media/libvorbis/lib/vorbis_smallft.c

Tue, 06 Jan 2015 21:39:09 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Tue, 06 Jan 2015 21:39:09 +0100
branch
TOR_BUG_9701
changeset 8
97036ab72558
permissions
-rw-r--r--

Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 /********************************************************************
     2  *                                                                  *
     3  * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE.   *
     4  * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
     5  * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
     6  * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
     7  *                                                                  *
     8  * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009             *
     9  * by the Xiph.Org Foundation http://www.xiph.org/                  *
    10  *                                                                  *
    11  ********************************************************************
    13  function: *unnormalized* fft transform
    14  last mod: $Id: smallft.c 16227 2009-07-08 06:58:46Z xiphmont $
    16  ********************************************************************/
    18 /* FFT implementation from OggSquish, minus cosine transforms,
    19  * minus all but radix 2/4 case.  In Vorbis we only need this
    20  * cut-down version.
    21  *
    22  * To do more than just power-of-two sized vectors, see the full
    23  * version I wrote for NetLib.
    24  *
    25  * Note that the packing is a little strange; rather than the FFT r/i
    26  * packing following R_0, I_n, R_1, I_1, R_2, I_2 ... R_n-1, I_n-1,
    27  * it follows R_0, R_1, I_1, R_2, I_2 ... R_n-1, I_n-1, I_n like the
    28  * FORTRAN version
    29  */
    31 #include <stdlib.h>
    32 #include <string.h>
    33 #include <math.h>
    34 #include "smallft.h"
    35 #include "os.h"
    36 #include "misc.h"
    38 static void drfti1(int n, float *wa, int *ifac){
    39   static int ntryh[4] = { 4,2,3,5 };
    40   static float tpi = 6.28318530717958648f;
    41   float arg,argh,argld,fi;
    42   int ntry=0,i,j=-1;
    43   int k1, l1, l2, ib;
    44   int ld, ii, ip, is, nq, nr;
    45   int ido, ipm, nfm1;
    46   int nl=n;
    47   int nf=0;
    49  L101:
    50   j++;
    51   if (j < 4)
    52     ntry=ntryh[j];
    53   else
    54     ntry+=2;
    56  L104:
    57   nq=nl/ntry;
    58   nr=nl-ntry*nq;
    59   if (nr!=0) goto L101;
    61   nf++;
    62   ifac[nf+1]=ntry;
    63   nl=nq;
    64   if(ntry!=2)goto L107;
    65   if(nf==1)goto L107;
    67   for (i=1;i<nf;i++){
    68     ib=nf-i+1;
    69     ifac[ib+1]=ifac[ib];
    70   }
    71   ifac[2] = 2;
    73  L107:
    74   if(nl!=1)goto L104;
    75   ifac[0]=n;
    76   ifac[1]=nf;
    77   argh=tpi/n;
    78   is=0;
    79   nfm1=nf-1;
    80   l1=1;
    82   if(nfm1==0)return;
    84   for (k1=0;k1<nfm1;k1++){
    85     ip=ifac[k1+2];
    86     ld=0;
    87     l2=l1*ip;
    88     ido=n/l2;
    89     ipm=ip-1;
    91     for (j=0;j<ipm;j++){
    92       ld+=l1;
    93       i=is;
    94       argld=(float)ld*argh;
    95       fi=0.f;
    96       for (ii=2;ii<ido;ii+=2){
    97         fi+=1.f;
    98         arg=fi*argld;
    99         wa[i++]=cos(arg);
   100         wa[i++]=sin(arg);
   101       }
   102       is+=ido;
   103     }
   104     l1=l2;
   105   }
   106 }
   108 static void fdrffti(int n, float *wsave, int *ifac){
   110   if (n == 1) return;
   111   drfti1(n, wsave+n, ifac);
   112 }
   114 static void dradf2(int ido,int l1,float *cc,float *ch,float *wa1){
   115   int i,k;
   116   float ti2,tr2;
   117   int t0,t1,t2,t3,t4,t5,t6;
