Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
1 // Copyright 2005 Google Inc. All Rights Reserved.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 // * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following disclaimer
11 // in the documentation and/or other materials provided with the
12 // distribution.
13 // * Neither the name of Google Inc. nor the names of its
14 // contributors may be used to endorse or promote products derived from
15 // this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 #include "snappy.h"
30 #include "snappy-internal.h"
31 #include "snappy-sinksource.h"
33 #include <stdio.h>
35 #include <algorithm>
36 #include <string>
37 #include <vector>
40 namespace snappy {
42 // Any hash function will produce a valid compressed bitstream, but a good
43 // hash function reduces the number of collisions and thus yields better
44 // compression for compressible input, and more speed for incompressible
45 // input. Of course, it doesn't hurt if the hash function is reasonably fast
46 // either, as it gets called a lot.
47 static inline uint32 HashBytes(uint32 bytes, int shift) {
48 uint32 kMul = 0x1e35a7bd;
49 return (bytes * kMul) >> shift;
50 }
51 static inline uint32 Hash(const char* p, int shift) {
52 return HashBytes(UNALIGNED_LOAD32(p), shift);
53 }
55 size_t MaxCompressedLength(size_t source_len) {
56 // Compressed data can be defined as:
57 // compressed := item* literal*
58 // item := literal* copy
59 //
60 // The trailing literal sequence has a space blowup of at most 62/60
61 // since a literal of length 60 needs one tag byte + one extra byte
62 // for length information.
63 //
64 // Item blowup is trickier to measure. Suppose the "copy" op copies
65 // 4 bytes of data. Because of a special check in the encoding code,
66 // we produce a 4-byte copy only if the offset is < 65536. Therefore
67 // the copy op takes 3 bytes to encode, and this type of item leads
68 // to at most the 62/60 blowup for representing literals.
69 //
70 // Suppose the "copy" op copies 5 bytes of data. If the offset is big
71 // enough, it will take 5 bytes to encode the copy op. Therefore the
72 // worst case here is a one-byte literal followed by a five-byte copy.
73 // I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
74 //
75 // This last factor dominates the blowup, so the final estimate is:
76 return 32 + source_len + source_len/6;
77 }
79 enum {
80 LITERAL = 0,
81 COPY_1_BYTE_OFFSET = 1, // 3 bit length + 3 bits of offset in opcode
82 COPY_2_BYTE_OFFSET = 2,
83 COPY_4_BYTE_OFFSET = 3
84 };
86 // Copy "len" bytes from "src" to "op", one byte at a time. Used for
87 // handling COPY operations where the input and output regions may
88 // overlap. For example, suppose:
89 // src == "ab"
90 // op == src + 2
91 // len == 20
92 // After IncrementalCopy(src, op, len), the result will have
93 // eleven copies of "ab"
94 // ababababababababababab
95 // Note that this does not match the semantics of either memcpy()
96 // or memmove().
97 static inline void IncrementalCopy(const char* src, char* op, int len) {
98 DCHECK_GT(len, 0);
99 do {
100 *op++ = *src++;
101 } while (--len > 0);
102 }
104 // Equivalent to IncrementalCopy except that it can write up to ten extra
105 // bytes after the end of the copy, and that it is faster.
106 //
107 // The main part of this loop is a simple copy of eight bytes at a time until
108 // we've copied (at least) the requested amount of bytes. However, if op and
109 // src are less than eight bytes apart (indicating a repeating pattern of
110 // length < 8), we first need to expand the pattern in order to get the correct
111 // results. For instance, if the buffer looks like this, with the eight-byte
112 // <src> and <op> patterns marked as intervals:
113 //
114 // abxxxxxxxxxxxx
115 // [------] src
116 // [------] op
117 //
118 // a single eight-byte copy from <src> to <op> will repeat the pattern once,
119 // after which we can move <op> two bytes without moving <src>:
120 //
121 // ababxxxxxxxxxx
122 // [------] src
123 // [------] op
124 //
125 // and repeat the exercise until the two no longer overlap.
126 //
127 // This allows us to do very well in the special case of one single byte
128 // repeated many times, without taking a big hit for more general cases.
129 //
130 // The worst case of extra writing past the end of the match occurs when
131 // op - src == 1 and len == 1; the last copy will read from byte positions
132 // [0..7] and write to [4..11], whereas it was only supposed to write to
133 // position 1. Thus, ten excess bytes.
135 namespace {
137 const int kMaxIncrementCopyOverflow = 10;
139 } // namespace
141 static inline void IncrementalCopyFastPath(const char* src, char* op, int len) {
142 while (op - src < 8) {
143 UNALIGNED_STORE64(op, UNALIGNED_LOAD64(src));
144 len -= op - src;
145 op += op - src;
146 }
147 while (len > 0) {
148 UNALIGNED_STORE64(op, UNALIGNED_LOAD64(src));
149 src += 8;
150 op += 8;
151 len -= 8;
152 }
153 }
155 static inline char* EmitLiteral(char* op,
156 const char* literal,
157 int len,
158 bool allow_fast_path) {
159 int n = len - 1; // Zero-length literals are disallowed
160 if (n < 60) {
161 // Fits in tag byte
162 *op++ = LITERAL | (n << 2);
164 // The vast majority of copies are below 16 bytes, for which a
165 // call to memcpy is overkill. This fast path can sometimes
166 // copy up to 15 bytes too much, but that is okay in the
167 // main loop, since we have a bit to go on for both sides:
168 //
169 // - The input will always have kInputMarginBytes = 15 extra
170 // available bytes, as long as we're in the main loop, and
171 // if not, allow_fast_path = false.
