intl/icu/source/common/caniter.cpp

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  *****************************************************************************
     3  * Copyright (C) 1996-2011, International Business Machines Corporation and  *
     4  * others. All Rights Reserved.                                              *
     5  *****************************************************************************
     6  */
     8 #include "unicode/utypes.h"
    10 #if !UCONFIG_NO_NORMALIZATION
    12 #include "unicode/caniter.h"
    13 #include "unicode/normalizer2.h"
    14 #include "unicode/uchar.h"
    15 #include "unicode/uniset.h"
    16 #include "unicode/usetiter.h"
    17 #include "unicode/ustring.h"
    18 #include "unicode/utf16.h"
    19 #include "cmemory.h"
    20 #include "hash.h"
    21 #include "normalizer2impl.h"
    23 /**
    24  * This class allows one to iterate through all the strings that are canonically equivalent to a given
    25  * string. For example, here are some sample results:
    26 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
    27 1: \u0041\u030A\u0064\u0307\u0327
    28  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
    29 2: \u0041\u030A\u0064\u0327\u0307
    30  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
    31 3: \u0041\u030A\u1E0B\u0327
    32  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
    33 4: \u0041\u030A\u1E11\u0307
    34  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
    35 5: \u00C5\u0064\u0307\u0327
    36  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
    37 6: \u00C5\u0064\u0327\u0307
    38  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
    39 7: \u00C5\u1E0B\u0327
    40  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
    41 8: \u00C5\u1E11\u0307
    42  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
    43 9: \u212B\u0064\u0307\u0327
    44  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
    45 10: \u212B\u0064\u0327\u0307
    46  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
    47 11: \u212B\u1E0B\u0327
    48  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
    49 12: \u212B\u1E11\u0307
    50  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
    51  *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
    52  * since it has not been optimized for that situation.
    53  *@author M. Davis
    54  *@draft
    55  */
    57 // public
    59 U_NAMESPACE_BEGIN
    61 // TODO: add boilerplate methods.
    63 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
    65 /**
    66  *@param source string to get results for
    67  */
    68 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
    69     pieces(NULL),
    70     pieces_length(0),
    71     pieces_lengths(NULL),
    72     current(NULL),
    73     current_length(0),
    74     nfd(*Normalizer2Factory::getNFDInstance(status)),
    75     nfcImpl(*Normalizer2Factory::getNFCImpl(status))
    76 {
    77     if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) {
    78       setSource(sourceStr, status);
    79     }
    80 }
    82 CanonicalIterator::~CanonicalIterator() {
    83   cleanPieces();
    84 }
    86 void CanonicalIterator::cleanPieces() {
    87     int32_t i = 0;
    88     if(pieces != NULL) {
    89         for(i = 0; i < pieces_length; i++) {
    90             if(pieces[i] != NULL) {
    91                 delete[] pieces[i];
    92             }
    93         }
    94         uprv_free(pieces);
    95         pieces = NULL;
    96         pieces_length = 0;
    97     }
    98     if(pieces_lengths != NULL) {
    99         uprv_free(pieces_lengths);
   100         pieces_lengths = NULL;
   101     }
   102     if(current != NULL) {
   103         uprv_free(current);
   104         current = NULL;
   105         current_length = 0;
   106     }
   107 }
   109 /**
   110  *@return gets the source: NOTE: it is the NFD form of source
   111  */
   112 UnicodeString CanonicalIterator::getSource() {
   113   return source;
   114 }
   116 /**
   117  * Resets the iterator so that one can start again from the beginning.
   118  */
   119 void CanonicalIterator::reset() {
   120     done = FALSE;
   121     for (int i = 0; i < current_length; ++i) {
   122         current[i] = 0;
   123     }
   124 }
   126 /**
   127  *@return the next string that is canonically equivalent. The value null is returned when
   128  * the iteration is done.
   129  */
   130 UnicodeString CanonicalIterator::next() {
   131     int32_t i = 0;
   133     if (done) {
   134       buffer.setToBogus();
   135       return buffer;
   136     }
   138     // delete old contents
   139     buffer.remove();
   141     // construct return value
   143     for (i = 0; i < pieces_length; ++i) {
   144         buffer.append(pieces[i][current[i]]);
   145     }
   146     //String result = buffer.toString(); // not needed
   148     // find next value for next time
   150     for (i = current_length - 1; ; --i) {
   151         if (i < 0) {
   152             done = TRUE;
   153             break;
   154         }
   155         current[i]++;
   156         if (current[i] < pieces_lengths[i]) break; // got sequence
   157         current[i] = 0;
   158     }
   159     return buffer;
   160 }
   162 /**
   163  *@param set the source string to iterate against. This allows the same iterator to be used
   164  * while changing the source string, saving object creation.
