gfx/skia/trunk/src/effects/gradients/SkTwoPointConicalGradient.cpp

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  * Copyright 2012 Google Inc.
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     8 #include "SkTwoPointConicalGradient.h"
    10 static int valid_divide(float numer, float denom, float* ratio) {
    11     SkASSERT(ratio);
    12     if (0 == denom) {
    13         return 0;
    14     }
    15     *ratio = numer / denom;
    16     return 1;
    17 }
    19 // Return the number of distinct real roots, and write them into roots[] in
    20 // ascending order
    21 static int find_quad_roots(float A, float B, float C, float roots[2]) {
    22     SkASSERT(roots);
    24     if (A == 0) {
    25         return valid_divide(-C, B, roots);
    26     }
    28     float R = B*B - 4*A*C;
    29     if (R < 0) {
    30         return 0;
    31     }
    32     R = sk_float_sqrt(R);
    34 #if 1
    35     float Q = B;
    36     if (Q < 0) {
    37         Q -= R;
    38     } else {
    39         Q += R;
    40     }
    41 #else
    42     // on 10.6 this was much slower than the above branch :(
    43     float Q = B + copysignf(R, B);
    44 #endif
    45     Q *= -0.5f;
    46     if (0 == Q) {
    47         roots[0] = 0;
    48         return 1;
    49     }
    51     float r0 = Q / A;
    52     float r1 = C / Q;
    53     roots[0] = r0 < r1 ? r0 : r1;
    54     roots[1] = r0 > r1 ? r0 : r1;
    55     return 2;
    56 }
    58 static float lerp(float x, float dx, float t) {
    59     return x + t * dx;
    60 }
    62 static float sqr(float x) { return x * x; }
    64 void TwoPtRadial::init(const SkPoint& center0, SkScalar rad0,
    65                        const SkPoint& center1, SkScalar rad1) {
    66     fCenterX = SkScalarToFloat(center0.fX);
    67     fCenterY = SkScalarToFloat(center0.fY);
    68     fDCenterX = SkScalarToFloat(center1.fX) - fCenterX;
    69     fDCenterY = SkScalarToFloat(center1.fY) - fCenterY;
    70     fRadius = SkScalarToFloat(rad0);
    71     fDRadius = SkScalarToFloat(rad1) - fRadius;
    73     fA = sqr(fDCenterX) + sqr(fDCenterY) - sqr(fDRadius);
    74     fRadius2 = sqr(fRadius);
    75     fRDR = fRadius * fDRadius;
    76 }
    78 void TwoPtRadial::setup(SkScalar fx, SkScalar fy, SkScalar dfx, SkScalar dfy) {
    79     fRelX = SkScalarToFloat(fx) - fCenterX;
    80     fRelY = SkScalarToFloat(fy) - fCenterY;
    81     fIncX = SkScalarToFloat(dfx);
    82     fIncY = SkScalarToFloat(dfy);
    83     fB = -2 * (fDCenterX * fRelX + fDCenterY * fRelY + fRDR);
    84     fDB = -2 * (fDCenterX * fIncX + fDCenterY * fIncY);
    85 }
    87 SkFixed TwoPtRadial::nextT() {
    88     float roots[2];
    90     float C = sqr(fRelX) + sqr(fRelY) - fRadius2;
    91     int countRoots = find_quad_roots(fA, fB, C, roots);
    93     fRelX += fIncX;
    94     fRelY += fIncY;
    95     fB += fDB;
    97     if (0 == countRoots) {
    98         return kDontDrawT;
    99     }
   101     // Prefer the bigger t value if both give a radius(t) > 0
   102     // find_quad_roots returns the values sorted, so we start with the last
   103     float t = roots[countRoots - 1];
   104     float r = lerp(fRadius, fDRadius, t);
   105     if (r <= 0) {
   106         t = roots[0];   // might be the same as roots[countRoots-1]
   107         r = lerp(fRadius, fDRadius, t);
   108         if (r <= 0) {
