media/libjpeg/jccoefct.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  * jccoefct.c
     3  *
     4  * Copyright (C) 1994-1997, Thomas G. Lane.
     5  * This file is part of the Independent JPEG Group's software.
     6  * For conditions of distribution and use, see the accompanying README file.
     7  *
     8  * This file contains the coefficient buffer controller for compression.
     9  * This controller is the top level of the JPEG compressor proper.
    10  * The coefficient buffer lies between forward-DCT and entropy encoding steps.
    11  */
    13 #define JPEG_INTERNALS
    14 #include "jinclude.h"
    15 #include "jpeglib.h"
    18 /* We use a full-image coefficient buffer when doing Huffman optimization,
    19  * and also for writing multiple-scan JPEG files.  In all cases, the DCT
    20  * step is run during the first pass, and subsequent passes need only read
    21  * the buffered coefficients.
    22  */
    23 #ifdef ENTROPY_OPT_SUPPORTED
    24 #define FULL_COEF_BUFFER_SUPPORTED
    25 #else
    26 #ifdef C_MULTISCAN_FILES_SUPPORTED
    27 #define FULL_COEF_BUFFER_SUPPORTED
    28 #endif
    29 #endif
    32 /* Private buffer controller object */
    34 typedef struct {
    35   struct jpeg_c_coef_controller pub; /* public fields */
    37   JDIMENSION iMCU_row_num;	/* iMCU row # within image */
    38   JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */
    39   int MCU_vert_offset;		/* counts MCU rows within iMCU row */
    40   int MCU_rows_per_iMCU_row;	/* number of such rows needed */
    42   /* For single-pass compression, it's sufficient to buffer just one MCU
    43    * (although this may prove a bit slow in practice).  We allocate a
    44    * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
    45    * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
    46    * it's not really very big; this is to keep the module interfaces unchanged
    47    * when a large coefficient buffer is necessary.)
    48    * In multi-pass modes, this array points to the current MCU's blocks
    49    * within the virtual arrays.
    50    */
    51   JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
    53   /* In multi-pass modes, we need a virtual block array for each component. */
    54   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
    55 } my_coef_controller;
    57 typedef my_coef_controller * my_coef_ptr;
    60 /* Forward declarations */
    61 METHODDEF(boolean) compress_data
    62     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
    63 #ifdef FULL_COEF_BUFFER_SUPPORTED
    64 METHODDEF(boolean) compress_first_pass
    65     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
    66 METHODDEF(boolean) compress_output
    67     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
    68 #endif
    71 LOCAL(void)
    72 start_iMCU_row (j_compress_ptr cinfo)
    73 /* Reset within-iMCU-row counters for a new row */
    74 {
    75   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    77   /* In an interleaved scan, an MCU row is the same as an iMCU row.
    78    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
    79    * But at the bottom of the image, process only what's left.
    80    */
    81   if (cinfo->comps_in_scan > 1) {
    82     coef->MCU_rows_per_iMCU_row = 1;
    83   } else {
    84     if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
    85       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
    86     else
    87       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
    88   }
    90   coef->mcu_ctr = 0;
    91   coef->MCU_vert_offset = 0;
    92 }
    95 /*
    96  * Initialize for a processing pass.
    97  */
    99 METHODDEF(void)
   100 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
   101 {
   102   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
   104   coef->iMCU_row_num = 0;
   105   start_iMCU_row(cinfo);
   107   switch (pass_mode) {
   108   case JBUF_PASS_THRU:
   109     if (coef->whole_image[0] != NULL)
   110       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
   111     coef->pub.compress_data = compress_data;
   112     break;
   113 #ifdef FULL_COEF_BUFFER_SUPPORTED
   114   case JBUF_SAVE_AND_PASS:
   115     if (coef->whole_image[0] == NULL)
   116       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
   117     coef->pub.compress_data = compress_first_pass;
   118     break;
   119   case JBUF_CRANK_DEST:
   120     if (coef->whole_image[0] == NULL)
   121       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
   122     coef->pub.compress_data = compress_output;
   123     break;
   124 #endif
   125   default:
   126     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
   127     break;
   128   }
   129 }
   132 /*
   133  * Process some data in the single-pass case.