172 // - The output will always have 32 spare bytes (see
173 // MaxCompressedLength).
174 if (allow_fast_path && len <= 16) {
175 UNALIGNED_STORE64(op, UNALIGNED_LOAD64(literal));
176 UNALIGNED_STORE64(op + 8, UNALIGNED_LOAD64(literal + 8));
177 return op + len;
178 }
179 } else {
180 // Encode in upcoming bytes
181 char* base = op;
182 int count = 0;
183 op++;
184 while (n > 0) {
185 *op++ = n & 0xff;
186 n >>= 8;
187 count++;
188 }
189 assert(count >= 1);
190 assert(count <= 4);
191 *base = LITERAL | ((59+count) << 2);
192 }
193 memcpy(op, literal, len);
194 return op + len;
195 }
197 static inline char* EmitCopyLessThan64(char* op, size_t offset, int len) {
198 DCHECK_LE(len, 64);
199 DCHECK_GE(len, 4);
200 DCHECK_LT(offset, 65536);
202 if ((len < 12) && (offset < 2048)) {
203 size_t len_minus_4 = len - 4;
204 assert(len_minus_4 < 8); // Must fit in 3 bits
205 *op++ = COPY_1_BYTE_OFFSET | ((len_minus_4) << 2) | ((offset >> 8) << 5);
206 *op++ = offset & 0xff;
207 } else {
208 *op++ = COPY_2_BYTE_OFFSET | ((len-1) << 2);
209 LittleEndian::Store16(op, offset);
210 op += 2;
211 }
212 return op;
213 }
215 static inline char* EmitCopy(char* op, size_t offset, int len) {
216 // Emit 64 byte copies but make sure to keep at least four bytes reserved
217 while (len >= 68) {
218 op = EmitCopyLessThan64(op, offset, 64);
219 len -= 64;
220 }
222 // Emit an extra 60 byte copy if have too much data to fit in one copy
223 if (len > 64) {
224 op = EmitCopyLessThan64(op, offset, 60);
225 len -= 60;
226 }
228 // Emit remainder
229 op = EmitCopyLessThan64(op, offset, len);
230 return op;
231 }
234 bool GetUncompressedLength(const char* start, size_t n, size_t* result) {
235 uint32 v = 0;
236 const char* limit = start + n;
237 if (Varint::Parse32WithLimit(start, limit, &v) != NULL) {
238 *result = v;
239 return true;
240 } else {
241 return false;
242 }
243 }
245 namespace internal {
246 uint16* WorkingMemory::GetHashTable(size_t input_size, int* table_size) {
247 // Use smaller hash table when input.size() is smaller, since we
248 // fill the table, incurring O(hash table size) overhead for
249 // compression, and if the input is short, we won't need that
250 // many hash table entries anyway.
251 assert(kMaxHashTableSize >= 256);
252 size_t htsize = 256;
253 while (htsize < kMaxHashTableSize && htsize < input_size) {
254 htsize <<= 1;
255 }
256 CHECK_EQ(0, htsize & (htsize - 1)) << ": must be power of two";
257 CHECK_LE(htsize, kMaxHashTableSize) << ": hash table too large";
259 uint16* table;
260 if (htsize <= ARRAYSIZE(small_table_)) {
261 table = small_table_;
262 } else {
263 if (large_table_ == NULL) {
264 large_table_ = new uint16[kMaxHashTableSize];
265 }
266 table = large_table_;
267 }
269 *table_size = htsize;
270 memset(table, 0, htsize * sizeof(*table));
271 return table;
272 }
273 } // end namespace internal
275 // For 0 <= offset <= 4, GetUint32AtOffset(UNALIGNED_LOAD64(p), offset) will
276 // equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have
277 // empirically found that overlapping loads such as
278 // UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2)
279 // are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32.
280 static inline uint32 GetUint32AtOffset(uint64 v, int offset) {
281 DCHECK(0 <= offset && offset <= 4) << offset;
282 return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset);
283 }
285 // Flat array compression that does not emit the "uncompressed length"
286 // prefix. Compresses "input" string to the "*op" buffer.
287 //
288 // REQUIRES: "input" is at most "kBlockSize" bytes long.
289 // REQUIRES: "op" points to an array of memory that is at least
290 // "MaxCompressedLength(input.size())" in size.
291 // REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
292 // REQUIRES: "table_size" is a power of two
293 //
294 // Returns an "end" pointer into "op" buffer.
295 // "end - op" is the compressed size of "input".
296 namespace internal {
297 char* CompressFragment(const char* input,
298 size_t input_size,
299 char* op,
300 uint16* table,
301 const int table_size) {
302 // "ip" is the input pointer, and "op" is the output pointer.