   109             return kDontDrawT;
   110         }
   111     }
   112     return SkFloatToFixed(t);
   113 }
   115 typedef void (*TwoPointConicalProc)(TwoPtRadial* rec, SkPMColor* dstC,
   116                                     const SkPMColor* cache, int toggle, int count);
   118 static void twopoint_clamp(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
   119                            const SkPMColor* SK_RESTRICT cache, int toggle,
   120                            int count) {
   121     for (; count > 0; --count) {
   122         SkFixed t = rec->nextT();
   123         if (TwoPtRadial::DontDrawT(t)) {
   124             *dstC++ = 0;
   125         } else {
   126             SkFixed index = SkClampMax(t, 0xFFFF);
   127             SkASSERT(index <= 0xFFFF);
   128             *dstC++ = cache[toggle +
   129                             (index >> SkGradientShaderBase::kCache32Shift)];
   130         }
   131         toggle = next_dither_toggle(toggle);
   132     }
   133 }
   135 static void twopoint_repeat(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
   136                             const SkPMColor* SK_RESTRICT cache, int toggle,
   137                             int count) {
   138     for (; count > 0; --count) {
   139         SkFixed t = rec->nextT();
   140         if (TwoPtRadial::DontDrawT(t)) {
   141             *dstC++ = 0;
   142         } else {
   143             SkFixed index = repeat_tileproc(t);
   144             SkASSERT(index <= 0xFFFF);
   145             *dstC++ = cache[toggle +
   146                             (index >> SkGradientShaderBase::kCache32Shift)];
   147         }
   148         toggle = next_dither_toggle(toggle);
   149     }
   150 }
   152 static void twopoint_mirror(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
   153                             const SkPMColor* SK_RESTRICT cache, int toggle,
   154                             int count) {
   155     for (; count > 0; --count) {
   156         SkFixed t = rec->nextT();
   157         if (TwoPtRadial::DontDrawT(t)) {
   158             *dstC++ = 0;
   159         } else {
   160             SkFixed index = mirror_tileproc(t);
   161             SkASSERT(index <= 0xFFFF);
   162             *dstC++ = cache[toggle +
   163                             (index >> SkGradientShaderBase::kCache32Shift)];
   164         }
   165         toggle = next_dither_toggle(toggle);
   166     }
   167 }
   169 void SkTwoPointConicalGradient::init() {
   170     fRec.init(fCenter1, fRadius1, fCenter2, fRadius2);
   171     fPtsToUnit.reset();
   172 }
   174 /////////////////////////////////////////////////////////////////////
   176 SkTwoPointConicalGradient::SkTwoPointConicalGradient(
   177         const SkPoint& start, SkScalar startRadius,
   178         const SkPoint& end, SkScalar endRadius,
   179         const Descriptor& desc)
   180     : SkGradientShaderBase(desc),
   181     fCenter1(start),
   182     fCenter2(end),
   183     fRadius1(startRadius),
   184     fRadius2(endRadius) {
   185     // this is degenerate, and should be caught by our caller
   186     SkASSERT(fCenter1 != fCenter2 || fRadius1 != fRadius2);
   187     this->init();
   188 }
   190 bool SkTwoPointConicalGradient::isOpaque() const {
   191     // Because areas outside the cone are left untouched, we cannot treat the
   192     // shader as opaque even if the gradient itself is opaque.
