security/sandbox/chromium/base/memory/scoped_ptr.h

Thu, 15 Jan 2015 15:59:08 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 15 Jan 2015 15:59:08 +0100
branch
TOR_BUG_9701
changeset 10
ac0c01689b40
permissions
-rw-r--r--

Implement a real Private Browsing Mode condition by changing the API/ABI;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
     2 // Use of this source code is governed by a BSD-style license that can be
     3 // found in the LICENSE file.
     5 // Scopers help you manage ownership of a pointer, helping you easily manage the
     6 // a pointer within a scope, and automatically destroying the pointer at the
     7 // end of a scope.  There are two main classes you will use, which correspond
     8 // to the operators new/delete and new[]/delete[].
     9 //
    10 // Example usage (scoped_ptr<T>):
    11 //   {
    12 //     scoped_ptr<Foo> foo(new Foo("wee"));
    13 //   }  // foo goes out of scope, releasing the pointer with it.
    14 //
    15 //   {
    16 //     scoped_ptr<Foo> foo;          // No pointer managed.
    17 //     foo.reset(new Foo("wee"));    // Now a pointer is managed.
    18 //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
    19 //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
    20 //     foo->Method();                // Foo::Method() called.
    21 //     foo.get()->Method();          // Foo::Method() called.
    22 //     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
    23 //                                   // manages a pointer.
    24 //     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
    25 //     foo.reset();                  // Foo("wee4") destroyed, foo no longer
    26 //                                   // manages a pointer.
    27 //   }  // foo wasn't managing a pointer, so nothing was destroyed.
    28 //
    29 // Example usage (scoped_ptr<T[]>):
    30 //   {
    31 //     scoped_ptr<Foo[]> foo(new Foo[100]);
    32 //     foo.get()->Method();  // Foo::Method on the 0th element.
    33 //     foo[10].Method();     // Foo::Method on the 10th element.
    34 //   }
    35 //
    36 // These scopers also implement part of the functionality of C++11 unique_ptr
    37 // in that they are "movable but not copyable."  You can use the scopers in
    38 // the parameter and return types of functions to signify ownership transfer
    39 // in to and out of a function.  When calling a function that has a scoper
    40 // as the argument type, it must be called with the result of an analogous
    41 // scoper's Pass() function or another function that generates a temporary;
    42 // passing by copy will NOT work.  Here is an example using scoped_ptr:
    43 //
    44 //   void TakesOwnership(scoped_ptr<Foo> arg) {
    45 //     // Do something with arg
    46 //   }
    47 //   scoped_ptr<Foo> CreateFoo() {
    48 //     // No need for calling Pass() because we are constructing a temporary
    49 //     // for the return value.
    50 //     return scoped_ptr<Foo>(new Foo("new"));
    51 //   }
    52 //   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
    53 //     return arg.Pass();
    54 //   }
    55 //
    56 //   {
    57 //     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
    58 //     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay").
    59 //     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
    60 //     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
    61 //         PassThru(ptr2.Pass());            // ptr2 is correspondingly NULL.
    62 //   }
    63 //
    64 // Notice that if you do not call Pass() when returning from PassThru(), or
    65 // when invoking TakesOwnership(), the code will not compile because scopers
    66 // are not copyable; they only implement move semantics which require calling
    67 // the Pass() function to signify a destructive transfer of state. CreateFoo()
    68 // is different though because we are constructing a temporary on the return
    69 // line and thus can avoid needing to call Pass().
    70 //
    71 // Pass() properly handles upcast in assignment, i.e. you can assign
    72 // scoped_ptr<Child> to scoped_ptr<Parent>:
    73 //
    74 //   scoped_ptr<Foo> foo(new Foo());
    75 //   scoped_ptr<FooParent> parent = foo.Pass();
    76 //
    77 // PassAs<>() should be used to upcast return value in return statement:
    78 //
    79 //   scoped_ptr<Foo> CreateFoo() {
    80 //     scoped_ptr<FooChild> result(new FooChild());
    81 //     return result.PassAs<Foo>();
    82 //   }
    83 //
    84 // Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
    85 // scoped_ptr<T[]>. This is because casting array pointers may not be safe.