303 const char* ip = input;
304 CHECK_LE(input_size, kBlockSize);
305 CHECK_EQ(table_size & (table_size - 1), 0) << ": table must be power of two";
306 const int shift = 32 - Bits::Log2Floor(table_size);
307 DCHECK_EQ(static_cast<int>(kuint32max >> shift), table_size - 1);
308 const char* ip_end = input + input_size;
309 const char* base_ip = ip;
310 // Bytes in [next_emit, ip) will be emitted as literal bytes. Or
311 // [next_emit, ip_end) after the main loop.
312 const char* next_emit = ip;
314 const size_t kInputMarginBytes = 15;
315 if (PREDICT_TRUE(input_size >= kInputMarginBytes)) {
316 const char* ip_limit = input + input_size - kInputMarginBytes;
318 for (uint32 next_hash = Hash(++ip, shift); ; ) {
319 DCHECK_LT(next_emit, ip);
320 // The body of this loop calls EmitLiteral once and then EmitCopy one or
321 // more times. (The exception is that when we're close to exhausting
322 // the input we goto emit_remainder.)
323 //
324 // In the first iteration of this loop we're just starting, so
325 // there's nothing to copy, so calling EmitLiteral once is
326 // necessary. And we only start a new iteration when the
327 // current iteration has determined that a call to EmitLiteral will
328 // precede the next call to EmitCopy (if any).
329 //
330 // Step 1: Scan forward in the input looking for a 4-byte-long match.
331 // If we get close to exhausting the input then goto emit_remainder.
332 //
333 // Heuristic match skipping: If 32 bytes are scanned with no matches
334 // found, start looking only at every other byte. If 32 more bytes are
335 // scanned, look at every third byte, etc.. When a match is found,
336 // immediately go back to looking at every byte. This is a small loss
337 // (~5% performance, ~0.1% density) for compressible data due to more
338 // bookkeeping, but for non-compressible data (such as JPEG) it's a huge
339 // win since the compressor quickly "realizes" the data is incompressible
340 // and doesn't bother looking for matches everywhere.
341 //
342 // The "skip" variable keeps track of how many bytes there are since the
343 // last match; dividing it by 32 (ie. right-shifting by five) gives the
344 // number of bytes to move ahead for each iteration.
345 uint32 skip = 32;
347 const char* next_ip = ip;
348 const char* candidate;
349 do {
350 ip = next_ip;
351 uint32 hash = next_hash;
352 DCHECK_EQ(hash, Hash(ip, shift));
353 uint32 bytes_between_hash_lookups = skip++ >> 5;
354 next_ip = ip + bytes_between_hash_lookups;
355 if (PREDICT_FALSE(next_ip > ip_limit)) {
356 goto emit_remainder;
357 }
358 next_hash = Hash(next_ip, shift);
359 candidate = base_ip + table[hash];
360 DCHECK_GE(candidate, base_ip);
361 DCHECK_LT(candidate, ip);
363 table[hash] = ip - base_ip;
364 } while (PREDICT_TRUE(UNALIGNED_LOAD32(ip) !=
365 UNALIGNED_LOAD32(candidate)));
367 // Step 2: A 4-byte match has been found. We'll later see if more
368 // than 4 bytes match. But, prior to the match, input
369 // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes."
370 DCHECK_LE(next_emit + 16, ip_end);
371 op = EmitLiteral(op, next_emit, ip - next_emit, true);
373 // Step 3: Call EmitCopy, and then see if another EmitCopy could
374 // be our next move. Repeat until we find no match for the
375 // input immediately after what was consumed by the last EmitCopy call.
376 //
377 // If we exit this loop normally then we need to call EmitLiteral next,
378 // though we don't yet know how big the literal will be. We handle that
379 // by proceeding to the next iteration of the main loop. We also can exit
380 // this loop via goto if we get close to exhausting the input.
381 uint64 input_bytes = 0;
382 uint32 candidate_bytes = 0;
384 do {
385 // We have a 4-byte match at ip, and no need to emit any
386 // "literal bytes" prior to ip.
387 const char* base = ip;
388 int matched = 4 + FindMatchLength(candidate + 4, ip + 4, ip_end);
389 ip += matched;
390 size_t offset = base - candidate;
391 DCHECK_EQ(0, memcmp(base, candidate, matched));
392 op = EmitCopy(op, offset, matched);
393 // We could immediately start working at ip now, but to improve
394 // compression we first update table[Hash(ip - 1, ...)].
395 const char* insert_tail = ip - 1;
396 next_emit = ip;
397 if (PREDICT_FALSE(ip >= ip_limit)) {
398 goto emit_remainder;
399 }
400 input_bytes = UNALIGNED_LOAD64(insert_tail);
401 uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift);
402 table[prev_hash] = ip - base_ip - 1;
403 uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift);
404 candidate = base_ip + table[cur_hash];
405 candidate_bytes = UNALIGNED_LOAD32(candidate);
406 table[cur_hash] = ip - base_ip;
407 } while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes);
409 next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift);
410 ++ip;
411 }
412 }
414 emit_remainder:
415 // Emit the remaining bytes as a literal
416 if (next_emit < ip_end) {
417 op = EmitLiteral(op, next_emit, ip_end - next_emit, false);
418 }
420 return op;
421 }
422 } // end namespace internal
424 // Signature of output types needed by decompression code.