   134  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
   135  * per call, ie, v_samp_factor block rows for each component in the image.
   136  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
   137  *
   138  * NB: input_buf contains a plane for each component in image,
   139  * which we index according to the component's SOF position.
   140  */
   142 METHODDEF(boolean)
   143 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
   144 {
   145   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
   146   JDIMENSION MCU_col_num;	/* index of current MCU within row */
   147   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
   148   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
   149   int blkn, bi, ci, yindex, yoffset, blockcnt;
   150   JDIMENSION ypos, xpos;
   151   jpeg_component_info *compptr;
   153   /* Loop to write as much as one whole iMCU row */
   154   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
   155        yoffset++) {
   156     for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
   157 	 MCU_col_num++) {
   158       /* Determine where data comes from in input_buf and do the DCT thing.
   159        * Each call on forward_DCT processes a horizontal row of DCT blocks
   160        * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
   161        * sequentially.  Dummy blocks at the right or bottom edge are filled in
   162        * specially.  The data in them does not matter for image reconstruction,
   163        * so we fill them with values that will encode to the smallest amount of
   164        * data, viz: all zeroes in the AC entries, DC entries equal to previous
   165        * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
   166        */
   167       blkn = 0;
   168       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   169 	compptr = cinfo->cur_comp_info[ci];
   170 	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
   171 						: compptr->last_col_width;
   172 	xpos = MCU_col_num * compptr->MCU_sample_width;
   173 	ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
   174 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
   175 	  if (coef->iMCU_row_num < last_iMCU_row ||
   176 	      yoffset+yindex < compptr->last_row_height) {
   177 	    (*cinfo->fdct->forward_DCT) (cinfo, compptr,
   178 					 input_buf[compptr->component_index],
   179 					 coef->MCU_buffer[blkn],
   180 					 ypos, xpos, (JDIMENSION) blockcnt);
   181 	    if (blockcnt < compptr->MCU_width) {
   182 	      /* Create some dummy blocks at the right edge of the image. */
   183 	      jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
   184 			(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
   185 	      for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
   186 		coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
   187 	      }
   188 	    }
   189 	  } else {
   190 	    /* Create a row of dummy blocks at the bottom of the image. */
   191 	    jzero_far((void FAR *) coef->MCU_buffer[blkn],
   192 		      compptr->MCU_width * SIZEOF(JBLOCK));
   193 	    for (bi = 0; bi < compptr->MCU_width; bi++) {
   194 	      coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
   195 	    }
   196 	  }
   197 	  blkn += compptr->MCU_width;
   198 	  ypos += DCTSIZE;
   199 	}
   200       }
   201       /* Try to write the MCU.  In event of a suspension failure, we will
   202        * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
   203        */
   204       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
   205 	/* Suspension forced; update state counters and exit */
   206 	coef->MCU_vert_offset = yoffset;
   207 	coef->mcu_ctr = MCU_col_num;
   208 	return FALSE;
   209       }
   210     }
   211     /* Completed an MCU row, but perhaps not an iMCU row */
   212     coef->mcu_ctr = 0;
   213   }
   214   /* Completed the iMCU row, advance counters for next one */
   215   coef->iMCU_row_num++;
   216   start_iMCU_row(cinfo);
   217   return TRUE;
   218 }
   221 #ifdef FULL_COEF_BUFFER_SUPPORTED
   223 /*
   224  * Process some data in the first pass of a multi-pass case.
   225  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
   226  * per call, ie, v_samp_factor block rows for each component in the image.
   227  * This amount of data is read from the source buffer, DCT'd and quantized,
   228  * and saved into the virtual arrays.  We also generate suitable dummy blocks
   229  * as needed at the right and lower edges.  (The dummy blocks are constructed
   230  * in the virtual arrays, which have been padded appropriately.)  This makes
   231  * it possible for subsequent passes not to worry about real vs. dummy blocks.
   232  *
   233  * We must also emit the data to the entropy encoder.  This is conveniently
   234  * done by calling compress_output() after we've loaded the current strip
   235  * of the virtual arrays.