   165  */
   166 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
   167     int32_t list_length = 0;
   168     UChar32 cp = 0;
   169     int32_t start = 0;
   170     int32_t i = 0;
   171     UnicodeString *list = NULL;
   173     nfd.normalize(newSource, source, status);
   174     if(U_FAILURE(status)) {
   175       return;
   176     }
   177     done = FALSE;
   179     cleanPieces();
   181     // catch degenerate case
   182     if (newSource.length() == 0) {
   183         pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
   184         pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
   185         pieces_length = 1;
   186         current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
   187         current_length = 1;
   188         if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
   189             status = U_MEMORY_ALLOCATION_ERROR;
   190             goto CleanPartialInitialization;
   191         }
   192         current[0] = 0;
   193         pieces[0] = new UnicodeString[1];
   194         pieces_lengths[0] = 1;
   195         if (pieces[0] == 0) {
   196             status = U_MEMORY_ALLOCATION_ERROR;
   197             goto CleanPartialInitialization;
   198         }
   199         return;
   200     }
   203     list = new UnicodeString[source.length()];
   204     if (list == 0) {
   205         status = U_MEMORY_ALLOCATION_ERROR;
   206         goto CleanPartialInitialization;
   207     }
   209     // i should initialy be the number of code units at the 
   210     // start of the string
   211     i = U16_LENGTH(source.char32At(0));
   212     //int32_t i = 1;
   213     // find the segments
   214     // This code iterates through the source string and 
   215     // extracts segments that end up on a codepoint that
   216     // doesn't start any decompositions. (Analysis is done
   217     // on the NFD form - see above).
   218     for (; i < source.length(); i += U16_LENGTH(cp)) {
   219         cp = source.char32At(i);
   220         if (nfcImpl.isCanonSegmentStarter(cp)) {
   221             source.extract(start, i-start, list[list_length++]); // add up to i
   222             start = i;
   223         }
   224     }
   225     source.extract(start, i-start, list[list_length++]); // add last one
   228     // allocate the arrays, and find the strings that are CE to each segment
   229     pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
   230     pieces_length = list_length;
   231     pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
   232     current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
   233     current_length = list_length;
   234     if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
   235         status = U_MEMORY_ALLOCATION_ERROR;
   236         goto CleanPartialInitialization;
   237     }
   239     for (i = 0; i < current_length; i++) {
   240         current[i] = 0;
   241     }
   242     // for each segment, get all the combinations that can produce 
   243     // it after NFD normalization
   244     for (i = 0; i < pieces_length; ++i) {
   245         //if (PROGRESS) printf("SEGMENT\n");
   246         pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
   247     }
   249     delete[] list;
   250     return;
   251 // Common section to cleanup all local variables and reset object variables.
   252 CleanPartialInitialization:
   253     if (list != NULL) {
   254         delete[] list;
   255     }
   256     cleanPieces();
   257 }
   259 /**
   260  * Dumb recursive implementation of permutation.
   261  * TODO: optimize
   262  * @param source the string to find permutations for
   263  * @return the results in a set.
   264  */
   265 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
   266     if(U_FAILURE(status)) {
   267         return;
   268     }
   269     //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
   270     int32_t i = 0;
   272     // optimization:
   273     // if zero or one character, just return a set with it
   274     // we check for length < 2 to keep from counting code points all the time
   275     if (source.length() <= 2 && source.countChar32() <= 1) {
   276         UnicodeString *toPut = new UnicodeString(source);
   277         /* test for NULL */
   278         if (toPut == 0) {
   279             status = U_MEMORY_ALLOCATION_ERROR;
   280             return;
   281         }
   282         result->put(source, toPut, status);
   283         return;
   284     }
   286     // otherwise iterate through the string, and recursively permute all the other characters
   287     UChar32 cp;
   288     Hashtable subpermute(status);
   289     if(U_FAILURE(status)) {
   290         return;
   291     }
   292     subpermute.setValueDeleter(uprv_deleteUObject);
   294     for (i = 0; i < source.length(); i += U16_LENGTH(cp)) {
   295         cp = source.char32At(i);
   296         const UHashElement *ne = NULL;
   297         int32_t el = -1;
   298         UnicodeString subPermuteString = source;
   300         // optimization:
   301         // if the character is canonical combining class zero,
   302         // don't permute it
   303         if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
   304             //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
   305             continue;
   306         }
   308         subpermute.removeAll();
   310         // see what the permutations of the characters before and after this one are
   311         //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
   312         permute(subPermuteString.replace(i, U16_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status);
   313         /* Test for buffer overflows */
   314         if(U_FAILURE(status)) {
   315             return;
   316         }
   317         // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents 
   318         // of source at this point.