425 // The decompression code is templatized on a type that obeys this
426 // signature so that we do not pay virtual function call overhead in
427 // the middle of a tight decompression loop.
428 //
429 // class DecompressionWriter {
430 // public:
431 // // Called before decompression
432 // void SetExpectedLength(size_t length);
433 //
434 // // Called after decompression
435 // bool CheckLength() const;
436 //
437 // // Called repeatedly during decompression
438 // bool Append(const char* ip, size_t length);
439 // bool AppendFromSelf(uint32 offset, size_t length);
440 //
441 // // The difference between TryFastAppend and Append is that TryFastAppend
442 // // is allowed to read up to <available> bytes from the input buffer,
443 // // whereas Append is allowed to read <length>.
444 // //
445 // // Also, TryFastAppend is allowed to return false, declining the append,
446 // // without it being a fatal error -- just "return false" would be
447 // // a perfectly legal implementation of TryFastAppend. The intention
448 // // is for TryFastAppend to allow a fast path in the common case of
449 // // a small append.
450 // //
451 // // NOTE(user): TryFastAppend must always return decline (return false)
452 // // if <length> is 61 or more, as in this case the literal length is not
453 // // decoded fully. In practice, this should not be a big problem,
454 // // as it is unlikely that one would implement a fast path accepting
455 // // this much data.
456 // bool TryFastAppend(const char* ip, size_t available, size_t length);
457 // };
459 // -----------------------------------------------------------------------
460 // Lookup table for decompression code. Generated by ComputeTable() below.
461 // -----------------------------------------------------------------------
463 // Mapping from i in range [0,4] to a mask to extract the bottom 8*i bits
464 static const uint32 wordmask[] = {
465 0u, 0xffu, 0xffffu, 0xffffffu, 0xffffffffu
466 };
468 // Data stored per entry in lookup table:
469 // Range Bits-used Description
470 // ------------------------------------
471 // 1..64 0..7 Literal/copy length encoded in opcode byte
472 // 0..7 8..10 Copy offset encoded in opcode byte / 256
473 // 0..4 11..13 Extra bytes after opcode
474 //
475 // We use eight bits for the length even though 7 would have sufficed
476 // because of efficiency reasons:
477 // (1) Extracting a byte is faster than a bit-field
478 // (2) It properly aligns copy offset so we do not need a <<8
479 static const uint16 char_table[256] = {
480 0x0001, 0x0804, 0x1001, 0x2001, 0x0002, 0x0805, 0x1002, 0x2002,
481 0x0003, 0x0806, 0x1003, 0x2003, 0x0004, 0x0807, 0x1004, 0x2004,
482 0x0005, 0x0808, 0x1005, 0x2005, 0x0006, 0x0809, 0x1006, 0x2006,
483 0x0007, 0x080a, 0x1007, 0x2007, 0x0008, 0x080b, 0x1008, 0x2008,
484 0x0009, 0x0904, 0x1009, 0x2009, 0x000a, 0x0905, 0x100a, 0x200a,
485 0x000b, 0x0906, 0x100b, 0x200b, 0x000c, 0x0907, 0x100c, 0x200c,
486 0x000d, 0x0908, 0x100d, 0x200d, 0x000e, 0x0909, 0x100e, 0x200e,
487 0x000f, 0x090a, 0x100f, 0x200f, 0x0010, 0x090b, 0x1010, 0x2010,
488 0x0011, 0x0a04, 0x1011, 0x2011, 0x0012, 0x0a05, 0x1012, 0x2012,
489 0x0013, 0x0a06, 0x1013, 0x2013, 0x0014, 0x0a07, 0x1014, 0x2014,
490 0x0015, 0x0a08, 0x1015, 0x2015, 0x0016, 0x0a09, 0x1016, 0x2016,
491 0x0017, 0x0a0a, 0x1017, 0x2017, 0x0018, 0x0a0b, 0x1018, 0x2018,
492 0x0019, 0x0b04, 0x1019, 0x2019, 0x001a, 0x0b05, 0x101a, 0x201a,
493 0x001b, 0x0b06, 0x101b, 0x201b, 0x001c, 0x0b07, 0x101c, 0x201c,
494 0x001d, 0x0b08, 0x101d, 0x201d, 0x001e, 0x0b09, 0x101e, 0x201e,
495 0x001f, 0x0b0a, 0x101f, 0x201f, 0x0020, 0x0b0b, 0x1020, 0x2020,
496 0x0021, 0x0c04, 0x1021, 0x2021, 0x0022, 0x0c05, 0x1022, 0x2022,
497 0x0023, 0x0c06, 0x1023, 0x2023, 0x0024, 0x0c07, 0x1024, 0x2024,
498 0x0025, 0x0c08, 0x1025, 0x2025, 0x0026, 0x0c09, 0x1026, 0x2026,
499 0x0027, 0x0c0a, 0x1027, 0x2027, 0x0028, 0x0c0b, 0x1028, 0x2028,
500 0x0029, 0x0d04, 0x1029, 0x2029, 0x002a, 0x0d05, 0x102a, 0x202a,
501 0x002b, 0x0d06, 0x102b, 0x202b, 0x002c, 0x0d07, 0x102c, 0x202c,
502 0x002d, 0x0d08, 0x102d, 0x202d, 0x002e, 0x0d09, 0x102e, 0x202e,
503 0x002f, 0x0d0a, 0x102f, 0x202f, 0x0030, 0x0d0b, 0x1030, 0x2030,
504 0x0031, 0x0e04, 0x1031, 0x2031, 0x0032, 0x0e05, 0x1032, 0x2032,
505 0x0033, 0x0e06, 0x1033, 0x2033, 0x0034, 0x0e07, 0x1034, 0x2034,
506 0x0035, 0x0e08, 0x1035, 0x2035, 0x0036, 0x0e09, 0x1036, 0x2036,
507 0x0037, 0x0e0a, 0x1037, 0x2037, 0x0038, 0x0e0b, 0x1038, 0x2038,
508 0x0039, 0x0f04, 0x1039, 0x2039, 0x003a, 0x0f05, 0x103a, 0x203a,
509 0x003b, 0x0f06, 0x103b, 0x203b, 0x003c, 0x0f07, 0x103c, 0x203c,
510 0x0801, 0x0f08, 0x103d, 0x203d, 0x1001, 0x0f09, 0x103e, 0x203e,
511 0x1801, 0x0f0a, 0x103f, 0x203f, 0x2001, 0x0f0b, 0x1040, 0x2040
512 };
514 // In debug mode, allow optional computation of the table at startup.
