solution. (For SSE2, ALIGN/BPP = 4, so it'll do at
176 // most 64 iterations below). In what's likely the common case,
177 // an already-aligned rectangle, it only needs 1 iteration.
178 //
179 // Is this alignment worth doing? Recovering alpha will take work
180 // proportional to w*h (assuming alpha recovery computation isn't
181 // memory bound). This analysis can lead to O(w+h) extra work
182 // (with small constants). In exchange, we expect to shave off a
183 // ALIGN/BPP constant by using SIMD-ized alpha recovery. So as
184 // w*h diverges from w+h, the win factor approaches ALIGN/BPP. We
185 // only really care about the w*h >> w+h case anyway; others
186 // should be fast enough even with the overhead. (Unless the cost
187 // of repainting the expanded rect is high, but in that case
188 // SIMD-ized alpha recovery won't make a difference so this code
189 // shouldn't be called.)
190 //
191 gfxIntSize surfaceSize = aSurface->GetSize();
192 const int32_t stride = bpp * surfaceSize.width;
193 if (stride != aSurface->Stride()) {
194 NS_WARNING("Unexpected stride, falling back on slow alpha recovery");
195 return aRect;
196 }
198 const int32_t x = aRect.x, y = aRect.y, w = aRect.width, h = aRect.height;
199 const int32_t r = x + w;
200 const int32_t sw = surfaceSize.width;
201 const int32_t strideAlign = ByteAlignment(kByteAlignLog2, stride);
203 // The outer two loops below keep the rightmost (|r| above) and
204 // bottommost pixels in |aRect| fixed wrt <x,y>, to ensure that we
205 // return only a superset of the original rect. These loops
206 // search for an aligned top-left pixel by trying to expand <x,y>
207 // left and up by <dx,dy> pixels, respectively.
208 //
209 // Then if a properly-aligned top-left pixel is found, the
210 // innermost loop tries to find an aligned stride by moving the
211 // rightmost pixel rightward by dr.
212 int32_t dx, dy, dr;
213 for (dy = 0; (dy < pixPerAlign) && (y - dy >= 0); ++dy) {
214 for (dx = 0; (dx < pixPerAlign) && (x - dx >= 0); ++dx) {
215 if (0 != ByteAlignment(kByteAlignLog2,
216 bpp * (x - dx), y - dy, stride)) {
217 continue;
218 }
219 for (dr = 0; (dr < pixPerAlign) && (r + dr <= sw); ++dr) {
220 if (strideAlign == ByteAlignment(kByteAlignLog2,
221 bpp * (w + dr + dx))) {
222 goto FOUND_SOLUTION;
223 }
224 }
225 }
226 }
228 // Didn't find a solution.
229 return aRect;
231 FOUND_SOLUTION:
232 nsIntRect solution = nsIntRect(x - dx, y - dy, w + dr + dx, h + dy);
233 NS_ABORT_IF_FALSE(nsIntRect(0, 0, sw, surfaceSize.height).Contains(solution),
234 "'Solution' extends outside surface bounds!");
235 return solution;
236 }