   320         // prefix this character to all of them
   321         ne = subpermute.nextElement(el);
   322         while (ne != NULL) {
   323             UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
   324             UnicodeString *chStr = new UnicodeString(cp);
   325             //test for  NULL
   326             if (chStr == NULL) {
   327                 status = U_MEMORY_ALLOCATION_ERROR;
   328                 return;
   329             }
   330             chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
   331             //if (PROGRESS) printf("  Piece: %s\n", UToS(*chStr));
   332             result->put(*chStr, chStr, status);
   333             ne = subpermute.nextElement(el);
   334         }
   335     }
   336     //return result;
   337 }
   339 // privates
   341 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
   342 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
   343     Hashtable result(status);
   344     Hashtable permutations(status);
   345     Hashtable basic(status);
   346     if (U_FAILURE(status)) {
   347         return 0;
   348     }
   349     result.setValueDeleter(uprv_deleteUObject);
   350     permutations.setValueDeleter(uprv_deleteUObject);
   351     basic.setValueDeleter(uprv_deleteUObject);
   353     UChar USeg[256];
   354     int32_t segLen = segment.extract(USeg, 256, status);
   355     getEquivalents2(&basic, USeg, segLen, status);
   357     // now get all the permutations
   358     // add only the ones that are canonically equivalent
   359     // TODO: optimize by not permuting any class zero.
   361     const UHashElement *ne = NULL;
   362     int32_t el = -1;
   363     //Iterator it = basic.iterator();
   364     ne = basic.nextElement(el);
   365     //while (it.hasNext())
   366     while (ne != NULL) {
   367         //String item = (String) it.next();
   368         UnicodeString item = *((UnicodeString *)(ne->value.pointer));
   370         permutations.removeAll();
   371         permute(item, CANITER_SKIP_ZEROES, &permutations, status);
   372         const UHashElement *ne2 = NULL;
   373         int32_t el2 = -1;
   374         //Iterator it2 = permutations.iterator();
   375         ne2 = permutations.nextElement(el2);
   376         //while (it2.hasNext())
   377         while (ne2 != NULL) {
   378             //String possible = (String) it2.next();
   379             //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
   380             UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
   381             UnicodeString attempt;
   382             nfd.normalize(possible, attempt, status);
   384             // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
   385             if (attempt==segment) {
   386                 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
   387                 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
   388                 result.put(possible, new UnicodeString(possible), status); //add(possible);
   389             } else {
   390                 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
   391             }
   393             ne2 = permutations.nextElement(el2);
   394         }
   395         ne = basic.nextElement(el);
   396     }
   398     /* Test for buffer overflows */
   399     if(U_FAILURE(status)) {
   400         return 0;
   401     }
   402     // convert into a String[] to clean up storage
   403     //String[] finalResult = new String[result.size()];
   404     UnicodeString *finalResult = NULL;
   405     int32_t resultCount;
   406     if((resultCount = result.count())) {
   407         finalResult = new UnicodeString[resultCount];
   408         if (finalResult == 0) {
   409             status = U_MEMORY_ALLOCATION_ERROR;
   410             return NULL;
   411         }
   412     }
   413     else {
   414         status = U_ILLEGAL_ARGUMENT_ERROR;
   415         return NULL;
   416     }
   417     //result.toArray(finalResult);
   418     result_len = 0;
   419     el = -1;
   420     ne = result.nextElement(el);
   421     while(ne != NULL) {
   422         finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
   423         ne = result.nextElement(el);
   424     }
   427     return finalResult;
   428 }
   430 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) {
   432     if (U_FAILURE(status)) {
   433         return NULL;
   434     }
   436     //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
   438     UnicodeString toPut(segment, segLen);
   440     fillinResult->put(toPut, new UnicodeString(toPut), status);
   442     UnicodeSet starts;
   444     // cycle through all the characters
   445     UChar32 cp;
   446     for (int32_t i = 0; i < segLen; i += U16_LENGTH(cp)) {
   447         // see if any character is at the start of some decomposition
   448         U16_GET(segment, 0, i, segLen, cp);
   449         if (!nfcImpl.getCanonStartSet(cp, starts)) {
   450             continue;
   451         }
   452         // if so, see which decompositions match
   453         UnicodeSetIterator iter(starts);
   454         while (iter.next()) {
   455             UChar32 cp2 = iter.getCodepoint();
   456             Hashtable remainder(status);
   457             remainder.setValueDeleter(uprv_deleteUObject);
   458             if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) {
   459                 continue;
   460             }
   462             // there were some matches, so add all the possibilities to the set.
