media/libvpx/vp8/decoder/error_concealment.c

Thu, 15 Jan 2015 15:59:08 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 15 Jan 2015 15:59:08 +0100
branch
TOR_BUG_9701
changeset 10
ac0c01689b40
permissions
-rw-r--r--

Implement a real Private Browsing Mode condition by changing the API/ABI;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 /*
     2  *  Copyright (c) 2011 The WebM project authors. All Rights Reserved.
     3  *
     4  *  Use of this source code is governed by a BSD-style license
     5  *  that can be found in the LICENSE file in the root of the source
     6  *  tree. An additional intellectual property rights grant can be found
     7  *  in the file PATENTS.  All contributing project authors may
     8  *  be found in the AUTHORS file in the root of the source tree.
     9  */
    11 #include <assert.h>
    13 #include "error_concealment.h"
    14 #include "onyxd_int.h"
    15 #include "decodemv.h"
    16 #include "vpx_mem/vpx_mem.h"
    17 #include "vp8/common/findnearmv.h"
    19 #define MIN(x,y) (((x)<(y))?(x):(y))
    20 #define MAX(x,y) (((x)>(y))?(x):(y))
    22 #define FLOOR(x,q) ((x) & -(1 << (q)))
    24 #define NUM_NEIGHBORS 20
    26 typedef struct ec_position
    27 {
    28     int row;
    29     int col;
    30 } EC_POS;
    32 /*
    33  * Regenerate the table in Matlab with:
    34  * x = meshgrid((1:4), (1:4));
    35  * y = meshgrid((1:4), (1:4))';
    36  * W = round((1./(sqrt(x.^2 + y.^2))*2^7));
    37  * W(1,1) = 0;
    38  */
    39 static const int weights_q7[5][5] = {
    40        {  0,   128,    64,    43,    32 },
    41        {128,    91,    57,    40,    31 },
    42        { 64,    57,    45,    36,    29 },
    43        { 43,    40,    36,    30,    26 },
    44        { 32,    31,    29,    26,    23 }
    45 };
    47 int vp8_alloc_overlap_lists(VP8D_COMP *pbi)
    48 {
    49     if (pbi->overlaps != NULL)
    50     {
    51         vpx_free(pbi->overlaps);
    52         pbi->overlaps = NULL;
    53     }
    55     pbi->overlaps = vpx_calloc(pbi->common.mb_rows * pbi->common.mb_cols,
    56                                sizeof(MB_OVERLAP));
    58     if (pbi->overlaps == NULL)
    59         return -1;
    61     return 0;
    62 }
    64 void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi)
    65 {
    66     vpx_free(pbi->overlaps);
    67     pbi->overlaps = NULL;
    68 }
    70 /* Inserts a new overlap area value to the list of overlaps of a block */
    71 static void assign_overlap(OVERLAP_NODE* overlaps,
    72                            union b_mode_info *bmi,
    73                            int overlap)
    74 {
    75     int i;
    76     if (overlap <= 0)
    77         return;
    78     /* Find and assign to the next empty overlap node in the list of overlaps.
    79      * Empty is defined as bmi == NULL */
    80     for (i = 0; i < MAX_OVERLAPS; i++)
    81     {
    82         if (overlaps[i].bmi == NULL)
    83         {
    84             overlaps[i].bmi = bmi;
    85             overlaps[i].overlap = overlap;
    86             break;
    87         }
    88     }
    89 }
    91 /* Calculates the overlap area between two 4x4 squares, where the first
    92  * square has its upper-left corner at (b1_row, b1_col) and the second
    93  * square has its upper-left corner at (b2_row, b2_col). Doesn't
    94  * properly handle squares which do not overlap.
    95  */
    96 static int block_overlap(int b1_row, int b1_col, int b2_row, int b2_col)
    97 {
    98     const int int_top = MAX(b1_row, b2_row); // top
    99     const int int_left = MAX(b1_col, b2_col); // left
   100     /* Since each block is 4x4 pixels, adding 4 (Q3) to the left/top edge
   101      * gives us the right/bottom edge.