    87 #ifndef BASE_MEMORY_SCOPED_PTR_H_
    88 #define BASE_MEMORY_SCOPED_PTR_H_
    90 // This is an implementation designed to match the anticipated future TR2
    91 // implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated).
    93 #include <assert.h>
    94 #include <stddef.h>
    95 #include <stdlib.h>
    97 #include <algorithm>  // For std::swap().
    99 #include "base/basictypes.h"
   100 #include "base/compiler_specific.h"
   101 #include "base/move.h"
   102 #include "base/template_util.h"
   104 namespace base {
   106 namespace subtle {
   107 class RefCountedBase;
   108 class RefCountedThreadSafeBase;
   109 }  // namespace subtle
   111 // Function object which deletes its parameter, which must be a pointer.
   112 // If C is an array type, invokes 'delete[]' on the parameter; otherwise,
   113 // invokes 'delete'. The default deleter for scoped_ptr<T>.
   114 template <class T>
   115 struct DefaultDeleter {
   116   DefaultDeleter() {}
   117   template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
   118     // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
   119     // if U* is implicitly convertible to T* and U is not an array type.
   120     //
   121     // Correct implementation should use SFINAE to disable this
   122     // constructor. However, since there are no other 1-argument constructors,
   123     // using a COMPILE_ASSERT() based on is_convertible<> and requiring
   124     // complete types is simpler and will cause compile failures for equivalent
   125     // misuses.
   126     //
   127     // Note, the is_convertible<U*, T*> check also ensures that U is not an
   128     // array. T is guaranteed to be a non-array, so any U* where U is an array
   129     // cannot convert to T*.
   130     enum { T_must_be_complete = sizeof(T) };
   131     enum { U_must_be_complete = sizeof(U) };
   132     COMPILE_ASSERT((base::is_convertible<U*, T*>::value),
   133                    U_ptr_must_implicitly_convert_to_T_ptr);
   134   }
   135   inline void operator()(T* ptr) const {
   136     enum { type_must_be_complete = sizeof(T) };
   137     delete ptr;
   138   }
   139 };
   141 // Specialization of DefaultDeleter for array types.
   142 template <class T>
   143 struct DefaultDeleter<T[]> {
   144   inline void operator()(T* ptr) const {
   145     enum { type_must_be_complete = sizeof(T) };
   146     delete[] ptr;
   147   }
   149  private:
   150   // Disable this operator for any U != T because it is undefined to execute
   151   // an array delete when the static type of the array mismatches the dynamic
   152   // type.
   153   //
   154   // References:
   155   //   C++98 [expr.delete]p3
   156   //   http://cplusplus.github.com/LWG/lwg-defects.html#938
   157   template <typename U> void operator()(U* array) const;
   158 };
   160 template <class T, int n>
   161 struct DefaultDeleter<T[n]> {
   162   // Never allow someone to declare something like scoped_ptr<int[10]>.
   163   COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
   164 };
   166 // Function object which invokes 'free' on its parameter, which must be
   167 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
   168 //
   169 // scoped_ptr<int, base::FreeDeleter> foo_ptr(
   170 //     static_cast<int*>(malloc(sizeof(int))));
   171 struct FreeDeleter {
   172   inline void operator()(void* ptr) const {
   173     free(ptr);
   174   }
   175 };
   177 namespace internal {
   179 template <typename T> struct IsNotRefCounted {
   180   enum {
   181     value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
   182         !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
   183             value
   184   };
   185 };
   187 // Minimal implementation of the core logic of scoped_ptr, suitable for
   188 // reuse in both scoped_ptr and its specializations.
   189 template <class T, class D>
   190 class scoped_ptr_impl {
   191  public:
   192   explicit scoped_ptr_impl(T* p) : data_(p) { }
   194   // Initializer for deleters that have data parameters.
   195   scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
   197   // Templated constructor that destructively takes the value from another
   198   // scoped_ptr_impl.
   199   template <typename U, typename V>
   200   scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
   201       : data_(other->release(), other->get_deleter()) {
   202     // We do not support move-only deleters.  We could modify our move
   203     // emulation to have base::subtle::move() and base::subtle::forward()
   204     // functions that are imperfect emulations of their C++11 equivalents,
   205     // but until there's a requirement, just assume deleters are copyable.