   463             UnicodeString prefix(segment, i);
   464             prefix += cp2;
   466             int32_t el = -1;
   467             const UHashElement *ne = remainder.nextElement(el);
   468             while (ne != NULL) {
   469                 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
   470                 UnicodeString *toAdd = new UnicodeString(prefix);
   471                 /* test for NULL */
   472                 if (toAdd == 0) {
   473                     status = U_MEMORY_ALLOCATION_ERROR;
   474                     return NULL;
   475                 }
   476                 *toAdd += item;
   477                 fillinResult->put(*toAdd, toAdd, status);
   479                 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
   481                 ne = remainder.nextElement(el);
   482             }
   483         }
   484     }
   486     /* Test for buffer overflows */
   487     if(U_FAILURE(status)) {
   488         return NULL;
   489     }
   490     return fillinResult;
   491 }
   493 /**
   494  * See if the decomposition of cp2 is at segment starting at segmentPos 
   495  * (with canonical rearrangment!)
   496  * If so, take the remainder, and return the equivalents 
   497  */
   498 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
   499 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
   500     //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
   501     //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
   503     if (U_FAILURE(status)) {
   504         return NULL;
   505     }
   507     UnicodeString temp(comp);
   508     int32_t inputLen=temp.length();
   509     UnicodeString decompString;
   510     nfd.normalize(temp, decompString, status);
   511     const UChar *decomp=decompString.getBuffer();
   512     int32_t decompLen=decompString.length();
   514     // See if it matches the start of segment (at segmentPos)
   515     UBool ok = FALSE;
   516     UChar32 cp;
   517     int32_t decompPos = 0;
   518     UChar32 decompCp;
   519     U16_NEXT(decomp, decompPos, decompLen, decompCp);
   521     int32_t i = segmentPos;
   522     while(i < segLen) {
   523         U16_NEXT(segment, i, segLen, cp);
   525         if (cp == decompCp) { // if equal, eat another cp from decomp
   527             //if (PROGRESS) printf("  matches: %s\n", UToS(Tr(UnicodeString(cp))));
   529             if (decompPos == decompLen) { // done, have all decomp characters!
   530                 temp.append(segment+i, segLen-i);
   531                 ok = TRUE;
   532                 break;
   533             }
   534             U16_NEXT(decomp, decompPos, decompLen, decompCp);
   535         } else {
   536             //if (PROGRESS) printf("  buffer: %s\n", UToS(Tr(UnicodeString(cp))));
   538             // brute force approach
   539             temp.append(cp);
   541             /* TODO: optimize
   542             // since we know that the classes are monotonically increasing, after zero
   543             // e.g. 0 5 7 9 0 3
   544             // we can do an optimization
   545             // there are only a few cases that work: zero, less, same, greater
   546             // if both classes are the same, we fail
   547             // if the decomp class < the segment class, we fail
   549             segClass = getClass(cp);
   550             if (decompClass <= segClass) return null;
   551             */
   552         }
   553     }
   554     if (!ok)
   555         return NULL; // we failed, characters left over
   557     //if (PROGRESS) printf("Matches\n");
   559     if (inputLen == temp.length()) {
   560         fillinResult->put(UnicodeString(), new UnicodeString(), status);
   561         return fillinResult; // succeed, but no remainder
   562     }
   564     // brute force approach
   565     // check to make sure result is canonically equivalent
   566     UnicodeString trial;
   567     nfd.normalize(temp, trial, status);
   568     if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) {
   569         return NULL;
   570     }
   572     return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status);
   573 }
   575 U_NAMESPACE_END
   577 #endif /* #if !UCONFIG_NO_NORMALIZATION */

mercurial