   102      */
   103     const int int_right = MIN(b1_col + (4<<3), b2_col + (4<<3)); // right
   104     const int int_bottom = MIN(b1_row + (4<<3), b2_row + (4<<3)); // bottom
   105     return (int_bottom - int_top) * (int_right - int_left);
   106 }
   108 /* Calculates the overlap area for all blocks in a macroblock at position
   109  * (mb_row, mb_col) in macroblocks, which are being overlapped by a given
   110  * overlapping block at position (new_row, new_col) (in pixels, Q3). The
   111  * first block being overlapped in the macroblock has position (first_blk_row,
   112  * first_blk_col) in blocks relative the upper-left corner of the image.
   113  */
   114 static void calculate_overlaps_mb(B_OVERLAP *b_overlaps, union b_mode_info *bmi,
   115                                   int new_row, int new_col,
   116                                   int mb_row, int mb_col,
   117                                   int first_blk_row, int first_blk_col)
   118 {
   119     /* Find the blocks within this MB (defined by mb_row, mb_col) which are
   120      * overlapped by bmi and calculate and assign overlap for each of those
   121      * blocks. */
   123     /* Block coordinates relative the upper-left block */
   124     const int rel_ol_blk_row = first_blk_row - mb_row * 4;
   125     const int rel_ol_blk_col = first_blk_col - mb_col * 4;
   126     /* If the block partly overlaps any previous MB, these coordinates
   127      * can be < 0. We don't want to access blocks in previous MBs.
   128      */
   129     const int blk_idx = MAX(rel_ol_blk_row,0) * 4 + MAX(rel_ol_blk_col,0);
   130     /* Upper left overlapping block */
   131     B_OVERLAP *b_ol_ul = &(b_overlaps[blk_idx]);
   133     /* Calculate and assign overlaps for all blocks in this MB
   134      * which the motion compensated block overlaps
   135      */
   136     /* Avoid calculating overlaps for blocks in later MBs */
   137     int end_row = MIN(4 + mb_row * 4 - first_blk_row, 2);
   138     int end_col = MIN(4 + mb_col * 4 - first_blk_col, 2);
   139     int row, col;
   141     /* Check if new_row and new_col are evenly divisible by 4 (Q3),
   142      * and if so we shouldn't check neighboring blocks
   143      */
   144     if (new_row >= 0 && (new_row & 0x1F) == 0)
   145         end_row = 1;
   146     if (new_col >= 0 && (new_col & 0x1F) == 0)
   147         end_col = 1;
   149     /* Check if the overlapping block partly overlaps a previous MB
   150      * and if so, we're overlapping fewer blocks in this MB.
   151      */
   152     if (new_row < (mb_row*16)<<3)
   153         end_row = 1;
   154     if (new_col < (mb_col*16)<<3)
   155         end_col = 1;
   157     for (row = 0; row < end_row; ++row)
   158     {
   159         for (col = 0; col < end_col; ++col)
   160         {
   161             /* input in Q3, result in Q6 */
   162             const int overlap = block_overlap(new_row, new_col,
   163                                                   (((first_blk_row + row) *
   164                                                       4) << 3),
   165                                                   (((first_blk_col + col) *
   166                                                       4) << 3));
   167             assign_overlap(b_ol_ul[row * 4 + col].overlaps, bmi, overlap);
   168         }
   169     }
   170 }
   172 void vp8_calculate_overlaps(MB_OVERLAP *overlap_ul,
   173                             int mb_rows, int mb_cols,
   174                             union b_mode_info *bmi,
   175                             int b_row, int b_col)
   176 {
   177     MB_OVERLAP *mb_overlap;
   178     int row, col, rel_row, rel_col;
   179     int new_row, new_col;
   180     int end_row, end_col;
   181     int overlap_b_row, overlap_b_col;