   119   t1=0;
   120   t0=(t2=l1*ido);
   121   t3=ido<<1;
   122   for(k=0;k<l1;k++){
   123     ch[t1<<1]=cc[t1]+cc[t2];
   124     ch[(t1<<1)+t3-1]=cc[t1]-cc[t2];
   125     t1+=ido;
   126     t2+=ido;
   127   }
   129   if(ido<2)return;
   130   if(ido==2)goto L105;
   132   t1=0;
   133   t2=t0;
   134   for(k=0;k<l1;k++){
   135     t3=t2;
   136     t4=(t1<<1)+(ido<<1);
   137     t5=t1;
   138     t6=t1+t1;
   139     for(i=2;i<ido;i+=2){
   140       t3+=2;
   141       t4-=2;
   142       t5+=2;
   143       t6+=2;
   144       tr2=wa1[i-2]*cc[t3-1]+wa1[i-1]*cc[t3];
   145       ti2=wa1[i-2]*cc[t3]-wa1[i-1]*cc[t3-1];
   146       ch[t6]=cc[t5]+ti2;
   147       ch[t4]=ti2-cc[t5];
   148       ch[t6-1]=cc[t5-1]+tr2;
   149       ch[t4-1]=cc[t5-1]-tr2;
   150     }
   151     t1+=ido;
   152     t2+=ido;
   153   }
   155   if(ido%2==1)return;
   157  L105:
   158   t3=(t2=(t1=ido)-1);
   159   t2+=t0;
   160   for(k=0;k<l1;k++){
   161     ch[t1]=-cc[t2];
   162     ch[t1-1]=cc[t3];
   163     t1+=ido<<1;
   164     t2+=ido;
   165     t3+=ido;
   166   }
   167 }
   169 static void dradf4(int ido,int l1,float *cc,float *ch,float *wa1,
   170             float *wa2,float *wa3){
   171   static float hsqt2 = .70710678118654752f;
   172   int i,k,t0,t1,t2,t3,t4,t5,t6;
   173   float ci2,ci3,ci4,cr2,cr3,cr4,ti1,ti2,ti3,ti4,tr1,tr2,tr3,tr4;
   174   t0=l1*ido;
   176   t1=t0;
   177   t4=t1<<1;
   178   t2=t1+(t1<<1);
   179   t3=0;
   181   for(k=0;k<l1;k++){
   182     tr1=cc[t1]+cc[t2];
   183     tr2=cc[t3]+cc[t4];
   185     ch[t5=t3<<2]=tr1+tr2;
   186     ch[(ido<<2)+t5-1]=tr2-tr1;
   187     ch[(t5+=(ido<<1))-1]=cc[t3]-cc[t4];
   188     ch[t5]=cc[t2]-cc[t1];
   190     t1+=ido;
   191     t2+=ido;
   192     t3+=ido;
   193     t4+=ido;
   194   }
   196   if(ido<2)return;
   197   if(ido==2)goto L105;
   200   t1=0;
   201   for(k=0;k<l1;k++){
   202     t2=t1;
   203     t4=t1<<2;
   204     t5=(t6=ido<<1)+t4;
   205     for(i=2;i<ido;i+=2){
   206       t3=(t2+=2);
   207       t4+=2;
   208       t5-=2;
   210       t3+=t0;
   211       cr2=wa1[i-2]*cc[t3-1]+wa1[i-1]*cc[t3];
   212       ci2=wa1[i-2]*cc[t3]-wa1[i-1]*cc[t3-1];
   213       t3+=t0;
   214       cr3=wa2[i-2]*cc[t3-1]+wa2[i-1]*cc[t3];
   215       ci3=wa2[i-2]*cc[t3]-wa2[i-1]*cc[t3-1];
   216       t3+=t0;
   217       cr4=wa3[i-2]*cc[t3-1]+wa3[i-1]*cc[t3];
   218       ci4=wa3[i-2]*cc[t3]-wa3[i-1]*cc[t3-1];
   220       tr1=cr2+cr4;
   221       tr4=cr4-cr2;
   222       ti1=ci2+ci4;
   223       ti4=ci2-ci4;
   225       ti2=cc[t2]+ci3;
   226       ti3=cc[t2]-ci3;
   227       tr2=cc[t2-1]+cr3;
   228       tr3=cc[t2-1]-cr3;
   230       ch[t4-1]=tr1+tr2;
   231       ch[t4]=ti1+ti2;
   233       ch[t5-1]=tr3-ti4;
   234       ch[t5]=tr4-ti3;
   236       ch[t4+t6-1]=ti4+tr3;
   237       ch[t4+t6]=tr4+ti3;
   239       ch[t5+t6-1]=tr2-tr1;
   240       ch[t5+t6]=ti1-ti2;
   241     }
   242     t1+=ido;
   243   }
   244   if(ido&1)return;
   246  L105:
   248   t2=(t1=t0+ido-1)+(t0<<1);
   249   t3=ido<<2;
   250   t4=ido;
   251   t5=ido<<1;
   252   t6=ido;
   254   for(k=0;k<l1;k++){
   255     ti1=-hsqt2*(cc[t1]+cc[t2]);
   256     tr1=hsqt2*(cc[t1]-cc[t2]);
   258     ch[t4-1]=tr1+cc[t6-1];
   259     ch[t4+t5-1]=cc[t6-1]-tr1;
   261     ch[t4]=ti1-cc[t1+t0];
   262     ch[t4+t5]=ti1+cc[t1+t0];
   264     t1+=ido;
   265     t2+=ido;
   266     t4+=t3;
   267     t6+=ido;
   268   }
   269 }
   271 static void dradfg(int ido,int ip,int l1,int idl1,float *cc,float *c1,
   272                           float *c2,float *ch,float *ch2,float *wa){
   274   static float tpi=6.283185307179586f;
   275   int idij,ipph,i,j,k,l,ic,ik,is;
