media/libjpeg/jcsample.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  * jcsample.c
     3  *
     4  * Copyright (C) 1991-1996, Thomas G. Lane.
     5  * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
     6  * This file is part of the Independent JPEG Group's software.
     7  * For conditions of distribution and use, see the accompanying README file.
     8  *
     9  * This file contains downsampling routines.
    10  *
    11  * Downsampling input data is counted in "row groups".  A row group
    12  * is defined to be max_v_samp_factor pixel rows of each component,
    13  * from which the downsampler produces v_samp_factor sample rows.
    14  * A single row group is processed in each call to the downsampler module.
    15  *
    16  * The downsampler is responsible for edge-expansion of its output data
    17  * to fill an integral number of DCT blocks horizontally.  The source buffer
    18  * may be modified if it is helpful for this purpose (the source buffer is
    19  * allocated wide enough to correspond to the desired output width).
    20  * The caller (the prep controller) is responsible for vertical padding.
    21  *
    22  * The downsampler may request "context rows" by setting need_context_rows
    23  * during startup.  In this case, the input arrays will contain at least
    24  * one row group's worth of pixels above and below the passed-in data;
    25  * the caller will create dummy rows at image top and bottom by replicating
    26  * the first or last real pixel row.
    27  *
    28  * An excellent reference for image resampling is
    29  *   Digital Image Warping, George Wolberg, 1990.
    30  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
    31  *
    32  * The downsampling algorithm used here is a simple average of the source
    33  * pixels covered by the output pixel.  The hi-falutin sampling literature
    34  * refers to this as a "box filter".  In general the characteristics of a box
    35  * filter are not very good, but for the specific cases we normally use (1:1
    36  * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
    37  * nearly so bad.  If you intend to use other sampling ratios, you'd be well
    38  * advised to improve this code.
    39  *
    40  * A simple input-smoothing capability is provided.  This is mainly intended
    41  * for cleaning up color-dithered GIF input files (if you find it inadequate,
    42  * we suggest using an external filtering program such as pnmconvol).  When
    43  * enabled, each input pixel P is replaced by a weighted sum of itself and its
    44  * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
    45  * where SF = (smoothing_factor / 1024).
    46  * Currently, smoothing is only supported for 2h2v sampling factors.
    47  */
    49 #define JPEG_INTERNALS
    50 #include "jinclude.h"
    51 #include "jpeglib.h"
    52 #include "jsimd.h"
    55 /* Pointer to routine to downsample a single component */
    56 typedef JMETHOD(void, downsample1_ptr,
    57 		(j_compress_ptr cinfo, jpeg_component_info * compptr,
    58 		 JSAMPARRAY input_data, JSAMPARRAY output_data));
    60 /* Private subobject */
    62 typedef struct {
    63   struct jpeg_downsampler pub;	/* public fields */
    65   /* Downsampling method pointers, one per component */
    66   downsample1_ptr methods[MAX_COMPONENTS];
    67 } my_downsampler;
    69 typedef my_downsampler * my_downsample_ptr;
    72 /*
    73  * Initialize for a downsampling pass.
    74  */
    76 METHODDEF(void)
    77 start_pass_downsample (j_compress_ptr cinfo)
    78 {
    79   /* no work for now */
    80 }
    83 /*
    84  * Expand a component horizontally from width input_cols to width output_cols,
    85  * by duplicating the rightmost samples.
    86  */
    88 LOCAL(void)
    89 expand_right_edge (JSAMPARRAY image_data, int num_rows,
    90 		   JDIMENSION input_cols, JDIMENSION output_cols)
    91 {
    92   register JSAMPROW ptr;
    93   register JSAMPLE pixval;
    94   register int count;
    95   int row;
    96   int numcols = (int) (output_cols - input_cols);
    98   if (numcols > 0) {
    99     for (row = 0; row < num_rows; row++) {
   100       ptr = image_data[row] + input_cols;
   101       pixval = ptr[-1];		/* don't need GETJSAMPLE() here */
   102       for (count = numcols; count > 0; count--)
   103 	*ptr++ = pixval;
   104     }
   105   }
   106 }
   109 /*
   110  * Do downsampling for a whole row group (all components).