   182     int overlap_mb_row, overlap_mb_col;
   184     /* mb subpixel position */
   185     row = (4 * b_row) << 3; /* Q3 */
   186     col = (4 * b_col) << 3; /* Q3 */
   188     /* reverse compensate for motion */
   189     new_row = row - bmi->mv.as_mv.row;
   190     new_col = col - bmi->mv.as_mv.col;
   192     if (new_row >= ((16*mb_rows) << 3) || new_col >= ((16*mb_cols) << 3))
   193     {
   194         /* the new block ended up outside the frame */
   195         return;
   196     }
   198     if (new_row <= (-4 << 3) || new_col <= (-4 << 3))
   199     {
   200         /* outside the frame */
   201         return;
   202     }
   203     /* overlapping block's position in blocks */
   204     overlap_b_row = FLOOR(new_row / 4, 3) >> 3;
   205     overlap_b_col = FLOOR(new_col / 4, 3) >> 3;
   207     /* overlapping block's MB position in MBs
   208      * operations are done in Q3
   209      */
   210     overlap_mb_row = FLOOR((overlap_b_row << 3) / 4, 3) >> 3;
   211     overlap_mb_col = FLOOR((overlap_b_col << 3) / 4, 3) >> 3;
   213     end_row = MIN(mb_rows - overlap_mb_row, 2);
   214     end_col = MIN(mb_cols - overlap_mb_col, 2);
   216     /* Don't calculate overlap for MBs we don't overlap */
   217     /* Check if the new block row starts at the last block row of the MB */
   218     if (abs(new_row - ((16*overlap_mb_row) << 3)) < ((3*4) << 3))
   219         end_row = 1;
   220     /* Check if the new block col starts at the last block col of the MB */
   221     if (abs(new_col - ((16*overlap_mb_col) << 3)) < ((3*4) << 3))
   222         end_col = 1;
   224     /* find the MB(s) this block is overlapping */
   225     for (rel_row = 0; rel_row < end_row; ++rel_row)
   226     {
   227         for (rel_col = 0; rel_col < end_col; ++rel_col)
   228         {
   229             if (overlap_mb_row + rel_row < 0 ||
   230                 overlap_mb_col + rel_col < 0)
   231                 continue;
   232             mb_overlap = overlap_ul + (overlap_mb_row + rel_row) * mb_cols +
   233                  overlap_mb_col + rel_col;
   235             calculate_overlaps_mb(mb_overlap->overlaps, bmi,
   236                                   new_row, new_col,
   237                                   overlap_mb_row + rel_row,
   238                                   overlap_mb_col + rel_col,
   239                                   overlap_b_row + rel_row,
   240                                   overlap_b_col + rel_col);
   241         }
   242     }
   243 }
   245 /* Estimates a motion vector given the overlapping blocks' motion vectors.
   246  * Filters out all overlapping blocks which do not refer to the correct
   247  * reference frame type.
   248  */
   249 static void estimate_mv(const OVERLAP_NODE *overlaps, union b_mode_info *bmi)
   250 {
   251     int i;
   252     int overlap_sum = 0;
   253     int row_acc = 0;
   254     int col_acc = 0;
   256     bmi->mv.as_int = 0;
   257     for (i=0; i < MAX_OVERLAPS; ++i)
   258     {
   259         if (overlaps[i].bmi == NULL)
   260             break;
   261         col_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.col;
   262         row_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.row;
   263         overlap_sum += overlaps[i].overlap;
   264     }
   265     if (overlap_sum > 0)
   266     {
   267         /* Q9 / Q6 = Q3 */
   268         bmi->mv.as_mv.col = col_acc / overlap_sum;
   269         bmi->mv.as_mv.row = row_acc / overlap_sum;
   270     }
   271     else
   272     {
   273         bmi->mv.as_mv.col = 0;
   274         bmi->mv.as_mv.row = 0;
   275     }
   276 }
   278 /* Estimates all motion vectors for a macroblock given the lists of
   279  * overlaps for each block. Decides whether or not the MVs must be clamped.