   206   }
   208   template <typename U, typename V>
   209   void TakeState(scoped_ptr_impl<U, V>* other) {
   210     // See comment in templated constructor above regarding lack of support
   211     // for move-only deleters.
   212     reset(other->release());
   213     get_deleter() = other->get_deleter();
   214   }
   216   ~scoped_ptr_impl() {
   217     if (data_.ptr != NULL) {
   218       // Not using get_deleter() saves one function call in non-optimized
   219       // builds.
   220       static_cast<D&>(data_)(data_.ptr);
   221     }
   222   }
   224   void reset(T* p) {
   225     // This is a self-reset, which is no longer allowed: http://crbug.com/162971
   226     if (p != NULL && p == data_.ptr)
   227       abort();
   229     // Note that running data_.ptr = p can lead to undefined behavior if
   230     // get_deleter()(get()) deletes this. In order to pevent this, reset()
   231     // should update the stored pointer before deleting its old value.
   232     //
   233     // However, changing reset() to use that behavior may cause current code to
   234     // break in unexpected ways. If the destruction of the owned object
   235     // dereferences the scoped_ptr when it is destroyed by a call to reset(),
   236     // then it will incorrectly dispatch calls to |p| rather than the original
   237     // value of |data_.ptr|.
   238     //
   239     // During the transition period, set the stored pointer to NULL while
   240     // deleting the object. Eventually, this safety check will be removed to
   241     // prevent the scenario initially described from occuring and
   242     // http://crbug.com/176091 can be closed.
   243     T* old = data_.ptr;
   244     data_.ptr = NULL;
   245     if (old != NULL)
   246       static_cast<D&>(data_)(old);
   247     data_.ptr = p;
   248   }
   250   T* get() const { return data_.ptr; }
   252   D& get_deleter() { return data_; }
   253   const D& get_deleter() const { return data_; }
   255   void swap(scoped_ptr_impl& p2) {
   256     // Standard swap idiom: 'using std::swap' ensures that std::swap is
   257     // present in the overload set, but we call swap unqualified so that
   258     // any more-specific overloads can be used, if available.
   259     using std::swap;
   260     swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
   261     swap(data_.ptr, p2.data_.ptr);
   262   }
   264   T* release() {
   265     T* old_ptr = data_.ptr;
   266     data_.ptr = NULL;
   267     return old_ptr;
   268   }
   270  private:
   271   // Needed to allow type-converting constructor.
   272   template <typename U, typename V> friend class scoped_ptr_impl;
   274   // Use the empty base class optimization to allow us to have a D
   275   // member, while avoiding any space overhead for it when D is an
   276   // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
   277   // discussion of this technique.
   278   struct Data : public D {
   279     explicit Data(T* ptr_in) : ptr(ptr_in) {}
   280     Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
   281     T* ptr;
   282   };
   284   Data data_;
   286   DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
   287 };
   289 }  // namespace internal
   291 }  // namespace base
   293 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
   294 // automatically deletes the pointer it holds (if any).
   295 // That is, scoped_ptr<T> owns the T object that it points to.
   296 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
   297 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
   298 // dereference it, you get the thread safety guarantees of T.
   299 //
   300 // The size of scoped_ptr is small. On most compilers, when using the
   301 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
   302 // increase the size proportional to whatever state they need to have. See
   303 // comments inside scoped_ptr_impl<> for details.
   304 //
   305 // Current implementation targets having a strict subset of  C++11's
   306 // unique_ptr<> features. Known deficiencies include not supporting move-only
   307 // deleteres, function pointers as deleters, and deleters with reference
   308 // types.
   309 template <class T, class D = base::DefaultDeleter<T> >
   310 class scoped_ptr {
   311   MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
   313   COMPILE_ASSERT(base::internal::IsNotRefCounted<T>::value,
   314                  T_is_refcounted_type_and_needs_scoped_refptr);
   316  public:
   317   // The element and deleter types.
   318   typedef T element_type;
   319   typedef D deleter_type;
   321   // Constructor.  Defaults to initializing with NULL.
   322   scoped_ptr() : impl_(NULL) { }
   324   // Constructor.  Takes ownership of p.
   325   explicit scoped_ptr(element_type* p) : impl_(p) { }
   327   // Constructor.  Allows initialization of a stateful deleter.