   276   int t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10;
   277   float dc2,ai1,ai2,ar1,ar2,ds2;
   278   int nbd;
   279   float dcp,arg,dsp,ar1h,ar2h;
   280   int idp2,ipp2;
   282   arg=tpi/(float)ip;
   283   dcp=cos(arg);
   284   dsp=sin(arg);
   285   ipph=(ip+1)>>1;
   286   ipp2=ip;
   287   idp2=ido;
   288   nbd=(ido-1)>>1;
   289   t0=l1*ido;
   290   t10=ip*ido;
   292   if(ido==1)goto L119;
   293   for(ik=0;ik<idl1;ik++)ch2[ik]=c2[ik];
   295   t1=0;
   296   for(j=1;j<ip;j++){
   297     t1+=t0;
   298     t2=t1;
   299     for(k=0;k<l1;k++){
   300       ch[t2]=c1[t2];
   301       t2+=ido;
   302     }
   303   }
   305   is=-ido;
   306   t1=0;
   307   if(nbd>l1){
   308     for(j=1;j<ip;j++){
   309       t1+=t0;
   310       is+=ido;
   311       t2= -ido+t1;
   312       for(k=0;k<l1;k++){
   313         idij=is-1;
   314         t2+=ido;
   315         t3=t2;
   316         for(i=2;i<ido;i+=2){
   317           idij+=2;
   318           t3+=2;
   319           ch[t3-1]=wa[idij-1]*c1[t3-1]+wa[idij]*c1[t3];
   320           ch[t3]=wa[idij-1]*c1[t3]-wa[idij]*c1[t3-1];
   321         }
   322       }
   323     }
   324   }else{
   326     for(j=1;j<ip;j++){
   327       is+=ido;
   328       idij=is-1;
   329       t1+=t0;
   330       t2=t1;
   331       for(i=2;i<ido;i+=2){
   332         idij+=2;
   333         t2+=2;
   334         t3=t2;
   335         for(k=0;k<l1;k++){
   336           ch[t3-1]=wa[idij-1]*c1[t3-1]+wa[idij]*c1[t3];
   337           ch[t3]=wa[idij-1]*c1[t3]-wa[idij]*c1[t3-1];
   338           t3+=ido;
   339         }
   340       }
   341     }
   342   }
   344   t1=0;
   345   t2=ipp2*t0;
   346   if(nbd<l1){
   347     for(j=1;j<ipph;j++){
   348       t1+=t0;
   349       t2-=t0;
   350       t3=t1;
   351       t4=t2;
   352       for(i=2;i<ido;i+=2){
   353         t3+=2;
   354         t4+=2;
   355         t5=t3-ido;
   356         t6=t4-ido;
   357         for(k=0;k<l1;k++){
   358           t5+=ido;
   359           t6+=ido;
   360           c1[t5-1]=ch[t5-1]+ch[t6-1];
   361           c1[t6-1]=ch[t5]-ch[t6];
   362           c1[t5]=ch[t5]+ch[t6];
   363           c1[t6]=ch[t6-1]-ch[t5-1];
   364         }
   365       }
   366     }
   367   }else{
   368     for(j=1;j<ipph;j++){
   369       t1+=t0;
   370       t2-=t0;
   371       t3=t1;
   372       t4=t2;
   373       for(k=0;k<l1;k++){
   374         t5=t3;
   375         t6=t4;
   376         for(i=2;i<ido;i+=2){
   377           t5+=2;
   378           t6+=2;
   379           c1[t5-1]=ch[t5-1]+ch[t6-1];
   380           c1[t6-1]=ch[t5]-ch[t6];
   381           c1[t5]=ch[t5]+ch[t6];
   382           c1[t6]=ch[t6-1]-ch[t5-1];
   383         }
   384         t3+=ido;
   385         t4+=ido;
   386       }
   387     }
   388   }
   390 L119:
   391   for(ik=0;ik<idl1;ik++)c2[ik]=ch2[ik];
   393   t1=0;
   394   t2=ipp2*idl1;
   395   for(j=1;j<ipph;j++){
   396     t1+=t0;
   397     t2-=t0;
   398     t3=t1-ido;
   399     t4=t2-ido;
   400     for(k=0;k<l1;k++){
   401       t3+=ido;
   402       t4+=ido;
   403       c1[t3]=ch[t3]+ch[t4];
   404       c1[t4]=ch[t4]-ch[t3];
   405     }
   406   }
   408   ar1=1.f;
   409   ai1=0.f;
   410   t1=0;
   411   t2=ipp2*idl1;
   412   t3=(ip-1)*idl1;
   413   for(l=1;l<ipph;l++){
   414     t1+=idl1;
   415     t2-=idl1;
   416     ar1h=dcp*ar1-dsp*ai1;
   417     ai1=dcp*ai1+dsp*ar1;
   418     ar1=ar1h;
   419     t4=t1;
   420     t5=t2;
   421     t6=t3;
   422     t7=idl1;
   424     for(ik=0;ik<idl1;ik++){
   425       ch2[t4++]=c2[ik]+ar1*c2[t7++];
   426       ch2[t5++]=ai1*c2[t6++];
   427     }
   429     dc2=ar1;
   430     ds2=ai1;
   431     ar2=ar1;
   432     ai2=ai1;
   434     t4=idl1;
   435     t5=(ipp2-1)*idl1;