   280  */
   281 static void estimate_mb_mvs(const B_OVERLAP *block_overlaps,
   282                             MODE_INFO *mi,
   283                             int mb_to_left_edge,
   284                             int mb_to_right_edge,
   285                             int mb_to_top_edge,
   286                             int mb_to_bottom_edge)
   287 {
   288     int row, col;
   289     int non_zero_count = 0;
   290     MV * const filtered_mv = &(mi->mbmi.mv.as_mv);
   291     union b_mode_info * const bmi = mi->bmi;
   292     filtered_mv->col = 0;
   293     filtered_mv->row = 0;
   294     mi->mbmi.need_to_clamp_mvs = 0;
   295     for (row = 0; row < 4; ++row)
   296     {
   297         int this_b_to_top_edge = mb_to_top_edge + ((row*4)<<3);
   298         int this_b_to_bottom_edge = mb_to_bottom_edge - ((row*4)<<3);
   299         for (col = 0; col < 4; ++col)
   300         {
   301             int i = row * 4 + col;
   302             int this_b_to_left_edge = mb_to_left_edge + ((col*4)<<3);
   303             int this_b_to_right_edge = mb_to_right_edge - ((col*4)<<3);
   304             /* Estimate vectors for all blocks which are overlapped by this */
   305             /* type. Interpolate/extrapolate the rest of the block's MVs */
   306             estimate_mv(block_overlaps[i].overlaps, &(bmi[i]));
   307             mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds(
   308                                                          &bmi[i].mv,
   309                                                          this_b_to_left_edge,
   310                                                          this_b_to_right_edge,
   311                                                          this_b_to_top_edge,
   312                                                          this_b_to_bottom_edge);
   313             if (bmi[i].mv.as_int != 0)
   314             {
   315                 ++non_zero_count;
   316                 filtered_mv->col += bmi[i].mv.as_mv.col;
   317                 filtered_mv->row += bmi[i].mv.as_mv.row;
   318             }
   319         }
   320     }
   321     if (non_zero_count > 0)
   322     {
   323         filtered_mv->col /= non_zero_count;
   324         filtered_mv->row /= non_zero_count;
   325     }
   326 }
   328 static void calc_prev_mb_overlaps(MB_OVERLAP *overlaps, MODE_INFO *prev_mi,
   329                                     int mb_row, int mb_col,
   330                                     int mb_rows, int mb_cols)
   331 {
   332     int sub_row;
   333     int sub_col;
   334     for (sub_row = 0; sub_row < 4; ++sub_row)
   335     {
   336         for (sub_col = 0; sub_col < 4; ++sub_col)
   337         {
   338             vp8_calculate_overlaps(
   339                                 overlaps, mb_rows, mb_cols,
   340                                 &(prev_mi->bmi[sub_row * 4 + sub_col]),
   341                                 4 * mb_row + sub_row,
   342                                 4 * mb_col + sub_col);
   343         }
   344     }
   345 }
   347 /* Estimate all missing motion vectors. This function does the same as the one
   348  * above, but has different input arguments. */
   349 static void estimate_missing_mvs(MB_OVERLAP *overlaps,
   350                                  MODE_INFO *mi, MODE_INFO *prev_mi,
   351                                  int mb_rows, int mb_cols,
   352                                  unsigned int first_corrupt)
   353 {
   354     int mb_row, mb_col;
   355     vpx_memset(overlaps, 0, sizeof(MB_OVERLAP) * mb_rows * mb_cols);
   356     /* First calculate the overlaps for all blocks */
   357     for (mb_row = 0; mb_row < mb_rows; ++mb_row)
   358     {
   359         for (mb_col = 0; mb_col < mb_cols; ++mb_col)
   360         {
   361             /* We're only able to use blocks referring to the last frame
   362              * when extrapolating new vectors.
   363              */
   364             if (prev_mi->mbmi.ref_frame == LAST_FRAME)
   365             {
   366                 calc_prev_mb_overlaps(overlaps, prev_mi,
   367                                       mb_row, mb_col,
   368                                       mb_rows, mb_cols);
   369             }
   370             ++prev_mi;
   371         }
   372         ++prev_mi;
   373     }
   375     mb_row = first_corrupt / mb_cols;
   376     mb_col = first_corrupt - mb_row * mb_cols;
   377     mi += mb_row*(mb_cols + 1) + mb_col;
   378     /* Go through all macroblocks in the current image with missing MVs
   379      * and calculate new MVs using the overlaps.