515 // Also, check that the decompression table is correct.
516 #ifndef NDEBUG
517 DEFINE_bool(snappy_dump_decompression_table, false,
518 "If true, we print the decompression table at startup.");
520 static uint16 MakeEntry(unsigned int extra,
521 unsigned int len,
522 unsigned int copy_offset) {
523 // Check that all of the fields fit within the allocated space
524 DCHECK_EQ(extra, extra & 0x7); // At most 3 bits
525 DCHECK_EQ(copy_offset, copy_offset & 0x7); // At most 3 bits
526 DCHECK_EQ(len, len & 0x7f); // At most 7 bits
527 return len | (copy_offset << 8) | (extra << 11);
528 }
530 static void ComputeTable() {
531 uint16 dst[256];
533 // Place invalid entries in all places to detect missing initialization
534 int assigned = 0;
535 for (int i = 0; i < 256; i++) {
536 dst[i] = 0xffff;
537 }
539 // Small LITERAL entries. We store (len-1) in the top 6 bits.
540 for (unsigned int len = 1; len <= 60; len++) {
541 dst[LITERAL | ((len-1) << 2)] = MakeEntry(0, len, 0);
542 assigned++;
543 }
545 // Large LITERAL entries. We use 60..63 in the high 6 bits to
546 // encode the number of bytes of length info that follow the opcode.
547 for (unsigned int extra_bytes = 1; extra_bytes <= 4; extra_bytes++) {
548 // We set the length field in the lookup table to 1 because extra
549 // bytes encode len-1.
550 dst[LITERAL | ((extra_bytes+59) << 2)] = MakeEntry(extra_bytes, 1, 0);
551 assigned++;
552 }
554 // COPY_1_BYTE_OFFSET.
555 //
556 // The tag byte in the compressed data stores len-4 in 3 bits, and
557 // offset/256 in 5 bits. offset%256 is stored in the next byte.
558 //
559 // This format is used for length in range [4..11] and offset in
560 // range [0..2047]
561 for (unsigned int len = 4; len < 12; len++) {
562 for (unsigned int offset = 0; offset < 2048; offset += 256) {
563 dst[COPY_1_BYTE_OFFSET | ((len-4)<<2) | ((offset>>8)<<5)] =
564 MakeEntry(1, len, offset>>8);
565 assigned++;
566 }
567 }
569 // COPY_2_BYTE_OFFSET.
570 // Tag contains len-1 in top 6 bits, and offset in next two bytes.
571 for (unsigned int len = 1; len <= 64; len++) {
572 dst[COPY_2_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(2, len, 0);
573 assigned++;
574 }
576 // COPY_4_BYTE_OFFSET.
577 // Tag contents len-1 in top 6 bits, and offset in next four bytes.
578 for (unsigned int len = 1; len <= 64; len++) {
579 dst[COPY_4_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(4, len, 0);
580 assigned++;
581 }
583 // Check that each entry was initialized exactly once.
584 CHECK_EQ(assigned, 256);
585 for (int i = 0; i < 256; i++) {
586 CHECK_NE(dst[i], 0xffff);
587 }
589 if (FLAGS_snappy_dump_decompression_table) {
590 printf("static const uint16 char_table[256] = {\n ");
591 for (int i = 0; i < 256; i++) {
592 printf("0x%04x%s",
593 dst[i],
594 ((i == 255) ? "\n" : (((i%8) == 7) ? ",\n " : ", ")));
595 }
596 printf("};\n");
597 }
599 // Check that computed table matched recorded table
600 for (int i = 0; i < 256; i++) {
601 CHECK_EQ(dst[i], char_table[i]);
602 }
603 }
604 #endif /* !NDEBUG */
606 // Helper class for decompression
607 class SnappyDecompressor {
608 private:
609 Source* reader_; // Underlying source of bytes to decompress
610 const char* ip_; // Points to next buffered byte
611 const char* ip_limit_; // Points just past buffered bytes
612 uint32 peeked_; // Bytes peeked from reader (need to skip)
613 bool eof_; // Hit end of input without an error?