   436     for(j=2;j<ipph;j++){
   437       t4+=idl1;
   438       t5-=idl1;
   440       ar2h=dc2*ar2-ds2*ai2;
   441       ai2=dc2*ai2+ds2*ar2;
   442       ar2=ar2h;
   444       t6=t1;
   445       t7=t2;
   446       t8=t4;
   447       t9=t5;
   448       for(ik=0;ik<idl1;ik++){
   449         ch2[t6++]+=ar2*c2[t8++];
   450         ch2[t7++]+=ai2*c2[t9++];
   451       }
   452     }
   453   }
   455   t1=0;
   456   for(j=1;j<ipph;j++){
   457     t1+=idl1;
   458     t2=t1;
   459     for(ik=0;ik<idl1;ik++)ch2[ik]+=c2[t2++];
   460   }
   462   if(ido<l1)goto L132;
   464   t1=0;
   465   t2=0;
   466   for(k=0;k<l1;k++){
   467     t3=t1;
   468     t4=t2;
   469     for(i=0;i<ido;i++)cc[t4++]=ch[t3++];
   470     t1+=ido;
   471     t2+=t10;
   472   }
   474   goto L135;
   476  L132:
   477   for(i=0;i<ido;i++){
   478     t1=i;
   479     t2=i;
   480     for(k=0;k<l1;k++){
   481       cc[t2]=ch[t1];
   482       t1+=ido;
   483       t2+=t10;
   484     }
   485   }
   487  L135:
   488   t1=0;
   489   t2=ido<<1;
   490   t3=0;
   491   t4=ipp2*t0;
   492   for(j=1;j<ipph;j++){
   494     t1+=t2;
   495     t3+=t0;
   496     t4-=t0;
   498     t5=t1;
   499     t6=t3;
   500     t7=t4;
   502     for(k=0;k<l1;k++){
   503       cc[t5-1]=ch[t6];
   504       cc[t5]=ch[t7];
   505       t5+=t10;
   506       t6+=ido;
   507       t7+=ido;
   508     }
   509   }
   511   if(ido==1)return;
   512   if(nbd<l1)goto L141;
   514   t1=-ido;
   515   t3=0;
   516   t4=0;
   517   t5=ipp2*t0;
   518   for(j=1;j<ipph;j++){
   519     t1+=t2;
   520     t3+=t2;
   521     t4+=t0;
   522     t5-=t0;
   523     t6=t1;
   524     t7=t3;
   525     t8=t4;
   526     t9=t5;
   527     for(k=0;k<l1;k++){
   528       for(i=2;i<ido;i+=2){
   529         ic=idp2-i;
   530         cc[i+t7-1]=ch[i+t8-1]+ch[i+t9-1];
   531         cc[ic+t6-1]=ch[i+t8-1]-ch[i+t9-1];
   532         cc[i+t7]=ch[i+t8]+ch[i+t9];
   533         cc[ic+t6]=ch[i+t9]-ch[i+t8];
   534       }
   535       t6+=t10;
   536       t7+=t10;
   537       t8+=ido;
   538       t9+=ido;
   539     }
   540   }
   541   return;
   543  L141:
   545   t1=-ido;
   546   t3=0;
   547   t4=0;
   548   t5=ipp2*t0;
   549   for(j=1;j<ipph;j++){
   550     t1+=t2;
   551     t3+=t2;
   552     t4+=t0;
   553     t5-=t0;
   554     for(i=2;i<ido;i+=2){
   555       t6=idp2+t1-i;
   556       t7=i+t3;
   557       t8=i+t4;
   558       t9=i+t5;
   559       for(k=0;k<l1;k++){
   560         cc[t7-1]=ch[t8-1]+ch[t9-1];
   561         cc[t6-1]=ch[t8-1]-ch[t9-1];
   562         cc[t7]=ch[t8]+ch[t9];
   563         cc[t6]=ch[t9]-ch[t8];
   564         t6+=t10;
   565         t7+=t10;
   566         t8+=ido;
   567         t9+=ido;
   568       }
   569     }
   570   }
   571 }
   573 static void drftf1(int n,float *c,float *ch,float *wa,int *ifac){
   574   int i,k1,l1,l2;
   575   int na,kh,nf;
   576   int ip,iw,ido,idl1,ix2,ix3;
   578   nf=ifac[1];
   579   na=1;
   580   l2=n;
   581   iw=n;
   583   for(k1=0;k1<nf;k1++){
   584     kh=nf-k1;
   585     ip=ifac[kh+1];
   586     l1=l2/ip;
   587     ido=n/l2;
   588     idl1=ido*l1;
   589     iw-=(ip-1)*ido;
   590     na=1-na;
   592     if(ip!=4)goto L102;
   594     ix2=iw+ido;
   595     ix3=ix2+ido;
   596     if(na!=0)
   597       dradf4(ido,l1,ch,c,wa+iw-1,wa+ix2-1,wa+ix3-1);
   598     else
   599       dradf4(ido,l1,c,ch,wa+iw-1,wa+ix2-1,wa+ix3-1);
   600     goto L110;
   602  L102:
   603     if(ip!=2)goto L104;
   604     if(na!=0)goto L103;
   606     dradf2(ido,l1,c,ch,wa+iw-1);
   607     goto L110;
   609   L103:
   610     dradf2(ido,l1,ch,c,wa+iw-1);
   611     goto L110;
   613   L104:
   614     if(ido==1)na=1-na;