   193     // TODO(junov): Compute whether the cone fills the plane crbug.com/222380
   194     return false;
   195 }
   197 void SkTwoPointConicalGradient::shadeSpan(int x, int y, SkPMColor* dstCParam,
   198                                           int count) {
   199     int toggle = init_dither_toggle(x, y);
   201     SkASSERT(count > 0);
   203     SkPMColor* SK_RESTRICT dstC = dstCParam;
   205     SkMatrix::MapXYProc dstProc = fDstToIndexProc;
   207     const SkPMColor* SK_RESTRICT cache = this->getCache32();
   209     TwoPointConicalProc shadeProc = twopoint_repeat;
   210     if (SkShader::kClamp_TileMode == fTileMode) {
   211         shadeProc = twopoint_clamp;
   212     } else if (SkShader::kMirror_TileMode == fTileMode) {
   213         shadeProc = twopoint_mirror;
   214     } else {
   215         SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
   216     }
   218     if (fDstToIndexClass != kPerspective_MatrixClass) {
   219         SkPoint srcPt;
   220         dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
   221                 SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
   222         SkScalar dx, fx = srcPt.fX;
   223         SkScalar dy, fy = srcPt.fY;
   225         if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
   226             SkFixed fixedX, fixedY;
   227             (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY);
   228             dx = SkFixedToScalar(fixedX);
   229             dy = SkFixedToScalar(fixedY);
   230         } else {
   231             SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
   232             dx = fDstToIndex.getScaleX();
   233             dy = fDstToIndex.getSkewY();
   234         }
   236         fRec.setup(fx, fy, dx, dy);
   237         (*shadeProc)(&fRec, dstC, cache, toggle, count);
   238     } else {    // perspective case
   239         SkScalar dstX = SkIntToScalar(x) + SK_ScalarHalf;
   240         SkScalar dstY = SkIntToScalar(y) + SK_ScalarHalf;
   241         for (; count > 0; --count) {
   242             SkPoint srcPt;
   243             dstProc(fDstToIndex, dstX, dstY, &srcPt);
   244             fRec.setup(srcPt.fX, srcPt.fY, 0, 0);
   245             (*shadeProc)(&fRec, dstC, cache, toggle, 1);
   247             dstX += SK_Scalar1;
   248             toggle = next_dither_toggle(toggle);
   249             dstC += 1;
   250         }
   251     }
   252 }
   254 bool SkTwoPointConicalGradient::setContext(const SkBitmap& device,
   255                                            const SkPaint& paint,
   256                                            const SkMatrix& matrix) {
   257     if (!this->INHERITED::setContext(device, paint, matrix)) {
   258         return false;
   259     }
   261     // we don't have a span16 proc
   262     fFlags &= ~kHasSpan16_Flag;
   264     // in general, we might discard based on computed-radius, so clear
   265     // this flag (todo: sometimes we can detect that we never discard...)
   266     fFlags &= ~kOpaqueAlpha_Flag;
   268     return true;
   269 }
   271 SkShader::BitmapType SkTwoPointConicalGradient::asABitmap(
   272     SkBitmap* bitmap, SkMatrix* matrix, SkShader::TileMode* xy) const {
   273     SkPoint diff = fCenter2 - fCenter1;
   274     SkScalar diffLen = 0;
   276     if (bitmap) {
   277         this->getGradientTableBitmap(bitmap);
   278     }
   279     if (matrix) {
   280         diffLen = diff.length();
   281     }
   282     if (matrix) {
   283         if (diffLen) {
   284             SkScalar invDiffLen = SkScalarInvert(diffLen);
   285             // rotate to align circle centers with the x-axis
   286             matrix->setSinCos(-SkScalarMul(invDiffLen, diff.fY),
   287                               SkScalarMul(invDiffLen, diff.fX));
   288         } else {
   289             matrix->reset();
   290         }
   291         matrix->preTranslate(-fCenter1.fX, -fCenter1.fY);
   292     }
   293     if (xy) {
   294         xy[0] = fTileMode;
   295         xy[1] = kClamp_TileMode;
   296     }
   297     return kTwoPointConical_BitmapType;
   298 }
   300 SkShader::GradientType SkTwoPointConicalGradient::asAGradient(
   301     GradientInfo* info) const {
   302     if (info) {
   303         commonAsAGradient(info);
   304         info->fPoint[0] = fCenter1;
   305         info->fPoint[1] = fCenter2;
   306         info->fRadius[0] = fRadius1;
   307         info->fRadius[1] = fRadius2;
   308     }
   309     return kConical_GradientType;
   310 }
   312 SkTwoPointConicalGradient::SkTwoPointConicalGradient(
   313     SkReadBuffer& buffer)
   314     : INHERITED(buffer),
   315     fCenter1(buffer.readPoint()),
   316     fCenter2(buffer.readPoint()),
   317     fRadius1(buffer.readScalar()),
   318     fRadius2(buffer.readScalar()) {
   319     this->init();
   320 };
   322 void SkTwoPointConicalGradient::flatten(
   323     SkWriteBuffer& buffer) const {
   324     this->INHERITED::flatten(buffer);