614 char scratch_[5]; // Temporary buffer for PeekFast() boundaries
616 // Ensure that all of the tag metadata for the next tag is available
617 // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even
618 // if (ip_limit_ - ip_ < 5).
619 //
620 // Returns true on success, false on error or end of input.
621 bool RefillTag();
623 public:
624 explicit SnappyDecompressor(Source* reader)
625 : reader_(reader),
626 ip_(NULL),
627 ip_limit_(NULL),
628 peeked_(0),
629 eof_(false) {
630 }
632 ~SnappyDecompressor() {
633 // Advance past any bytes we peeked at from the reader
634 reader_->Skip(peeked_);
635 }
637 // Returns true iff we have hit the end of the input without an error.
638 bool eof() const {
639 return eof_;
640 }
642 // Read the uncompressed length stored at the start of the compressed data.
643 // On succcess, stores the length in *result and returns true.
644 // On failure, returns false.
645 bool ReadUncompressedLength(uint32* result) {
646 DCHECK(ip_ == NULL); // Must not have read anything yet
647 // Length is encoded in 1..5 bytes
648 *result = 0;
649 uint32 shift = 0;
650 while (true) {
651 if (shift >= 32) return false;
652 size_t n;
653 const char* ip = reader_->Peek(&n);
654 if (n == 0) return false;
655 const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
656 reader_->Skip(1);
657 *result |= static_cast<uint32>(c & 0x7f) << shift;
658 if (c < 128) {
659 break;
660 }
661 shift += 7;
662 }
663 return true;
664 }
666 // Process the next item found in the input.
667 // Returns true if successful, false on error or end of input.
668 template <class Writer>
669 void DecompressAllTags(Writer* writer) {
670 const char* ip = ip_;
672 // We could have put this refill fragment only at the beginning of the loop.
673 // However, duplicating it at the end of each branch gives the compiler more
674 // scope to optimize the <ip_limit_ - ip> expression based on the local
675 // context, which overall increases speed.
676 #define MAYBE_REFILL() \
677 if (ip_limit_ - ip < 5) { \
678 ip_ = ip; \
679 if (!RefillTag()) return; \
680 ip = ip_; \
681 }
683 MAYBE_REFILL();
684 for ( ;; ) {
685 const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++));
687 if ((c & 0x3) == LITERAL) {
688 size_t literal_length = (c >> 2) + 1u;
689 if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) {
690 DCHECK_LT(literal_length, 61);
691 ip += literal_length;
692 MAYBE_REFILL();
693 continue;
694 }
695 if (PREDICT_FALSE(literal_length >= 61)) {
696 // Long literal.
697 const size_t literal_length_length = literal_length - 60;
698 literal_length =
699 (LittleEndian::Load32(ip) & wordmask[literal_length_length]) + 1;
700 ip += literal_length_length;
701 }
703 size_t avail = ip_limit_ - ip;
704 while (avail < literal_length) {
705 if (!writer->Append(ip, avail)) return;
706 literal_length -= avail;
707 reader_->Skip(peeked_);
708 size_t n;
709 ip = reader_->Peek(&n);
710 avail = n;
711 peeked_ = avail;
712 if (avail == 0) return; // Premature end of input
713 ip_limit_ = ip + avail;
714 }
715 if (!writer->Append(ip, literal_length)) {
716 return;
717 }
718 ip += literal_length;
719 MAYBE_REFILL();
720 } else {
721 const uint32 entry = char_table[c];
722 const uint32 trailer = LittleEndian::Load32(ip) & wordmask[entry >> 11];
723 const uint32 length = entry & 0xff;
724 ip += entry >> 11;
726 // copy_offset/256 is encoded in bits 8..10. By just fetching
727 // those bits, we get copy_offset (since the bit-field starts at
728 // bit 8).
729 const uint32 copy_offset = entry & 0x700;
730 if (!writer->AppendFromSelf(copy_offset + trailer, length)) {
731 return;
732 }
733 MAYBE_REFILL();
734 }
735 }
737 #undef MAYBE_REFILL
738 }
739 };
741 bool SnappyDecompressor::RefillTag() {
742 const char* ip = ip_;
743 if (ip == ip_limit_) {
744 // Fetch a new fragment from the reader
745 reader_->Skip(peeked_); // All peeked bytes are used up
746 size_t n;
747 ip = reader_->Peek(&n);
748 peeked_ = n;
749 if (n == 0) {
750 eof_ = true;
751 return false;
752 }
753 ip_limit_ = ip + n;
754 }
756 // Read the tag character
757 DCHECK_LT(ip, ip_limit_);
758 const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
759 const uint32 entry = char_table[c];
760 const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c'
761 DCHECK_LE(needed, sizeof(scratch_));
763 // Read more bytes from reader if needed
764 uint32 nbuf = ip_limit_ - ip;
765 if (nbuf < needed) {
766 // Stitch together bytes from ip and reader to form the word
767 // contents. We store the needed bytes in "scratch_". They
768 // will be consumed immediately by the caller since we do not
769 // read more than we need.