   615     if(na!=0)goto L109;
   617     dradfg(ido,ip,l1,idl1,c,c,c,ch,ch,wa+iw-1);
   618     na=1;
   619     goto L110;
   621   L109:
   622     dradfg(ido,ip,l1,idl1,ch,ch,ch,c,c,wa+iw-1);
   623     na=0;
   625   L110:
   626     l2=l1;
   627   }
   629   if(na==1)return;
   631   for(i=0;i<n;i++)c[i]=ch[i];
   632 }
   634 static void dradb2(int ido,int l1,float *cc,float *ch,float *wa1){
   635   int i,k,t0,t1,t2,t3,t4,t5,t6;
   636   float ti2,tr2;
   638   t0=l1*ido;
   640   t1=0;
   641   t2=0;
   642   t3=(ido<<1)-1;
   643   for(k=0;k<l1;k++){
   644     ch[t1]=cc[t2]+cc[t3+t2];
   645     ch[t1+t0]=cc[t2]-cc[t3+t2];
   646     t2=(t1+=ido)<<1;
   647   }
   649   if(ido<2)return;
   650   if(ido==2)goto L105;
   652   t1=0;
   653   t2=0;
   654   for(k=0;k<l1;k++){
   655     t3=t1;
   656     t5=(t4=t2)+(ido<<1);
   657     t6=t0+t1;
   658     for(i=2;i<ido;i+=2){
   659       t3+=2;
   660       t4+=2;
   661       t5-=2;
   662       t6+=2;
   663       ch[t3-1]=cc[t4-1]+cc[t5-1];
   664       tr2=cc[t4-1]-cc[t5-1];
   665       ch[t3]=cc[t4]-cc[t5];
   666       ti2=cc[t4]+cc[t5];
   667       ch[t6-1]=wa1[i-2]*tr2-wa1[i-1]*ti2;
   668       ch[t6]=wa1[i-2]*ti2+wa1[i-1]*tr2;
   669     }
   670     t2=(t1+=ido)<<1;
   671   }
   673   if(ido%2==1)return;
   675 L105:
   676   t1=ido-1;
   677   t2=ido-1;
   678   for(k=0;k<l1;k++){
   679     ch[t1]=cc[t2]+cc[t2];
   680     ch[t1+t0]=-(cc[t2+1]+cc[t2+1]);
   681     t1+=ido;
   682     t2+=ido<<1;
   683   }
   684 }
   686 static void dradb3(int ido,int l1,float *cc,float *ch,float *wa1,
   687                           float *wa2){
   688   static float taur = -.5f;
   689   static float taui = .8660254037844386f;
   690   int i,k,t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10;
   691   float ci2,ci3,di2,di3,cr2,cr3,dr2,dr3,ti2,tr2;
   692   t0=l1*ido;
   694   t1=0;
   695   t2=t0<<1;
   696   t3=ido<<1;
   697   t4=ido+(ido<<1);
   698   t5=0;
   699   for(k=0;k<l1;k++){
   700     tr2=cc[t3-1]+cc[t3-1];
   701     cr2=cc[t5]+(taur*tr2);
   702     ch[t1]=cc[t5]+tr2;
   703     ci3=taui*(cc[t3]+cc[t3]);
   704     ch[t1+t0]=cr2-ci3;
   705     ch[t1+t2]=cr2+ci3;
   706     t1+=ido;
   707     t3+=t4;
   708     t5+=t4;
   709   }
   711   if(ido==1)return;
   713   t1=0;
   714   t3=ido<<1;
   715   for(k=0;k<l1;k++){
   716     t7=t1+(t1<<1);
   717     t6=(t5=t7+t3);
   718     t8=t1;
   719     t10=(t9=t1+t0)+t0;
   721     for(i=2;i<ido;i+=2){
   722       t5+=2;
   723       t6-=2;
   724       t7+=2;
   725       t8+=2;
   726       t9+=2;
   727       t10+=2;
   728       tr2=cc[t5-1]+cc[t6-1];
   729       cr2=cc[t7-1]+(taur*tr2);
   730       ch[t8-1]=cc[t7-1]+tr2;
   731       ti2=cc[t5]-cc[t6];
   732       ci2=cc[t7]+(taur*ti2);
   733       ch[t8]=cc[t7]+ti2;
   734       cr3=taui*(cc[t5-1]-cc[t6-1]);
   735       ci3=taui*(cc[t5]+cc[t6]);
   736       dr2=cr2-ci3;
   737       dr3=cr2+ci3;
   738       di2=ci2+cr3;
   739       di3=ci2-cr3;
   740       ch[t9-1]=wa1[i-2]*dr2-wa1[i-1]*di2;
   741       ch[t9]=wa1[i-2]*di2+wa1[i-1]*dr2;
   742       ch[t10-1]=wa2[i-2]*dr3-wa2[i-1]*di3;
   743       ch[t10]=wa2[i-2]*di3+wa2[i-1]*dr3;
   744     }
   745     t1+=ido;
   746   }
   747 }
   749 static void dradb4(int ido,int l1,float *cc,float *ch,float *wa1,
   750                           float *wa2,float *wa3){
   751   static float sqrt2=1.414213562373095f;
   752   int i,k,t0,t1,t2,t3,t4,t5,t6,t7,t8;
   753   float ci2,ci3,ci4,cr2,cr3,cr4,ti1,ti2,ti3,ti4,tr1,tr2,tr3,tr4;
   754   t0=l1*ido;
   756   t1=0;
   757   t2=ido<<2;
   758   t3=0;
   759   t6=ido<<1;
   760   for(k=0;k<l1;k++){
   761     t4=t3+t6;
   762     t5=t1;
   763     tr3=cc[t4-1]+cc[t4-1];