   325     buffer.writePoint(fCenter1);
   326     buffer.writePoint(fCenter2);
   327     buffer.writeScalar(fRadius1);
   328     buffer.writeScalar(fRadius2);
   329 }
   331 /////////////////////////////////////////////////////////////////////
   333 #if SK_SUPPORT_GPU
   335 #include "GrTBackendEffectFactory.h"
   337 // For brevity
   338 typedef GrGLUniformManager::UniformHandle UniformHandle;
   340 class GrGLConical2Gradient : public GrGLGradientEffect {
   341 public:
   343     GrGLConical2Gradient(const GrBackendEffectFactory& factory, const GrDrawEffect&);
   344     virtual ~GrGLConical2Gradient() { }
   346     virtual void emitCode(GrGLShaderBuilder*,
   347                           const GrDrawEffect&,
   348                           EffectKey,
   349                           const char* outputColor,
   350                           const char* inputColor,
   351                           const TransformedCoordsArray&,
   352                           const TextureSamplerArray&) SK_OVERRIDE;
   353     virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE;
   355     static EffectKey GenKey(const GrDrawEffect&, const GrGLCaps& caps);
   357 protected:
   359     UniformHandle fParamUni;
   361     const char* fVSVaryingName;
   362     const char* fFSVaryingName;
   364     bool fIsDegenerate;
   366     // @{
   367     /// Values last uploaded as uniforms
   369     SkScalar fCachedCenter;
   370     SkScalar fCachedRadius;
   371     SkScalar fCachedDiffRadius;
   373     // @}
   375 private:
   377     typedef GrGLGradientEffect INHERITED;
   379 };
   381 /////////////////////////////////////////////////////////////////////
   383 class GrConical2Gradient : public GrGradientEffect {
   384 public:
   386     static GrEffectRef* Create(GrContext* ctx,
   387                                const SkTwoPointConicalGradient& shader,
   388                                const SkMatrix& matrix,
   389                                SkShader::TileMode tm) {
   390         AutoEffectUnref effect(SkNEW_ARGS(GrConical2Gradient, (ctx, shader, matrix, tm)));
   391         return CreateEffectRef(effect);
   392     }
   394     virtual ~GrConical2Gradient() { }
   396     static const char* Name() { return "Two-Point Conical Gradient"; }
   397     virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
   398         return GrTBackendEffectFactory<GrConical2Gradient>::getInstance();
   399     }
   401     // The radial gradient parameters can collapse to a linear (instead of quadratic) equation.
   402     bool isDegenerate() const { return SkScalarAbs(fDiffRadius) == SkScalarAbs(fCenterX1); }
   403     SkScalar center() const { return fCenterX1; }
   404     SkScalar diffRadius() const { return fDiffRadius; }
   405     SkScalar radius() const { return fRadius0; }
   407     typedef GrGLConical2Gradient GLEffect;
   409 private:
   410     virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE {
   411         const GrConical2Gradient& s = CastEffect<GrConical2Gradient>(sBase);
   412         return (INHERITED::onIsEqual(sBase) &&
   413                 this->fCenterX1 == s.fCenterX1 &&
   414                 this->fRadius0 == s.fRadius0 &&
   415                 this->fDiffRadius == s.fDiffRadius);
   416     }
   418     GrConical2Gradient(GrContext* ctx,
   419                        const SkTwoPointConicalGradient& shader,
   420                        const SkMatrix& matrix,
   421                        SkShader::TileMode tm)
   422         : INHERITED(ctx, shader, matrix, tm)
   423         , fCenterX1(shader.getCenterX1())
   424         , fRadius0(shader.getStartRadius())
   425         , fDiffRadius(shader.getDiffRadius()) {
   426         // We pass the linear part of the quadratic as a varying.
   427         //    float b = -2.0 * (fCenterX1 * x + fRadius0 * fDiffRadius * z)
   428         fBTransform = this->getCoordTransform();
   429         SkMatrix& bMatrix = *fBTransform.accessMatrix();
   430         SkScalar r0dr = SkScalarMul(fRadius0, fDiffRadius);
   431         bMatrix[SkMatrix::kMScaleX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMScaleX]) +
   432                                             SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp0]));
   433         bMatrix[SkMatrix::kMSkewX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMSkewX]) +
   434                                            SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp1]));
   435         bMatrix[SkMatrix::kMTransX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMTransX]) +
   436                                             SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp2]));
   437         this->addCoordTransform(&fBTransform);
   438     }
   440     GR_DECLARE_EFFECT_TEST;
   442     // @{
   443     // Cache of values - these can change arbitrarily, EXCEPT
   444     // we shouldn't change between degenerate and non-degenerate?!