   328   scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
   330   // Constructor.  Allows construction from a scoped_ptr rvalue for a
   331   // convertible type and deleter.
   332   //
   333   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
   334   // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
   335   // has different post-conditions if D is a reference type. Since this
   336   // implementation does not support deleters with reference type,
   337   // we do not need a separate move constructor allowing us to avoid one
   338   // use of SFINAE. You only need to care about this if you modify the
   339   // implementation of scoped_ptr.
   340   template <typename U, typename V>
   341   scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
   342     COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
   343   }
   345   // Constructor.  Move constructor for C++03 move emulation of this type.
   346   scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
   348   // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
   349   // type and deleter.
   350   //
   351   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
   352   // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
   353   // form has different requirements on for move-only Deleters. Since this
   354   // implementation does not support move-only Deleters, we do not need a
   355   // separate move assignment operator allowing us to avoid one use of SFINAE.
   356   // You only need to care about this if you modify the implementation of
   357   // scoped_ptr.
   358   template <typename U, typename V>
   359   scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
   360     COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
   361     impl_.TakeState(&rhs.impl_);
   362     return *this;
   363   }
   365   // Reset.  Deletes the currently owned object, if any.
   366   // Then takes ownership of a new object, if given.
   367   void reset(element_type* p = NULL) { impl_.reset(p); }
   369   // Accessors to get the owned object.
   370   // operator* and operator-> will assert() if there is no current object.
   371   element_type& operator*() const {
   372     assert(impl_.get() != NULL);
   373     return *impl_.get();
   374   }
   375   element_type* operator->() const  {
   376     assert(impl_.get() != NULL);
   377     return impl_.get();
   378   }
   379   element_type* get() const { return impl_.get(); }
   381   // Access to the deleter.
   382   deleter_type& get_deleter() { return impl_.get_deleter(); }
   383   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
   385   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
   386   // implicitly convertible to a real bool (which is dangerous).
   387   //
   388   // Note that this trick is only safe when the == and != operators
   389   // are declared explicitly, as otherwise "scoped_ptr1 ==
   390   // scoped_ptr2" will compile but do the wrong thing (i.e., convert
   391   // to Testable and then do the comparison).
   392  private:
   393   typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
   394       scoped_ptr::*Testable;
   396  public:
   397   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
   399   // Comparison operators.
   400   // These return whether two scoped_ptr refer to the same object, not just to
   401   // two different but equal objects.
   402   bool operator==(const element_type* p) const { return impl_.get() == p; }
   403   bool operator!=(const element_type* p) const { return impl_.get() != p; }
   405   // Swap two scoped pointers.
   406   void swap(scoped_ptr& p2) {
   407     impl_.swap(p2.impl_);
   408   }
   410   // Release a pointer.
   411   // The return value is the current pointer held by this object.
   412   // If this object holds a NULL pointer, the return value is NULL.
   413   // After this operation, this object will hold a NULL pointer,
   414   // and will not own the object any more.
   415   element_type* release() WARN_UNUSED_RESULT {
   416     return impl_.release();
   417   }
   419   // C++98 doesn't support functions templates with default parameters which
   420   // makes it hard to write a PassAs() that understands converting the deleter
   421   // while preserving simple calling semantics.
   422   //
   423   // Until there is a use case for PassAs() with custom deleters, just ignore
   424   // the custom deleter.
   425   template <typename PassAsType>
   426   scoped_ptr<PassAsType> PassAs() {
   427     return scoped_ptr<PassAsType>(Pass());
   428   }
   430  private:
   431   // Needed to reach into |impl_| in the constructor.
   432   template <typename U, typename V> friend class scoped_ptr;
   433   base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
   435   // Forbidden for API compatibility with std::unique_ptr.
   436   explicit scoped_ptr(int disallow_construction_from_null);
   438   // Forbid comparison of scoped_ptr types.  If U != T, it totally
   439   // doesn't make sense, and if U == T, it still doesn't make sense
   440   // because you should never have the same object owned by two different
   441   // scoped_ptrs.
   442   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
   443   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
   444 };
   446 template <class T, class D>
   447 class scoped_ptr<T[], D> {
   448   MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
   450  public:
   451   // The element and deleter types.