   380      */
   381     for (; mb_row < mb_rows; ++mb_row)
   382     {
   383         int mb_to_top_edge = -((mb_row * 16)) << 3;
   384         int mb_to_bottom_edge = ((mb_rows - 1 - mb_row) * 16) << 3;
   385         for (; mb_col < mb_cols; ++mb_col)
   386         {
   387             int mb_to_left_edge = -((mb_col * 16) << 3);
   388             int mb_to_right_edge = ((mb_cols - 1 - mb_col) * 16) << 3;
   389             const B_OVERLAP *block_overlaps =
   390                     overlaps[mb_row*mb_cols + mb_col].overlaps;
   391             mi->mbmi.ref_frame = LAST_FRAME;
   392             mi->mbmi.mode = SPLITMV;
   393             mi->mbmi.uv_mode = DC_PRED;
   394             mi->mbmi.partitioning = 3;
   395             mi->mbmi.segment_id = 0;
   396             estimate_mb_mvs(block_overlaps,
   397                             mi,
   398                             mb_to_left_edge,
   399                             mb_to_right_edge,
   400                             mb_to_top_edge,
   401                             mb_to_bottom_edge);
   402             ++mi;
   403         }
   404         mb_col = 0;
   405         ++mi;
   406     }
   407 }
   409 void vp8_estimate_missing_mvs(VP8D_COMP *pbi)
   410 {
   411     VP8_COMMON * const pc = &pbi->common;
   412     estimate_missing_mvs(pbi->overlaps,
   413                          pc->mi, pc->prev_mi,
   414                          pc->mb_rows, pc->mb_cols,
   415                          pbi->mvs_corrupt_from_mb);
   416 }
   418 static void assign_neighbor(EC_BLOCK *neighbor, MODE_INFO *mi, int block_idx)
   419 {
   420     assert(mi->mbmi.ref_frame < MAX_REF_FRAMES);
   421     neighbor->ref_frame = mi->mbmi.ref_frame;
   422     neighbor->mv = mi->bmi[block_idx].mv.as_mv;
   423 }
   425 /* Finds the neighboring blocks of a macroblocks. In the general case
   426  * 20 blocks are found. If a fewer number of blocks are found due to
   427  * image boundaries, those positions in the EC_BLOCK array are left "empty".
   428  * The neighbors are enumerated with the upper-left neighbor as the first
   429  * element, the second element refers to the neighbor to right of the previous
   430  * neighbor, and so on. The last element refers to the neighbor below the first
   431  * neighbor.
   432  */
   433 static void find_neighboring_blocks(MODE_INFO *mi,
   434                                     EC_BLOCK *neighbors,
   435                                     int mb_row, int mb_col,
   436                                     int mb_rows, int mb_cols,
   437                                     int mi_stride)
   438 {
   439     int i = 0;
   440     int j;
   441     if (mb_row > 0)
   442     {
   443         /* upper left */
   444         if (mb_col > 0)
   445             assign_neighbor(&neighbors[i], mi - mi_stride - 1, 15);
   446         ++i;
   447         /* above */
   448         for (j = 12; j < 16; ++j, ++i)
   449             assign_neighbor(&neighbors[i], mi - mi_stride, j);
   450     }
   451     else
   452         i += 5;
   453     if (mb_col < mb_cols - 1)
   454     {
   455         /* upper right */
   456         if (mb_row > 0)
   457             assign_neighbor(&neighbors[i], mi - mi_stride + 1, 12);
   458         ++i;
   459         /* right */
   460         for (j = 0; j <= 12; j += 4, ++i)
   461             assign_neighbor(&neighbors[i], mi + 1, j);
   462     }
   463     else
   464         i += 5;
   465     if (mb_row < mb_rows - 1)
   466     {
   467         /* lower right */
   468         if (mb_col < mb_cols - 1)
   469             assign_neighbor(&neighbors[i], mi + mi_stride + 1, 0);
   470         ++i;
   471         /* below */
   472         for (j = 0; j < 4; ++j, ++i)
   473             assign_neighbor(&neighbors[i], mi + mi_stride, j);
   474     }
   475     else
   476         i += 5;
   477     if (mb_col > 0)
   478     {
   479         /* lower left */
   480         if (mb_row < mb_rows - 1)
   481             assign_neighbor(&neighbors[i], mi + mi_stride - 1, 4);
   482         ++i;
   483         /* left */
   484         for (j = 3; j < 16; j += 4, ++i)
   485         {
   486             assign_neighbor(&neighbors[i], mi - 1, j);
   487         }
   488     }
   489     else
   490         i += 5;
   491     assert(i == 20);
   492 }
   494 /* Interpolates all motion vectors for a macroblock from the neighboring blocks'
   495  * motion vectors.
   496  */
   497 static void interpolate_mvs(MACROBLOCKD *mb,
   498                          EC_BLOCK *neighbors,
   499                          MV_REFERENCE_FRAME dom_ref_frame)
   500 {
   501     int row, col, i;
   502     MODE_INFO * const mi = mb->mode_info_context;
   503     /* Table with the position of the neighboring blocks relative the position
   504      * of the upper left block of the current MB. Starting with the upper left
   505      * neighbor and going to the right.