   446     GrCoordTransform fBTransform;
   447     SkScalar         fCenterX1;
   448     SkScalar         fRadius0;
   449     SkScalar         fDiffRadius;
   451     // @}
   453     typedef GrGradientEffect INHERITED;
   454 };
   456 GR_DEFINE_EFFECT_TEST(GrConical2Gradient);
   458 GrEffectRef* GrConical2Gradient::TestCreate(SkRandom* random,
   459                                             GrContext* context,
   460                                             const GrDrawTargetCaps&,
   461                                             GrTexture**) {
   462     SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()};
   463     SkScalar radius1 = random->nextUScalar1();
   464     SkPoint center2;
   465     SkScalar radius2;
   466     do {
   467         center2.set(random->nextUScalar1(), random->nextUScalar1());
   468         radius2 = random->nextUScalar1 ();
   469         // If the circles are identical the factory will give us an empty shader.
   470     } while (radius1 == radius2 && center1 == center2);
   472     SkColor colors[kMaxRandomGradientColors];
   473     SkScalar stopsArray[kMaxRandomGradientColors];
   474     SkScalar* stops = stopsArray;
   475     SkShader::TileMode tm;
   476     int colorCount = RandomGradientParams(random, colors, &stops, &tm);
   477     SkAutoTUnref<SkShader> shader(SkGradientShader::CreateTwoPointConical(center1, radius1,
   478                                                                           center2, radius2,
   479                                                                           colors, stops, colorCount,
   480                                                                           tm));
   481     SkPaint paint;
   482     return shader->asNewEffect(context, paint);
   483 }
   486 /////////////////////////////////////////////////////////////////////
   488 GrGLConical2Gradient::GrGLConical2Gradient(const GrBackendEffectFactory& factory,
   489                                            const GrDrawEffect& drawEffect)
   490     : INHERITED(factory)
   491     , fVSVaryingName(NULL)
   492     , fFSVaryingName(NULL)
   493     , fCachedCenter(SK_ScalarMax)
   494     , fCachedRadius(-SK_ScalarMax)
   495     , fCachedDiffRadius(-SK_ScalarMax) {
   497     const GrConical2Gradient& data = drawEffect.castEffect<GrConical2Gradient>();
   498     fIsDegenerate = data.isDegenerate();
   499 }
   501 void GrGLConical2Gradient::emitCode(GrGLShaderBuilder* builder,
   502                                     const GrDrawEffect&,
   503                                     EffectKey key,
   504                                     const char* outputColor,
   505                                     const char* inputColor,
   506                                     const TransformedCoordsArray& coords,
   507                                     const TextureSamplerArray& samplers) {
   508     this->emitUniforms(builder, key);
   509     fParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_Visibility,
   510                                          kFloat_GrSLType, "Conical2FSParams", 6);
   512     SkString cName("c");
   513     SkString ac4Name("ac4");
   514     SkString dName("d");
   515     SkString qName("q");
   516     SkString r0Name("r0");
   517     SkString r1Name("r1");
   518     SkString tName("t");
   519     SkString p0; // 4a
   520     SkString p1; // 1/a
   521     SkString p2; // distance between centers
   522     SkString p3; // start radius
   523     SkString p4; // start radius squared
   524     SkString p5; // difference in radii (r1 - r0)
   526     builder->getUniformVariable(fParamUni).appendArrayAccess(0, &p0);
   527     builder->getUniformVariable(fParamUni).appendArrayAccess(1, &p1);
   528     builder->getUniformVariable(fParamUni).appendArrayAccess(2, &p2);
   529     builder->getUniformVariable(fParamUni).appendArrayAccess(3, &p3);
   530     builder->getUniformVariable(fParamUni).appendArrayAccess(4, &p4);
   531     builder->getUniformVariable(fParamUni).appendArrayAccess(5, &p5);
   533     // We interpolate the linear component in coords[1].