   452   typedef T element_type;
   453   typedef D deleter_type;
   455   // Constructor.  Defaults to initializing with NULL.
   456   scoped_ptr() : impl_(NULL) { }
   458   // Constructor. Stores the given array. Note that the argument's type
   459   // must exactly match T*. In particular:
   460   // - it cannot be a pointer to a type derived from T, because it is
   461   //   inherently unsafe in the general case to access an array through a
   462   //   pointer whose dynamic type does not match its static type (eg., if
   463   //   T and the derived types had different sizes access would be
   464   //   incorrectly calculated). Deletion is also always undefined
   465   //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
   466   // - it cannot be NULL, because NULL is an integral expression, not a
   467   //   pointer to T. Use the no-argument version instead of explicitly
   468   //   passing NULL.
   469   // - it cannot be const-qualified differently from T per unique_ptr spec
   470   //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
   471   //   to work around this may use implicit_cast<const T*>().
   472   //   However, because of the first bullet in this comment, users MUST
   473   //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
   474   explicit scoped_ptr(element_type* array) : impl_(array) { }
   476   // Constructor.  Move constructor for C++03 move emulation of this type.
   477   scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
   479   // operator=.  Move operator= for C++03 move emulation of this type.
   480   scoped_ptr& operator=(RValue rhs) {
   481     impl_.TakeState(&rhs.object->impl_);
   482     return *this;
   483   }
   485   // Reset.  Deletes the currently owned array, if any.
   486   // Then takes ownership of a new object, if given.
   487   void reset(element_type* array = NULL) { impl_.reset(array); }
   489   // Accessors to get the owned array.
   490   element_type& operator[](size_t i) const {
   491     assert(impl_.get() != NULL);
   492     return impl_.get()[i];
   493   }
   494   element_type* get() const { return impl_.get(); }
   496   // Access to the deleter.
   497   deleter_type& get_deleter() { return impl_.get_deleter(); }
   498   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
   500   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
   501   // implicitly convertible to a real bool (which is dangerous).
   502  private:
   503   typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
   504       scoped_ptr::*Testable;
   506  public:
   507   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
   509   // Comparison operators.
   510   // These return whether two scoped_ptr refer to the same object, not just to
   511   // two different but equal objects.
   512   bool operator==(element_type* array) const { return impl_.get() == array; }
   513   bool operator!=(element_type* array) const { return impl_.get() != array; }
   515   // Swap two scoped pointers.
   516   void swap(scoped_ptr& p2) {
   517     impl_.swap(p2.impl_);
   518   }
   520   // Release a pointer.
   521   // The return value is the current pointer held by this object.
   522   // If this object holds a NULL pointer, the return value is NULL.
   523   // After this operation, this object will hold a NULL pointer,
   524   // and will not own the object any more.
   525   element_type* release() WARN_UNUSED_RESULT {
   526     return impl_.release();
   527   }
   529  private:
   530   // Force element_type to be a complete type.
   531   enum { type_must_be_complete = sizeof(element_type) };
   533   // Actually hold the data.
   534   base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
   536   // Disable initialization from any type other than element_type*, by
   537   // providing a constructor that matches such an initialization, but is
   538   // private and has no definition. This is disabled because it is not safe to
   539   // call delete[] on an array whose static type does not match its dynamic
   540   // type.
   541   template <typename U> explicit scoped_ptr(U* array);
   542   explicit scoped_ptr(int disallow_construction_from_null);
   544   // Disable reset() from any type other than element_type*, for the same
   545   // reasons as the constructor above.
   546   template <typename U> void reset(U* array);
   547   void reset(int disallow_reset_from_null);
   549   // Forbid comparison of scoped_ptr types.  If U != T, it totally
   550   // doesn't make sense, and if U == T, it still doesn't make sense
   551   // because you should never have the same object owned by two different
   552   // scoped_ptrs.
   553   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
   554   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
   555 };
   557 // Free functions
   558 template <class T, class D>
   559 void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
   560   p1.swap(p2);
   561 }
   563 template <class T, class D>
   564 bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
   565   return p1 == p2.get();
   566 }
   568 template <class T, class D>
   569 bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
   570   return p1 != p2.get();
   571 }
   573 // DEPRECATED: Use scoped_ptr<C, base::FreeDeleter> instead.