   506      */
   507     const EC_POS neigh_pos[NUM_NEIGHBORS] = {
   508                                         {-1,-1}, {-1,0}, {-1,1}, {-1,2}, {-1,3},
   509                                         {-1,4}, {0,4}, {1,4}, {2,4}, {3,4},
   510                                         {4,4}, {4,3}, {4,2}, {4,1}, {4,0},
   511                                         {4,-1}, {3,-1}, {2,-1}, {1,-1}, {0,-1}
   512                                       };
   513     mi->mbmi.need_to_clamp_mvs = 0;
   514     for (row = 0; row < 4; ++row)
   515     {
   516         int mb_to_top_edge = mb->mb_to_top_edge + ((row*4)<<3);
   517         int mb_to_bottom_edge = mb->mb_to_bottom_edge - ((row*4)<<3);
   518         for (col = 0; col < 4; ++col)
   519         {
   520             int mb_to_left_edge = mb->mb_to_left_edge + ((col*4)<<3);
   521             int mb_to_right_edge = mb->mb_to_right_edge - ((col*4)<<3);
   522             int w_sum = 0;
   523             int mv_row_sum = 0;
   524             int mv_col_sum = 0;
   525             int_mv * const mv = &(mi->bmi[row*4 + col].mv);
   526             mv->as_int = 0;
   527             for (i = 0; i < NUM_NEIGHBORS; ++i)
   528             {
   529                 /* Calculate the weighted sum of neighboring MVs referring
   530                  * to the dominant frame type.
   531                  */
   532                 const int w = weights_q7[abs(row - neigh_pos[i].row)]
   533                                         [abs(col - neigh_pos[i].col)];
   534                 if (neighbors[i].ref_frame != dom_ref_frame)
   535                     continue;
   536                 w_sum += w;
   537                 /* Q7 * Q3 = Q10 */
   538                 mv_row_sum += w*neighbors[i].mv.row;
   539                 mv_col_sum += w*neighbors[i].mv.col;
   540             }
   541             if (w_sum > 0)
   542             {
   543                 /* Avoid division by zero.
   544                  * Normalize with the sum of the coefficients
   545                  * Q3 = Q10 / Q7
   546                  */
   547                 mv->as_mv.row = mv_row_sum / w_sum;
   548                 mv->as_mv.col = mv_col_sum / w_sum;
   549                 mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds(
   550                                                             mv,
   551                                                             mb_to_left_edge,
   552                                                             mb_to_right_edge,
   553                                                             mb_to_top_edge,
   554                                                             mb_to_bottom_edge);
   555             }
   556         }
   557     }
   558 }
   560 void vp8_interpolate_motion(MACROBLOCKD *mb,
   561                         int mb_row, int mb_col,
   562                         int mb_rows, int mb_cols,
   563                         int mi_stride)
   564 {
   565     /* Find relevant neighboring blocks */
   566     EC_BLOCK neighbors[NUM_NEIGHBORS];
   567     int i;
   568     /* Initialize the array. MAX_REF_FRAMES is interpreted as "doesn't exist" */
   569     for (i = 0; i < NUM_NEIGHBORS; ++i)
   570     {
   571         neighbors[i].ref_frame = MAX_REF_FRAMES;
   572         neighbors[i].mv.row = neighbors[i].mv.col = 0;
   573     }
   574     find_neighboring_blocks(mb->mode_info_context,
   575                                 neighbors,
   576                                 mb_row, mb_col,
   577                                 mb_rows, mb_cols,
   578                                 mb->mode_info_stride);
   579     /* Interpolate MVs for the missing blocks from the surrounding
   580      * blocks which refer to the last frame. */
   581     interpolate_mvs(mb, neighbors, LAST_FRAME);
   583     mb->mode_info_context->mbmi.ref_frame = LAST_FRAME;
   584     mb->mode_info_context->mbmi.mode = SPLITMV;
   585     mb->mode_info_context->mbmi.uv_mode = DC_PRED;
   586     mb->mode_info_context->mbmi.partitioning = 3;
   587     mb->mode_info_context->mbmi.segment_id = 0;
   588 }
   590 void vp8_conceal_corrupt_mb(MACROBLOCKD *xd)
   591 {
   592     /* This macroblock has corrupt residual, use the motion compensated
   593        image (predictor) for concealment */
   595     /* The build predictor functions now output directly into the dst buffer,
   596      * so the copies are no longer necessary */
   598 }

mercurial