   534     SkASSERT(coords[0].type() == coords[1].type());
   535     const char* coords2D;
   536     SkString bVar;
   537     if (kVec3f_GrSLType == coords[0].type()) {
   538         builder->fsCodeAppendf("\tvec3 interpolants = vec3(%s.xy, %s.x) / %s.z;\n",
   539                                coords[0].c_str(), coords[1].c_str(), coords[0].c_str());
   540         coords2D = "interpolants.xy";
   541         bVar = "interpolants.z";
   542     } else {
   543         coords2D = coords[0].c_str();
   544         bVar.printf("%s.x", coords[1].c_str());
   545     }
   547     // output will default to transparent black (we simply won't write anything
   548     // else to it if invalid, instead of discarding or returning prematurely)
   549     builder->fsCodeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor);
   551     // c = (x^2)+(y^2) - params[4]
   552     builder->fsCodeAppendf("\tfloat %s = dot(%s, %s) - %s;\n",
   553                            cName.c_str(), coords2D, coords2D, p4.c_str());
   555     // Non-degenerate case (quadratic)
   556     if (!fIsDegenerate) {
   558         // ac4 = params[0] * c
   559         builder->fsCodeAppendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
   560                                cName.c_str());
   562         // d = b^2 - ac4
   563         builder->fsCodeAppendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
   564                                bVar.c_str(), bVar.c_str(), ac4Name.c_str());
   566         // only proceed if discriminant is >= 0
   567         builder->fsCodeAppendf("\tif (%s >= 0.0) {\n", dName.c_str());
   569         // intermediate value we'll use to compute the roots
   570         // q = -0.5 * (b +/- sqrt(d))
   571         builder->fsCodeAppendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)"
   572                                " * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
   573                                bVar.c_str(), dName.c_str());
   575         // compute both roots
   576         // r0 = q * params[1]
   577         builder->fsCodeAppendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(),
   578                                qName.c_str(), p1.c_str());
   579         // r1 = c / q
   580         builder->fsCodeAppendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(),
   581                                cName.c_str(), qName.c_str());
   583         // Note: If there are two roots that both generate radius(t) > 0, the
   584         // Canvas spec says to choose the larger t.
   586         // so we'll look at the larger one first:
   587         builder->fsCodeAppendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(),
   588                                r0Name.c_str(), r1Name.c_str());
   590         // if r(t) > 0, then we're done; t will be our x coordinate
   591         builder->fsCodeAppendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
   592                                p5.c_str(), p3.c_str());
   594         builder->fsCodeAppend("\t\t");
   595         this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
   597         // otherwise, if r(t) for the larger root was <= 0, try the other root
   598         builder->fsCodeAppend("\t\t} else {\n");
   599         builder->fsCodeAppendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(),
   600                                r0Name.c_str(), r1Name.c_str());
   602         // if r(t) > 0 for the smaller root, then t will be our x coordinate
   603         builder->fsCodeAppendf("\t\t\tif (%s * %s + %s > 0.0) {\n",
   604                                tName.c_str(), p5.c_str(), p3.c_str());
   606         builder->fsCodeAppend("\t\t\t");
   607         this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
   609         // end if (r(t) > 0) for smaller root
   610         builder->fsCodeAppend("\t\t\t}\n");
   611         // end if (r(t) > 0), else, for larger root
   612         builder->fsCodeAppend("\t\t}\n");
   613         // end if (discriminant >= 0)
   614         builder->fsCodeAppend("\t}\n");
   615     } else {
   617         // linear case: t = -c/b
   618         builder->fsCodeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
   619                                cName.c_str(), bVar.c_str());
   621         // if r(t) > 0, then t will be the x coordinate
   622         builder->fsCodeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
   623                                p5.c_str(), p3.c_str());
   624         builder->fsCodeAppend("\t");
   625         this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
   626         builder->fsCodeAppend("\t}\n");
   627     }
   628 }
   630 void GrGLConical2Gradient::setData(const GrGLUniformManager& uman,
   631                                    const GrDrawEffect& drawEffect) {
   632     INHERITED::setData(uman, drawEffect);
   633     const GrConical2Gradient& data = drawEffect.castEffect<GrConical2Gradient>();
   634     SkASSERT(data.isDegenerate() == fIsDegenerate);
   635     SkScalar centerX1 = data.center();
   636     SkScalar radius0 = data.radius();
   637     SkScalar diffRadius = data.diffRadius();
   639     if (fCachedCenter != centerX1 ||
   640         fCachedRadius != radius0 ||
   641         fCachedDiffRadius != diffRadius) {
   643         SkScalar a = SkScalarMul(centerX1, centerX1) - diffRadius * diffRadius;
   645         // When we're in the degenerate (linear) case, the second
   646         // value will be INF but the program doesn't read it. (We
   647         // use the same 6 uniforms even though we don't need them
   648         // all in the linear case just to keep the code complexity
   649         // down).
