gfx/skia/trunk/src/animator/SkParseSVGPath.cpp

Thu, 15 Jan 2015 15:55:04 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 15 Jan 2015 15:55:04 +0100
branch
TOR_BUG_9701
changeset 9
a63d609f5ebe
permissions
-rw-r--r--

Back out 97036ab72558 which inappropriately compared turds to third parties.

     2 /*
     3  * Copyright 2006 The Android Open Source Project
     4  *
     5  * Use of this source code is governed by a BSD-style license that can be
     6  * found in the LICENSE file.
     7  */
    10 #include <ctype.h>
    11 #include "SkDrawPath.h"
    12 #include "SkParse.h"
    13 #include "SkPoint.h"
    14 #include "SkUtils.h"
    15 #define QUADRATIC_APPROXIMATION 1
    17 #if QUADRATIC_APPROXIMATION
    18 ////////////////////////////////////////////////////////////////////////////////////
    19 //functions to approximate a cubic using two quadratics
    21 //      midPt sets the first argument to be the midpoint of the other two
    22 //      it is used by quadApprox
    23 static inline void midPt(SkPoint& dest,const SkPoint& a,const SkPoint& b)
    24 {
    25     dest.set(SkScalarAve(a.fX, b.fX),SkScalarAve(a.fY, b.fY));
    26 }
    27 //      quadApprox - makes an approximation, which we hope is faster
    28 static void quadApprox(SkPath &fPath, const SkPoint &p0, const SkPoint &p1, const SkPoint &p2)
    29 {
    30     //divide the cubic up into two cubics, then convert them into quadratics
    31     //define our points
    32     SkPoint c,j,k,l,m,n,o,p,q, mid;
    33     fPath.getLastPt(&c);
    34     midPt(j, p0, c);
    35     midPt(k, p0, p1);
    36     midPt(l, p1, p2);
    37     midPt(o, j, k);
    38     midPt(p, k, l);
    39     midPt(q, o, p);
    40     //compute the first half
    41     m.set(SkScalarHalf(3*j.fX - c.fX), SkScalarHalf(3*j.fY - c.fY));
    42     n.set(SkScalarHalf(3*o.fX -q.fX), SkScalarHalf(3*o.fY - q.fY));
    43     midPt(mid,m,n);
    44     fPath.quadTo(mid,q);
    45     c = q;
    46     //compute the second half
    47     m.set(SkScalarHalf(3*p.fX - c.fX), SkScalarHalf(3*p.fY - c.fY));
    48     n.set(SkScalarHalf(3*l.fX -p2.fX),SkScalarHalf(3*l.fY -p2.fY));
    49     midPt(mid,m,n);
    50     fPath.quadTo(mid,p2);
    51 }
    52 #endif
    55 static inline bool is_between(int c, int min, int max)
    56 {
    57     return (unsigned)(c - min) <= (unsigned)(max - min);
    58 }
    60 static inline bool is_ws(int c)
    61 {
    62     return is_between(c, 1, 32);
    63 }
    65 static inline bool is_digit(int c)
    66 {
    67     return is_between(c, '0', '9');
    68 }
    70 static inline bool is_sep(int c)
    71 {
    72     return is_ws(c) || c == ',';
    73 }
    75 static const char* skip_ws(const char str[])
    76 {
    77     SkASSERT(str);
    78     while (is_ws(*str))
    79         str++;
    80     return str;
    81 }
    83 static const char* skip_sep(const char str[])
    84 {
    85     SkASSERT(str);
    86     while (is_sep(*str))
    87         str++;
    88     return str;
    89 }
    91 static const char* find_points(const char str[], SkPoint value[], int count,
    92      bool isRelative, SkPoint* relative)
    93 {
    94     str = SkParse::FindScalars(str, &value[0].fX, count * 2);
    95     if (isRelative) {
    96         for (int index = 0; index < count; index++) {
    97             value[index].fX += relative->fX;
    98             value[index].fY += relative->fY;
    99         }
   100     }
   101     return str;
   102 }
   104 static const char* find_scalar(const char str[], SkScalar* value,
   105     bool isRelative, SkScalar relative)
   106 {
   107     str = SkParse::FindScalar(str, value);
   108     if (isRelative)
   109         *value += relative;
   110     return str;
   111 }
   113 void SkDrawPath::parseSVG() {
   114     fPath.reset();
   115     const char* data = d.c_str();
   116     SkPoint f = {0, 0};
   117     SkPoint c = {0, 0};
   118     SkPoint lastc = {0, 0};
   119     SkPoint points[3];
   120     char op = '\0';
   121     char previousOp = '\0';
   122     bool relative = false;
   123     do {
   124         data = skip_ws(data);
   125         if (data[0] == '\0')
   126             break;
   127         char ch = data[0];
   128         if (is_digit(ch) || ch == '-' || ch == '+') {
   129             if (op == '\0')