   764     tr4=cc[t4]+cc[t4];
   765     tr1=cc[t3]-cc[(t4+=t6)-1];
   766     tr2=cc[t3]+cc[t4-1];
   767     ch[t5]=tr2+tr3;
   768     ch[t5+=t0]=tr1-tr4;
   769     ch[t5+=t0]=tr2-tr3;
   770     ch[t5+=t0]=tr1+tr4;
   771     t1+=ido;
   772     t3+=t2;
   773   }
   775   if(ido<2)return;
   776   if(ido==2)goto L105;
   778   t1=0;
   779   for(k=0;k<l1;k++){
   780     t5=(t4=(t3=(t2=t1<<2)+t6))+t6;
   781     t7=t1;
   782     for(i=2;i<ido;i+=2){
   783       t2+=2;
   784       t3+=2;
   785       t4-=2;
   786       t5-=2;
   787       t7+=2;
   788       ti1=cc[t2]+cc[t5];
   789       ti2=cc[t2]-cc[t5];
   790       ti3=cc[t3]-cc[t4];
   791       tr4=cc[t3]+cc[t4];
   792       tr1=cc[t2-1]-cc[t5-1];
   793       tr2=cc[t2-1]+cc[t5-1];
   794       ti4=cc[t3-1]-cc[t4-1];
   795       tr3=cc[t3-1]+cc[t4-1];
   796       ch[t7-1]=tr2+tr3;
   797       cr3=tr2-tr3;
   798       ch[t7]=ti2+ti3;
   799       ci3=ti2-ti3;
   800       cr2=tr1-tr4;
   801       cr4=tr1+tr4;
   802       ci2=ti1+ti4;
   803       ci4=ti1-ti4;
   805       ch[(t8=t7+t0)-1]=wa1[i-2]*cr2-wa1[i-1]*ci2;
   806       ch[t8]=wa1[i-2]*ci2+wa1[i-1]*cr2;
   807       ch[(t8+=t0)-1]=wa2[i-2]*cr3-wa2[i-1]*ci3;
   808       ch[t8]=wa2[i-2]*ci3+wa2[i-1]*cr3;
   809       ch[(t8+=t0)-1]=wa3[i-2]*cr4-wa3[i-1]*ci4;
   810       ch[t8]=wa3[i-2]*ci4+wa3[i-1]*cr4;
   811     }
   812     t1+=ido;
   813   }
   815   if(ido%2 == 1)return;
   817  L105:
   819   t1=ido;
   820   t2=ido<<2;
   821   t3=ido-1;
   822   t4=ido+(ido<<1);
   823   for(k=0;k<l1;k++){
   824     t5=t3;
   825     ti1=cc[t1]+cc[t4];
   826     ti2=cc[t4]-cc[t1];
   827     tr1=cc[t1-1]-cc[t4-1];
   828     tr2=cc[t1-1]+cc[t4-1];
   829     ch[t5]=tr2+tr2;
   830     ch[t5+=t0]=sqrt2*(tr1-ti1);
   831     ch[t5+=t0]=ti2+ti2;
   832     ch[t5+=t0]=-sqrt2*(tr1+ti1);
   834     t3+=ido;
   835     t1+=t2;
   836     t4+=t2;
   837   }
   838 }
   840 static void dradbg(int ido,int ip,int l1,int idl1,float *cc,float *c1,
   841             float *c2,float *ch,float *ch2,float *wa){
   842   static float tpi=6.283185307179586f;
   843   int idij,ipph,i,j,k,l,ik,is,t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,
   844       t11,t12;
   845   float dc2,ai1,ai2,ar1,ar2,ds2;
   846   int nbd;
   847   float dcp,arg,dsp,ar1h,ar2h;
   848   int ipp2;
   850   t10=ip*ido;
   851   t0=l1*ido;
   852   arg=tpi/(float)ip;
   853   dcp=cos(arg);
   854   dsp=sin(arg);
   855   nbd=(ido-1)>>1;
   856   ipp2=ip;
   857   ipph=(ip+1)>>1;
   858   if(ido<l1)goto L103;
   860   t1=0;
   861   t2=0;
   862   for(k=0;k<l1;k++){
   863     t3=t1;
   864     t4=t2;
   865     for(i=0;i<ido;i++){
   866       ch[t3]=cc[t4];
   867       t3++;
   868       t4++;
   869     }
   870     t1+=ido;
   871     t2+=t10;
   872   }
   873   goto L106;
   875  L103:
   876   t1=0;
   877   for(i=0;i<ido;i++){
   878     t2=t1;
   879     t3=t1;
   880     for(k=0;k<l1;k++){
   881       ch[t2]=cc[t3];
   882       t2+=ido;
   883       t3+=t10;
   884     }
   885     t1++;
   886   }
   888  L106:
   889   t1=0;
   890   t2=ipp2*t0;
   891   t7=(t5=ido<<1);
   892   for(j=1;j<ipph;j++){
   893     t1+=t0;
   894     t2-=t0;
   895     t3=t1;
   896     t4=t2;
   897     t6=t5;
   898     for(k=0;k<l1;k++){
   899       ch[t3]=cc[t6-1]+cc[t6-1];
   900       ch[t4]=cc[t6]+cc[t6];
   901       t3+=ido;
   902       t4+=ido;
   903       t6+=t10;
   904     }
   905     t5+=t7;
   906   }
   908   if (ido == 1)goto L116;
   909   if(nbd<l1)goto L112;
   911   t1=0;
   912   t2=ipp2*t0;
   913   t7=0;
   914   for(j=1;j<ipph;j++){
   915     t1+=t0;
   916     t2-=t0;
   917     t3=t1;
   918     t4=t2;
   920     t7+=(ido<<1);
   921     t8=t7;