   650         float values[6] = {
   651             SkScalarToFloat(a * 4),
   652             1.f / (SkScalarToFloat(a)),
   653             SkScalarToFloat(centerX1),
   654             SkScalarToFloat(radius0),
   655             SkScalarToFloat(SkScalarMul(radius0, radius0)),
   656             SkScalarToFloat(diffRadius)
   657         };
   659         uman.set1fv(fParamUni, 6, values);
   660         fCachedCenter = centerX1;
   661         fCachedRadius = radius0;
   662         fCachedDiffRadius = diffRadius;
   663     }
   664 }
   666 GrGLEffect::EffectKey GrGLConical2Gradient::GenKey(const GrDrawEffect& drawEffect,
   667                                                    const GrGLCaps&) {
   668     enum {
   669         kIsDegenerate = 1 << kBaseKeyBitCnt,
   670     };
   672     EffectKey key = GenBaseGradientKey(drawEffect);
   673     if (drawEffect.castEffect<GrConical2Gradient>().isDegenerate()) {
   674         key |= kIsDegenerate;
   675     }
   676     return key;
   677 }
   679 /////////////////////////////////////////////////////////////////////
   681 GrEffectRef* SkTwoPointConicalGradient::asNewEffect(GrContext* context, const SkPaint&) const {
   682     SkASSERT(NULL != context);
   683     SkASSERT(fPtsToUnit.isIdentity());
   684     // invert the localM, translate to center1, rotate so center2 is on x axis.
   685     SkMatrix matrix;
   686     if (!this->getLocalMatrix().invert(&matrix)) {
   687         return NULL;
   688     }
   689     matrix.postTranslate(-fCenter1.fX, -fCenter1.fY);
   691     SkPoint diff = fCenter2 - fCenter1;
   692     SkScalar diffLen = diff.length();
   693     if (0 != diffLen) {
   694         SkScalar invDiffLen = SkScalarInvert(diffLen);
   695         SkMatrix rot;
   696         rot.setSinCos(-SkScalarMul(invDiffLen, diff.fY),
   697                        SkScalarMul(invDiffLen, diff.fX));
   698         matrix.postConcat(rot);
   699     }
   701     return GrConical2Gradient::Create(context, *this, matrix, fTileMode);
   702 }
   704 #else
   706 GrEffectRef* SkTwoPointConicalGradient::asNewEffect(GrContext*, const SkPaint&) const {
   707     SkDEBUGFAIL("Should not call in GPU-less build");
   708     return NULL;
   709 }
   711 #endif
   713 #ifndef SK_IGNORE_TO_STRING
   714 void SkTwoPointConicalGradient::toString(SkString* str) const {
   715     str->append("SkTwoPointConicalGradient: (");
   717     str->append("center1: (");
   718     str->appendScalar(fCenter1.fX);
   719     str->append(", ");
   720     str->appendScalar(fCenter1.fY);
   721     str->append(") radius1: ");
   722     str->appendScalar(fRadius1);
   723     str->append(" ");
   725     str->append("center2: (");
   726     str->appendScalar(fCenter2.fX);
   727     str->append(", ");
   728     str->appendScalar(fCenter2.fY);
   729     str->append(") radius2: ");
   730     str->appendScalar(fRadius2);
   731     str->append(" ");
   733     this->INHERITED::toString(str);
   735     str->append(")");
   736 }
   737 #endif

mercurial