770 memmove(scratch_, ip, nbuf);
771 reader_->Skip(peeked_); // All peeked bytes are used up
772 peeked_ = 0;
773 while (nbuf < needed) {
774 size_t length;
775 const char* src = reader_->Peek(&length);
776 if (length == 0) return false;
777 uint32 to_add = min<uint32>(needed - nbuf, length);
778 memcpy(scratch_ + nbuf, src, to_add);
779 nbuf += to_add;
780 reader_->Skip(to_add);
781 }
782 DCHECK_EQ(nbuf, needed);
783 ip_ = scratch_;
784 ip_limit_ = scratch_ + needed;
785 } else if (nbuf < 5) {
786 // Have enough bytes, but move into scratch_ so that we do not
787 // read past end of input
788 memmove(scratch_, ip, nbuf);
789 reader_->Skip(peeked_); // All peeked bytes are used up
790 peeked_ = 0;
791 ip_ = scratch_;
792 ip_limit_ = scratch_ + nbuf;
793 } else {
794 // Pass pointer to buffer returned by reader_.
795 ip_ = ip;
796 }
797 return true;
798 }
800 template <typename Writer>
801 static bool InternalUncompress(Source* r,
802 Writer* writer,
803 uint32 max_len) {
804 // Read the uncompressed length from the front of the compressed input
805 SnappyDecompressor decompressor(r);
806 uint32 uncompressed_len = 0;
807 if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false;
808 // Protect against possible DoS attack
809 if (static_cast<uint64>(uncompressed_len) > max_len) {
810 return false;
811 }
813 writer->SetExpectedLength(uncompressed_len);
815 // Process the entire input
816 decompressor.DecompressAllTags(writer);
817 return (decompressor.eof() && writer->CheckLength());
818 }
820 bool GetUncompressedLength(Source* source, uint32* result) {
821 SnappyDecompressor decompressor(source);
822 return decompressor.ReadUncompressedLength(result);
823 }
825 size_t Compress(Source* reader, Sink* writer) {
826 size_t written = 0;
827 size_t N = reader->Available();
828 char ulength[Varint::kMax32];
829 char* p = Varint::Encode32(ulength, N);
830 writer->Append(ulength, p-ulength);
831 written += (p - ulength);
833 internal::WorkingMemory wmem;
834 char* scratch = NULL;
835 char* scratch_output = NULL;
837 while (N > 0) {
838 // Get next block to compress (without copying if possible)
839 size_t fragment_size;
840 const char* fragment = reader->Peek(&fragment_size);
841 DCHECK_NE(fragment_size, 0) << ": premature end of input";
842 const size_t num_to_read = min(N, kBlockSize);
843 size_t bytes_read = fragment_size;
845 size_t pending_advance = 0;
846 if (bytes_read >= num_to_read) {
847 // Buffer returned by reader is large enough
848 pending_advance = num_to_read;
849 fragment_size = num_to_read;
850 } else {
851 // Read into scratch buffer
852 if (scratch == NULL) {
853 // If this is the last iteration, we want to allocate N bytes
854 // of space, otherwise the max possible kBlockSize space.
855 // num_to_read contains exactly the correct value
856 scratch = new char[num_to_read];
857 }
858 memcpy(scratch, fragment, bytes_read);
859 reader->Skip(bytes_read);
861 while (bytes_read < num_to_read) {
862 fragment = reader->Peek(&fragment_size);
863 size_t n = min<size_t>(fragment_size, num_to_read - bytes_read);
864 memcpy(scratch + bytes_read, fragment, n);
865 bytes_read += n;
866 reader->Skip(n);
867 }
868 DCHECK_EQ(bytes_read, num_to_read);
869 fragment = scratch;
870 fragment_size = num_to_read;
871 }
872 DCHECK_EQ(fragment_size, num_to_read);
874 // Get encoding table for compression
875 int table_size;
876 uint16* table = wmem.GetHashTable(num_to_read, &table_size);
878 // Compress input_fragment and append to dest
879 const int max_output = MaxCompressedLength(num_to_read);
881 // Need a scratch buffer for the output, in case the byte sink doesn't
882 // have room for us directly.
883 if (scratch_output == NULL) {
884 scratch_output = new char[max_output];
885 } else {
886 // Since we encode kBlockSize regions followed by a region
887 // which is <= kBlockSize in length, a previously allocated
888 // scratch_output[] region is big enough for this iteration.
889 }
890 char* dest = writer->GetAppendBuffer(max_output, scratch_output);
891 char* end = internal::CompressFragment(fragment, fragment_size,
892 dest, table, table_size);
893 writer->Append(dest, end - dest);
894 written += (end - dest);
896 N -= num_to_read;
897 reader->Skip(pending_advance);
898 }
900 delete[] scratch;
901 delete[] scratch_output;
903 return written;
904 }
906 // -----------------------------------------------------------------------
907 // Flat array interfaces
908 // -----------------------------------------------------------------------
910 // A type that writes to a flat array.