   922     for(k=0;k<l1;k++){
   923       t5=t3;
   924       t6=t4;
   925       t9=t8;
   926       t11=t8;
   927       for(i=2;i<ido;i+=2){
   928         t5+=2;
   929         t6+=2;
   930         t9+=2;
   931         t11-=2;
   932         ch[t5-1]=cc[t9-1]+cc[t11-1];
   933         ch[t6-1]=cc[t9-1]-cc[t11-1];
   934         ch[t5]=cc[t9]-cc[t11];
   935         ch[t6]=cc[t9]+cc[t11];
   936       }
   937       t3+=ido;
   938       t4+=ido;
   939       t8+=t10;
   940     }
   941   }
   942   goto L116;
   944  L112:
   945   t1=0;
   946   t2=ipp2*t0;
   947   t7=0;
   948   for(j=1;j<ipph;j++){
   949     t1+=t0;
   950     t2-=t0;
   951     t3=t1;
   952     t4=t2;
   953     t7+=(ido<<1);
   954     t8=t7;
   955     t9=t7;
   956     for(i=2;i<ido;i+=2){
   957       t3+=2;
   958       t4+=2;
   959       t8+=2;
   960       t9-=2;
   961       t5=t3;
   962       t6=t4;
   963       t11=t8;
   964       t12=t9;
   965       for(k=0;k<l1;k++){
   966         ch[t5-1]=cc[t11-1]+cc[t12-1];
   967         ch[t6-1]=cc[t11-1]-cc[t12-1];
   968         ch[t5]=cc[t11]-cc[t12];
   969         ch[t6]=cc[t11]+cc[t12];
   970         t5+=ido;
   971         t6+=ido;
   972         t11+=t10;
   973         t12+=t10;
   974       }
   975     }
   976   }
   978 L116:
   979   ar1=1.f;
   980   ai1=0.f;
   981   t1=0;
   982   t9=(t2=ipp2*idl1);
   983   t3=(ip-1)*idl1;
   984   for(l=1;l<ipph;l++){
   985     t1+=idl1;
   986     t2-=idl1;
   988     ar1h=dcp*ar1-dsp*ai1;
   989     ai1=dcp*ai1+dsp*ar1;
   990     ar1=ar1h;
   991     t4=t1;
   992     t5=t2;
   993     t6=0;
   994     t7=idl1;
   995     t8=t3;
   996     for(ik=0;ik<idl1;ik++){
   997       c2[t4++]=ch2[t6++]+ar1*ch2[t7++];
   998       c2[t5++]=ai1*ch2[t8++];
   999     }
  1000     dc2=ar1;
  1001     ds2=ai1;
  1002     ar2=ar1;
  1003     ai2=ai1;
  1005     t6=idl1;
  1006     t7=t9-idl1;
  1007     for(j=2;j<ipph;j++){
  1008       t6+=idl1;
  1009       t7-=idl1;
  1010       ar2h=dc2*ar2-ds2*ai2;
  1011       ai2=dc2*ai2+ds2*ar2;
  1012       ar2=ar2h;
  1013       t4=t1;
  1014       t5=t2;
  1015       t11=t6;
  1016       t12=t7;
  1017       for(ik=0;ik<idl1;ik++){
  1018         c2[t4++]+=ar2*ch2[t11++];
  1019         c2[t5++]+=ai2*ch2[t12++];
  1024   t1=0;
  1025   for(j=1;j<ipph;j++){
  1026     t1+=idl1;
  1027     t2=t1;
  1028     for(ik=0;ik<idl1;ik++)ch2[ik]+=ch2[t2++];
  1031   t1=0;
  1032   t2=ipp2*t0;
  1033   for(j=1;j<ipph;j++){
  1034     t1+=t0;
  1035     t2-=t0;
  1036     t3=t1;
  1037     t4=t2;
  1038     for(k=0;k<l1;k++){
  1039       ch[t3]=c1[t3]-c1[t4];
  1040       ch[t4]=c1[t3]+c1[t4];
  1041       t3+=ido;
  1042       t4+=ido;
  1046   if(ido==1)goto L132;
  1047   if(nbd<l1)goto L128;
  1049   t1=0;
  1050   t2=ipp2*t0;
  1051   for(j=1;j<ipph;j++){
  1052     t1+=t0;
  1053     t2-=t0;
  1054     t3=t1;
  1055     t4=t2;
  1056     for(k=0;k<l1;k++){
  1057       t5=t3;
  1058       t6=t4;
  1059       for(i=2;i<ido;i+=2){
  1060         t5+=2;
  1061         t6+=2;
  1062         ch[t5-1]=c1[t5-1]-c1[t6];
  1063         ch[t6-1]=c1[t5-1]+c1[t6];
  1064         ch[t5]=c1[t5]+c1[t6-1];
  1065         ch[t6]=c1[t5]-c1[t6-1];
  1067       t3+=ido;
  1068       t4+=ido;
  1071   goto L132;
  1073  L128:
  1074   t1=0;
  1075   t2=ipp2*t0;
  1076   for(j=1;j<ipph;j++){
  1077     t1+=t0;
  1078     t2-=t0;
  1079     t3=t1;
  1080     t4=t2;
  1081     for(i=2;i<ido;i+=2){
  1082       t3+=2;
  1083       t4+=2;
  1084       t5=t3;
  1085       t6=t4;
  1086       for(k=0;k<l1;k++){
  1087         ch[t5-1]=c1[t5-1]-c1[t6];
  1088         ch[t6-1]=c1[t5-1]+c1[t6];
  1089         ch[t5]=c1[t5]+c1[t6-1];
  1090         ch[t6]=c1[t5]-c1[t6-1];