   236  *
   237  * NB: input_buf contains a plane for each component in image.  All
   238  * components are DCT'd and loaded into the virtual arrays in this pass.
   239  * However, it may be that only a subset of the components are emitted to
   240  * the entropy encoder during this first pass; be careful about looking
   241  * at the scan-dependent variables (MCU dimensions, etc).
   242  */
   244 METHODDEF(boolean)
   245 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
   246 {
   247   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
   248   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
   249   JDIMENSION blocks_across, MCUs_across, MCUindex;
   250   int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
   251   JCOEF lastDC;
   252   jpeg_component_info *compptr;
   253   JBLOCKARRAY buffer;
   254   JBLOCKROW thisblockrow, lastblockrow;
   256   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
   257        ci++, compptr++) {
   258     /* Align the virtual buffer for this component. */
   259     buffer = (*cinfo->mem->access_virt_barray)
   260       ((j_common_ptr) cinfo, coef->whole_image[ci],
   261        coef->iMCU_row_num * compptr->v_samp_factor,
   262        (JDIMENSION) compptr->v_samp_factor, TRUE);
   263     /* Count non-dummy DCT block rows in this iMCU row. */
   264     if (coef->iMCU_row_num < last_iMCU_row)
   265       block_rows = compptr->v_samp_factor;
   266     else {
   267       /* NB: can't use last_row_height here, since may not be set! */
   268       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
   269       if (block_rows == 0) block_rows = compptr->v_samp_factor;
   270     }
   271     blocks_across = compptr->width_in_blocks;
   272     h_samp_factor = compptr->h_samp_factor;
   273     /* Count number of dummy blocks to be added at the right margin. */
   274     ndummy = (int) (blocks_across % h_samp_factor);
   275     if (ndummy > 0)
   276       ndummy = h_samp_factor - ndummy;
   277     /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
   278      * on forward_DCT processes a complete horizontal row of DCT blocks.
   279      */
   280     for (block_row = 0; block_row < block_rows; block_row++) {
   281       thisblockrow = buffer[block_row];
   282       (*cinfo->fdct->forward_DCT) (cinfo, compptr,
   283 				   input_buf[ci], thisblockrow,
   284 				   (JDIMENSION) (block_row * DCTSIZE),
   285 				   (JDIMENSION) 0, blocks_across);
   286       if (ndummy > 0) {
   287 	/* Create dummy blocks at the right edge of the image. */
   288 	thisblockrow += blocks_across; /* => first dummy block */
   289 	jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
   290 	lastDC = thisblockrow[-1][0];
   291 	for (bi = 0; bi < ndummy; bi++) {
   292 	  thisblockrow[bi][0] = lastDC;
   293 	}
   294       }
   295     }
   296     /* If at end of image, create dummy block rows as needed.
   297      * The tricky part here is that within each MCU, we want the DC values
   298      * of the dummy blocks to match the last real block's DC value.
   299      * This squeezes a few more bytes out of the resulting file...
   300      */
   301     if (coef->iMCU_row_num == last_iMCU_row) {
   302       blocks_across += ndummy;	/* include lower right corner */
   303       MCUs_across = blocks_across / h_samp_factor;
   304       for (block_row = block_rows; block_row < compptr->v_samp_factor;
   305 	   block_row++) {
   306 	thisblockrow = buffer[block_row];
   307 	lastblockrow = buffer[block_row-1];
   308 	jzero_far((void FAR *) thisblockrow,
   309 		  (size_t) (blocks_across * SIZEOF(JBLOCK)));
   310 	for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
   311 	  lastDC = lastblockrow[h_samp_factor-1][0];
   312 	  for (bi = 0; bi < h_samp_factor; bi++) {
   313 	    thisblockrow[bi][0] = lastDC;
   314 	  }
   315 	  thisblockrow += h_samp_factor; /* advance to next MCU in row */
   316 	  lastblockrow += h_samp_factor;
   317 	}
   318       }
   319     }
   320   }
   321   /* NB: compress_output will increment iMCU_row_num if successful.
   322    * A suspension return will result in redoing all the work above next time.