   130                 return;
   131         }
   132         else {
   133             op = ch;
   134             relative = false;
   135             if (islower(op)) {
   136                 op = (char) toupper(op);
   137                 relative = true;
   138             }
   139             data++;
   140             data = skip_sep(data);
   141         }
   142         switch (op) {
   143             case 'M':
   144                 data = find_points(data, points, 1, relative, &c);
   145                 fPath.moveTo(points[0]);
   146                 op = 'L';
   147                 c = points[0];
   148                 break;
   149             case 'L':
   150                 data = find_points(data, points, 1, relative, &c);
   151                 fPath.lineTo(points[0]);
   152                 c = points[0];
   153                 break;
   154             case 'H': {
   155                 SkScalar x;
   156                 data = find_scalar(data, &x, relative, c.fX);
   157                 fPath.lineTo(x, c.fY);
   158                 c.fX = x;
   159             }
   160                 break;
   161             case 'V': {
   162                 SkScalar y;
   163                 data = find_scalar(data, &y, relative, c.fY);
   164                 fPath.lineTo(c.fX, y);
   165                 c.fY = y;
   166             }
   167                 break;
   168             case 'C':
   169                 data = find_points(data, points, 3, relative, &c);
   170                 goto cubicCommon;
   171             case 'S':
   172                 data = find_points(data, &points[1], 2, relative, &c);
   173                 points[0] = c;
   174                 if (previousOp == 'C' || previousOp == 'S') {
   175                     points[0].fX -= lastc.fX - c.fX;
   176                     points[0].fY -= lastc.fY - c.fY;
   177                 }
   178             cubicCommon:
   179     //          if (data[0] == '\0')
   180     //              return;
   181 #if QUADRATIC_APPROXIMATION
   182                     quadApprox(fPath, points[0], points[1], points[2]);
   183 #else   //this way just does a boring, slow old cubic
   184                     fPath.cubicTo(points[0], points[1], points[2]);
   185 #endif
   186         //if we are using the quadApprox, lastc is what it would have been if we had used
   187         //cubicTo
   188                     lastc = points[1];
   189                     c = points[2];
   190                 break;
   191             case 'Q':  // Quadratic Bezier Curve
   192                 data = find_points(data, points, 2, relative, &c);
   193                 goto quadraticCommon;
   194             case 'T':
   195                 data = find_points(data, &points[1], 1, relative, &c);
   196                 points[0] = points[1];
   197                 if (previousOp == 'Q' || previousOp == 'T') {
   198                     points[0].fX = c.fX * 2 - lastc.fX;
   199                     points[0].fY = c.fY * 2 - lastc.fY;
   200                 }
   201             quadraticCommon:
   202                 fPath.quadTo(points[0], points[1]);
   203                 lastc = points[0];
   204                 c = points[1];
   205                 break;
   206             case 'Z':
   207                 fPath.close();
   208 #if 0   // !!! still a bug?
   209                 if (fPath.isEmpty() && (f.fX != 0 || f.fY != 0)) {
   210                     c.fX -= SkScalar.Epsilon;   // !!! enough?
   211                     fPath.moveTo(c);
   212                     fPath.lineTo(f);
   213                     fPath.close();
   214                 }
   215 #endif
   216                 c = f;
   217                 op = '\0';
   218                 break;
   219             case '~': {
   220                 SkPoint args[2];
   221                 data = find_points(data, args, 2, false, NULL);
   222                 fPath.moveTo(args[0].fX, args[0].fY);
   223                 fPath.lineTo(args[1].fX, args[1].fY);
   224             }
   225                 break;
   226             default:
   227                 SkASSERT(0);
   228                 return;
   229         }
   230         if (previousOp == 0)
   231             f = c;
   232         previousOp = op;
   233     } while (data[0] > 0);
   234 }

mercurial