  1091         t5+=ido;
  1092         t6+=ido;
  1097 L132:
  1098   if(ido==1)return;
  1100   for(ik=0;ik<idl1;ik++)c2[ik]=ch2[ik];
  1102   t1=0;
  1103   for(j=1;j<ip;j++){
  1104     t2=(t1+=t0);
  1105     for(k=0;k<l1;k++){
  1106       c1[t2]=ch[t2];
  1107       t2+=ido;
  1111   if(nbd>l1)goto L139;
  1113   is= -ido-1;
  1114   t1=0;
  1115   for(j=1;j<ip;j++){
  1116     is+=ido;
  1117     t1+=t0;
  1118     idij=is;
  1119     t2=t1;
  1120     for(i=2;i<ido;i+=2){
  1121       t2+=2;
  1122       idij+=2;
  1123       t3=t2;
  1124       for(k=0;k<l1;k++){
  1125         c1[t3-1]=wa[idij-1]*ch[t3-1]-wa[idij]*ch[t3];
  1126         c1[t3]=wa[idij-1]*ch[t3]+wa[idij]*ch[t3-1];
  1127         t3+=ido;
  1131   return;
  1133  L139:
  1134   is= -ido-1;
  1135   t1=0;
  1136   for(j=1;j<ip;j++){
  1137     is+=ido;
  1138     t1+=t0;
  1139     t2=t1;
  1140     for(k=0;k<l1;k++){
  1141       idij=is;
  1142       t3=t2;
  1143       for(i=2;i<ido;i+=2){
  1144         idij+=2;
  1145         t3+=2;
  1146         c1[t3-1]=wa[idij-1]*ch[t3-1]-wa[idij]*ch[t3];
  1147         c1[t3]=wa[idij-1]*ch[t3]+wa[idij]*ch[t3-1];
  1149       t2+=ido;
  1154 static void drftb1(int n, float *c, float *ch, float *wa, int *ifac){
  1155   int i,k1,l1,l2;
  1156   int na;
  1157   int nf,ip,iw,ix2,ix3,ido,idl1;
  1159   nf=ifac[1];
  1160   na=0;
  1161   l1=1;
  1162   iw=1;
  1164   for(k1=0;k1<nf;k1++){
  1165     ip=ifac[k1 + 2];
  1166     l2=ip*l1;
  1167     ido=n/l2;
  1168     idl1=ido*l1;
  1169     if(ip!=4)goto L103;
  1170     ix2=iw+ido;
  1171     ix3=ix2+ido;
  1173     if(na!=0)
  1174       dradb4(ido,l1,ch,c,wa+iw-1,wa+ix2-1,wa+ix3-1);
  1175     else
  1176       dradb4(ido,l1,c,ch,wa+iw-1,wa+ix2-1,wa+ix3-1);
  1177     na=1-na;
  1178     goto L115;
  1180   L103:
  1181     if(ip!=2)goto L106;
  1183     if(na!=0)
  1184       dradb2(ido,l1,ch,c,wa+iw-1);
  1185     else
  1186       dradb2(ido,l1,c,ch,wa+iw-1);
  1187     na=1-na;
  1188     goto L115;
  1190   L106:
  1191     if(ip!=3)goto L109;
  1193     ix2=iw+ido;
  1194     if(na!=0)
  1195       dradb3(ido,l1,ch,c,wa+iw-1,wa+ix2-1);
  1196     else
  1197       dradb3(ido,l1,c,ch,wa+iw-1,wa+ix2-1);
  1198     na=1-na;
  1199     goto L115;
  1201   L109:
  1202 /*    The radix five case can be translated later..... */
  1203 /*    if(ip!=5)goto L112;
  1205     ix2=iw+ido;
  1206     ix3=ix2+ido;
  1207     ix4=ix3+ido;
  1208     if(na!=0)
  1209       dradb5(ido,l1,ch,c,wa+iw-1,wa+ix2-1,wa+ix3-1,wa+ix4-1);
  1210     else
  1211       dradb5(ido,l1,c,ch,wa+iw-1,wa+ix2-1,wa+ix3-1,wa+ix4-1);
  1212     na=1-na;
  1213     goto L115;
  1215   L112:*/
  1216     if(na!=0)
  1217       dradbg(ido,ip,l1,idl1,ch,ch,ch,c,c,wa+iw-1);
  1218     else
  1219       dradbg(ido,ip,l1,idl1,c,c,c,ch,ch,wa+iw-1);
  1220     if(ido==1)na=1-na;
  1222   L115:
  1223     l1=l2;
  1224     iw+=(ip-1)*ido;
  1227   if(na==0)return;
  1229   for(i=0;i<n;i++)c[i]=ch[i];
  1232 void drft_forward(drft_lookup *l,float *data){
  1233   if(l->n==1)return;
  1234   drftf1(l->n,data,l->trigcache,l->trigcache+l->n,l->splitcache);
  1237 void drft_backward(drft_lookup *l,float *data){
  1238   if (l->n==1)return;
  1239   drftb1(l->n,data,l->trigcache,l->trigcache+l->n,l->splitcache);
  1242 void drft_init(drft_lookup *l,int n){
  1243   l->n=n;
  1244   l->trigcache=_ogg_calloc(3*n,sizeof(*l->trigcache));
  1245   l->splitcache=_ogg_calloc(32,sizeof(*l->splitcache));
  1246   fdrffti(n, l->trigcache, l->splitcache);
  1249 void drft_clear(drft_lookup *l){
  1250   if(l){
  1251     if(l->trigcache)_ogg_free(l->trigcache);
  1252     if(l->splitcache)_ogg_free(l->splitcache);
  1253     memset(l,0,sizeof(*l));

mercurial