   574 //
   575 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
   576 // second template argument, the functor used to free the object.
   578 template<class C, class FreeProc = base::FreeDeleter>
   579 class scoped_ptr_malloc {
   580   MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_malloc, RValue)
   582  public:
   584   // The element type
   585   typedef C element_type;
   587   // Constructor.  Defaults to initializing with NULL.
   588   // There is no way to create an uninitialized scoped_ptr.
   589   // The input parameter must be allocated with an allocator that matches the
   590   // Free functor.  For the default Free functor, this is malloc, calloc, or
   591   // realloc.
   592   explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {}
   594   // Constructor.  Move constructor for C++03 move emulation of this type.
   595   scoped_ptr_malloc(RValue rvalue)
   596       : ptr_(rvalue.object->release()) {
   597   }
   599   // Destructor.  If there is a C object, call the Free functor.
   600   ~scoped_ptr_malloc() {
   601     reset();
   602   }
   604   // operator=.  Move operator= for C++03 move emulation of this type.
   605   scoped_ptr_malloc& operator=(RValue rhs) {
   606     reset(rhs.object->release());
   607     return *this;
   608   }
   610   // Reset.  Calls the Free functor on the current owned object, if any.
   611   // Then takes ownership of a new object, if given.
   612   // this->reset(this->get()) works.
   613   void reset(C* p = NULL) {
   614     if (ptr_ != p) {
   615       if (ptr_ != NULL) {
   616         FreeProc free_proc;
   617         free_proc(ptr_);
   618       }
   619       ptr_ = p;
   620     }
   621   }
   623   // Get the current object.
   624   // operator* and operator-> will cause an assert() failure if there is
   625   // no current object.
   626   C& operator*() const {
   627     assert(ptr_ != NULL);
   628     return *ptr_;
   629   }
   631   C* operator->() const {
   632     assert(ptr_ != NULL);
   633     return ptr_;
   634   }
   636   C* get() const {
   637     return ptr_;
   638   }
   640   // Allow scoped_ptr_malloc<C> to be used in boolean expressions, but not
   641   // implicitly convertible to a real bool (which is dangerous).
   642   typedef C* scoped_ptr_malloc::*Testable;
   643   operator Testable() const { return ptr_ ? &scoped_ptr_malloc::ptr_ : NULL; }
   645   // Comparison operators.
   646   // These return whether a scoped_ptr_malloc and a plain pointer refer
   647   // to the same object, not just to two different but equal objects.
   648   // For compatibility with the boost-derived implementation, these
   649   // take non-const arguments.
   650   bool operator==(C* p) const {
   651     return ptr_ == p;
   652   }
   654   bool operator!=(C* p) const {
   655     return ptr_ != p;
   656   }
   658   // Swap two scoped pointers.
   659   void swap(scoped_ptr_malloc & b) {
   660     C* tmp = b.ptr_;
   661     b.ptr_ = ptr_;
   662     ptr_ = tmp;
   663   }
   665   // Release a pointer.
   666   // The return value is the current pointer held by this object.
   667   // If this object holds a NULL pointer, the return value is NULL.
   668   // After this operation, this object will hold a NULL pointer,
   669   // and will not own the object any more.
   670   C* release() WARN_UNUSED_RESULT {
   671     C* tmp = ptr_;
   672     ptr_ = NULL;
   673     return tmp;
   674   }
   676  private:
   677   C* ptr_;
   679   // no reason to use these: each scoped_ptr_malloc should have its own object
   680   template <class C2, class GP>
   681   bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
   682   template <class C2, class GP>
   683   bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
   684 };
   686 template<class C, class FP> inline
   687 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
   688   a.swap(b);
   689 }
   691 template<class C, class FP> inline
   692 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
   693   return p == b.get();
   694 }
   696 template<class C, class FP> inline
   697 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
   698   return p != b.get();
   699 }
   701 // A function to convert T* into scoped_ptr<T>
   702 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
   703 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
   704 template <typename T>
   705 scoped_ptr<T> make_scoped_ptr(T* ptr) {
   706   return scoped_ptr<T>(ptr);
   707 }
   709 #endif  // BASE_MEMORY_SCOPED_PTR_H_

mercurial