   323    */
   325   /* Emit data to the entropy encoder, sharing code with subsequent passes */
   326   return compress_output(cinfo, input_buf);
   327 }
   330 /*
   331  * Process some data in subsequent passes of a multi-pass case.
   332  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
   333  * per call, ie, v_samp_factor block rows for each component in the scan.
   334  * The data is obtained from the virtual arrays and fed to the entropy coder.
   335  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
   336  *
   337  * NB: input_buf is ignored; it is likely to be a NULL pointer.
   338  */
   340 METHODDEF(boolean)
   341 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
   342 {
   343   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
   344   JDIMENSION MCU_col_num;	/* index of current MCU within row */
   345   int blkn, ci, xindex, yindex, yoffset;
   346   JDIMENSION start_col;
   347   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
   348   JBLOCKROW buffer_ptr;
   349   jpeg_component_info *compptr;
   351   /* Align the virtual buffers for the components used in this scan.
   352    * NB: during first pass, this is safe only because the buffers will
   353    * already be aligned properly, so jmemmgr.c won't need to do any I/O.
   354    */
   355   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   356     compptr = cinfo->cur_comp_info[ci];
   357     buffer[ci] = (*cinfo->mem->access_virt_barray)
   358       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
   359        coef->iMCU_row_num * compptr->v_samp_factor,
   360        (JDIMENSION) compptr->v_samp_factor, FALSE);
   361   }
   363   /* Loop to process one whole iMCU row */
   364   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
   365        yoffset++) {
   366     for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
   367 	 MCU_col_num++) {
   368       /* Construct list of pointers to DCT blocks belonging to this MCU */
   369       blkn = 0;			/* index of current DCT block within MCU */
   370       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   371 	compptr = cinfo->cur_comp_info[ci];
   372 	start_col = MCU_col_num * compptr->MCU_width;
   373 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
   374 	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
   375 	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
   376 	    coef->MCU_buffer[blkn++] = buffer_ptr++;
   377 	  }
   378 	}
   379       }
   380       /* Try to write the MCU. */
   381       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
   382 	/* Suspension forced; update state counters and exit */
   383 	coef->MCU_vert_offset = yoffset;
   384 	coef->mcu_ctr = MCU_col_num;
   385 	return FALSE;
   386       }
   387     }
   388     /* Completed an MCU row, but perhaps not an iMCU row */
   389     coef->mcu_ctr = 0;
   390   }
   391   /* Completed the iMCU row, advance counters for next one */
   392   coef->iMCU_row_num++;
   393   start_iMCU_row(cinfo);
   394   return TRUE;
   395 }
   397 #endif /* FULL_COEF_BUFFER_SUPPORTED */
   400 /*
   401  * Initialize coefficient buffer controller.
   402  */
   404 GLOBAL(void)
   405 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
   406 {
   407   my_coef_ptr coef;
   409   coef = (my_coef_ptr)
   410     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   411 				SIZEOF(my_coef_controller));
   412   cinfo->coef = (struct jpeg_c_coef_controller *) coef;
   413   coef->pub.start_pass = start_pass_coef;
   415   /* Create the coefficient buffer. */
   416   if (need_full_buffer) {
   417 #ifdef FULL_COEF_BUFFER_SUPPORTED
   418     /* Allocate a full-image virtual array for each component, */
   419     /* padded to a multiple of samp_factor DCT blocks in each direction. */
   420     int ci;
   421     jpeg_component_info *compptr;
   423     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
   424 	 ci++, compptr++) {
   425       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
   426 	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
   427 	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
   428 				(long) compptr->h_samp_factor),
   429 	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
   430 				(long) compptr->v_samp_factor),
   431 	 (JDIMENSION) compptr->v_samp_factor);
   432     }
   433 #else
   434     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
   435 #endif
   436   } else {
   437     /* We only need a single-MCU buffer. */
   438     JBLOCKROW buffer;
   439     int i;
   441     buffer = (JBLOCKROW)
   442       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   443 				  C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
   444     for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
   445       coef->MCU_buffer[i] = buffer + i;
   446     }
   447     coef->whole_image[0] = NULL; /* flag for no virtual arrays */
   448   }
   449 }

mercurial