911 // Note that this is not a "ByteSink", but a type that matches the
912 // Writer template argument to SnappyDecompressor::DecompressAllTags().
913 class SnappyArrayWriter {
914 private:
915 char* base_;
916 char* op_;
917 char* op_limit_;
919 public:
920 inline explicit SnappyArrayWriter(char* dst)
921 : base_(dst),
922 op_(dst) {
923 }
925 inline void SetExpectedLength(size_t len) {
926 op_limit_ = op_ + len;
927 }
929 inline bool CheckLength() const {
930 return op_ == op_limit_;
931 }
933 inline bool Append(const char* ip, size_t len) {
934 char* op = op_;
935 const size_t space_left = op_limit_ - op;
936 if (space_left < len) {
937 return false;
938 }
939 memcpy(op, ip, len);
940 op_ = op + len;
941 return true;
942 }
944 inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
945 char* op = op_;
946 const size_t space_left = op_limit_ - op;
947 if (len <= 16 && available >= 16 && space_left >= 16) {
948 // Fast path, used for the majority (about 95%) of invocations.
949 UNALIGNED_STORE64(op, UNALIGNED_LOAD64(ip));
950 UNALIGNED_STORE64(op + 8, UNALIGNED_LOAD64(ip + 8));
951 op_ = op + len;
952 return true;
953 } else {
954 return false;
955 }
956 }
958 inline bool AppendFromSelf(size_t offset, size_t len) {
959 char* op = op_;
960 const size_t space_left = op_limit_ - op;
962 if (op - base_ <= offset - 1u) { // -1u catches offset==0
963 return false;
964 }
965 if (len <= 16 && offset >= 8 && space_left >= 16) {
966 // Fast path, used for the majority (70-80%) of dynamic invocations.
967 UNALIGNED_STORE64(op, UNALIGNED_LOAD64(op - offset));
968 UNALIGNED_STORE64(op + 8, UNALIGNED_LOAD64(op - offset + 8));
969 } else {
970 if (space_left >= len + kMaxIncrementCopyOverflow) {
971 IncrementalCopyFastPath(op - offset, op, len);
972 } else {
973 if (space_left < len) {
974 return false;
975 }
976 IncrementalCopy(op - offset, op, len);
977 }
978 }
980 op_ = op + len;
981 return true;
982 }
983 };
985 bool RawUncompress(const char* compressed, size_t n, char* uncompressed) {
986 ByteArraySource reader(compressed, n);
987 return RawUncompress(&reader, uncompressed);
988 }
990 bool RawUncompress(Source* compressed, char* uncompressed) {
991 SnappyArrayWriter output(uncompressed);
992 return InternalUncompress(compressed, &output, kuint32max);
993 }
995 bool Uncompress(const char* compressed, size_t n, string* uncompressed) {
996 size_t ulength;
997 if (!GetUncompressedLength(compressed, n, &ulength)) {
998 return false;
999 }
1000 // Protect against possible DoS attack
1001 if ((static_cast<uint64>(ulength) + uncompressed->size()) >
1002 uncompressed->max_size()) {
1003 return false;
1004 }
1005 STLStringResizeUninitialized(uncompressed, ulength);
1006 return RawUncompress(compressed, n, string_as_array(uncompressed));
1007 }
1010 // A Writer that drops everything on the floor and just does validation
1011 class SnappyDecompressionValidator {
1012 private:
1013 size_t expected_;
1014 size_t produced_;
1016 public:
1017 inline SnappyDecompressionValidator() : produced_(0) { }
1018 inline void SetExpectedLength(size_t len) {
1019 expected_ = len;
1020 }
1021 inline bool CheckLength() const {
1022 return expected_ == produced_;
1023 }
1024 inline bool Append(const char* ip, size_t len) {
1025 produced_ += len;
1026 return produced_ <= expected_;
1027 }
1028 inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
1029 return false;
1030 }
1031 inline bool AppendFromSelf(size_t offset, size_t len) {
1032 if (produced_ <= offset - 1u) return false; // -1u catches offset==0
1033 produced_ += len;
1034 return produced_ <= expected_;
1035 }
1036 };
1038 bool IsValidCompressedBuffer(const char* compressed, size_t n) {
1039 ByteArraySource reader(compressed, n);
1040 SnappyDecompressionValidator writer;
1041 return InternalUncompress(&reader, &writer, kuint32max);
1042 }
1044 void RawCompress(const char* input,
1045 size_t input_length,
1046 char* compressed,
1047 size_t* compressed_length) {
1048 ByteArraySource reader(input, input_length);
1049 UncheckedByteArraySink writer(compressed);
1050 Compress(&reader, &writer);
1052 // Compute how many bytes were added
1053 *compressed_length = (writer.CurrentDestination() - compressed);
1054 }
1056 size_t Compress(const char* input, size_t input_length, string* compressed) {
1057 // Pre-grow the buffer to the max length of the compressed output
1058 compressed->resize(MaxCompressedLength(input_length));
1060 size_t compressed_length;
1061 RawCompress(input, input_length, string_as_array(compressed),
1062 &compressed_length);
1063 compressed->resize(compressed_length);
1064 return compressed_length;
1065 }
1068 } // end namespace snappy