gfx/skia/trunk/src/pathops/SkQuarticRoot.cpp

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 // from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
     2 /*
     3  *  Roots3And4.c
     4  *
     5  *  Utility functions to find cubic and quartic roots,
     6  *  coefficients are passed like this:
     7  *
     8  *      c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0
     9  *
    10  *  The functions return the number of non-complex roots and
    11  *  put the values into the s array.
    12  *
    13  *  Author:         Jochen Schwarze (schwarze@isa.de)
    14  *
    15  *  Jan 26, 1990    Version for Graphics Gems
    16  *  Oct 11, 1990    Fixed sign problem for negative q's in SolveQuartic
    17  *                  (reported by Mark Podlipec),
    18  *                  Old-style function definitions,
    19  *                  IsZero() as a macro
    20  *  Nov 23, 1990    Some systems do not declare acos() and cbrt() in
    21  *                  <math.h>, though the functions exist in the library.
    22  *                  If large coefficients are used, EQN_EPS should be
    23  *                  reduced considerably (e.g. to 1E-30), results will be
    24  *                  correct but multiple roots might be reported more
    25  *                  than once.
    26  */
    28 #include "SkPathOpsCubic.h"
    29 #include "SkPathOpsQuad.h"
    30 #include "SkQuarticRoot.h"
    32 int SkReducedQuarticRoots(const double t4, const double t3, const double t2, const double t1,
    33         const double t0, const bool oneHint, double roots[4]) {
    34 #ifdef SK_DEBUG
    35     // create a string mathematica understands
    36     // GDB set print repe 15 # if repeated digits is a bother
    37     //     set print elements 400 # if line doesn't fit
    38     char str[1024];
    39     sk_bzero(str, sizeof(str));
    40     SK_SNPRINTF(str, sizeof(str),
    41             "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
    42             t4, t3, t2, t1, t0);
    43     SkPathOpsDebug::MathematicaIze(str, sizeof(str));
    44 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
    45     SkDebugf("%s\n", str);
    46 #endif
    47 #endif
    48     if (approximately_zero_when_compared_to(t4, t0)  // 0 is one root
    49             && approximately_zero_when_compared_to(t4, t1)
    50             && approximately_zero_when_compared_to(t4, t2)) {
    51         if (approximately_zero_when_compared_to(t3, t0)
    52             && approximately_zero_when_compared_to(t3, t1)
    53             && approximately_zero_when_compared_to(t3, t2)) {
    54             return SkDQuad::RootsReal(t2, t1, t0, roots);
    55         }
    56         if (approximately_zero_when_compared_to(t4, t3)) {
    57             return SkDCubic::RootsReal(t3, t2, t1, t0, roots);
    58         }
    59     }
    60     if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1))  // 0 is one root
    61       //      && approximately_zero_when_compared_to(t0, t2)
    62             && approximately_zero_when_compared_to(t0, t3)
    63             && approximately_zero_when_compared_to(t0, t4)) {
    64         int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots);
    65         for (int i = 0; i < num; ++i) {
    66             if (approximately_zero(roots[i])) {
    67                 return num;
    68             }
    69         }
    70         roots[num++] = 0;
    71         return num;
    72     }
    73     if (oneHint) {
    74         SkASSERT(approximately_zero_double(t4 + t3 + t2 + t1 + t0));  // 1 is one root
    75         // note that -C == A + B + D + E
    76         int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots);
    77         for (int i = 0; i < num; ++i) {
    78             if (approximately_equal(roots[i], 1)) {
    79                 return num;
    80             }
    81         }
    82         roots[num++] = 1;
    83         return num;
    84     }
    85     return -1;
    86 }
    88 int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const double C,
    89         const double D, const double E, double s[4]) {
    90     double  u, v;
    91     /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
    92     const double invA = 1 / A;
    93     const double a = B * invA;
    94     const double b = C * invA;
    95     const double c = D * invA;
    96     const double d = E * invA;
    97     /*  substitute x = y - a/4 to eliminate cubic term:
    98     x^4 + px^2 + qx + r = 0 */
    99     const double a2 = a * a;
   100     const double p = -3 * a2 / 8 + b;
   101     const double q = a2 * a / 8 - a * b / 2 + c;
   102     const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d;
   103     int num;
   104     if (approximately_zero(r)) {
   105     /* no absolute term: y(y^3 + py + q) = 0 */
   106         num = SkDCubic::RootsReal(1, 0, p, q, s);
   107         s[num++] = 0;
   108     } else {
   109         /* solve the resolvent cubic ... */
   110         double cubicRoots[3];
   111         int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots);
   112         int index;
   113         /* ... and take one real solution ... */
   114         double z;
   115         num = 0;
   116         int num2 = 0;
   117         for (index = firstCubicRoot; index < roots; ++index) {
   118             z = cubicRoots[index];
   119             /* ... to build two quadric equations */
   120             u = z * z - r;
   121             v = 2 * z - p;
   122             if (approximately_zero_squared(u)) {
   123                 u = 0;
   124             } else if (u > 0) {
   125                 u = sqrt(u);
   126             } else {
   127                 continue;
   128             }
   129             if (approximately_zero_squared(v)) {
   130                 v = 0;
   131             } else if (v > 0) {
   132                 v = sqrt(v);
   133             } else {
   134                 continue;
   135             }
   136             num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s);
   137             num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num);
   138             if (!((num | num2) & 1)) {
   139                 break;  // prefer solutions without single quad roots
   140             }
   141         }
   142         num += num2;
   143         if (!num) {
   144             return 0;  // no valid cubic root
   145         }
   146     }
   147     /* resubstitute */
   148     const double sub = a / 4;
   149     for (int i = 0; i < num; ++i) {
   150         s[i] -= sub;
   151     }
   152     // eliminate duplicates
   153     for (int i = 0; i < num - 1; ++i) {
   154         for (int j = i + 1; j < num; ) {
   155             if (AlmostDequalUlps(s[i], s[j])) {
   156                 if (j < --num) {
   157                     s[j] = s[num];
   158                 }
   159             } else {
   160                 ++j;
   161             }
   162         }
   163     }
   164     return num;
   165 }

mercurial