   111  *
   112  * In this version we simply downsample each component independently.
   113  */
   115 METHODDEF(void)
   116 sep_downsample (j_compress_ptr cinfo,
   117 		JSAMPIMAGE input_buf, JDIMENSION in_row_index,
   118 		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
   119 {
   120   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
   121   int ci;
   122   jpeg_component_info * compptr;
   123   JSAMPARRAY in_ptr, out_ptr;
   125   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
   126        ci++, compptr++) {
   127     in_ptr = input_buf[ci] + in_row_index;
   128     out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
   129     (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
   130   }
   131 }
   134 /*
   135  * Downsample pixel values of a single component.
   136  * One row group is processed per call.
   137  * This version handles arbitrary integral sampling ratios, without smoothing.
   138  * Note that this version is not actually used for customary sampling ratios.
   139  */
   141 METHODDEF(void)
   142 int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
   143 		JSAMPARRAY input_data, JSAMPARRAY output_data)
   144 {
   145   int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
   146   JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */
   147   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
   148   JSAMPROW inptr, outptr;
   149   INT32 outvalue;
   151   h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
   152   v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
   153   numpix = h_expand * v_expand;
   154   numpix2 = numpix/2;
   156   /* Expand input data enough to let all the output samples be generated
   157    * by the standard loop.  Special-casing padded output would be more
   158    * efficient.
   159    */
   160   expand_right_edge(input_data, cinfo->max_v_samp_factor,
   161 		    cinfo->image_width, output_cols * h_expand);
   163   inrow = 0;
   164   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
   165     outptr = output_data[outrow];
   166     for (outcol = 0, outcol_h = 0; outcol < output_cols;
   167 	 outcol++, outcol_h += h_expand) {
   168       outvalue = 0;
   169       for (v = 0; v < v_expand; v++) {
   170 	inptr = input_data[inrow+v] + outcol_h;
   171 	for (h = 0; h < h_expand; h++) {
   172 	  outvalue += (INT32) GETJSAMPLE(*inptr++);
   173 	}
   174       }
   175       *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
   176     }
   177     inrow += v_expand;
   178   }
   179 }
   182 /*
   183  * Downsample pixel values of a single component.
   184  * This version handles the special case of a full-size component,
   185  * without smoothing.
   186  */
   188 METHODDEF(void)
   189 fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
   190 		     JSAMPARRAY input_data, JSAMPARRAY output_data)
   191 {
   192   /* Copy the data */
   193   jcopy_sample_rows(input_data, 0, output_data, 0,
   194 		    cinfo->max_v_samp_factor, cinfo->image_width);
   195   /* Edge-expand */
   196   expand_right_edge(output_data, cinfo->max_v_samp_factor,
   197 		    cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
   198 }
   201 /*
   202  * Downsample pixel values of a single component.
   203  * This version handles the common case of 2:1 horizontal and 1:1 vertical,
   204  * without smoothing.
   205  *
   206  * A note about the "bias" calculations: when rounding fractional values to
   207  * integer, we do not want to always round 0.5 up to the next integer.
   208  * If we did that, we'd introduce a noticeable bias towards larger values.
   209  * Instead, this code is arranged so that 0.5 will be rounded up or down at
   210  * alternate pixel locations (a simple ordered dither pattern).
   211  */
   213 METHODDEF(void)
   214 h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
   215 		 JSAMPARRAY input_data, JSAMPARRAY output_data)
   216 {
   217   int outrow;
   218   JDIMENSION outcol;
   219   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
   220   register JSAMPROW inptr, outptr;
   221   register int bias;
   223   /* Expand input data enough to let all the output samples be generated
   224    * by the standard loop.  Special-casing padded output would be more
   225    * efficient.
   226    */
   227   expand_right_edge(input_data, cinfo->max_v_samp_factor,
   228 		    cinfo->image_width, output_cols * 2);
   230   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
   231     outptr = output_data[outrow];
   232     inptr = input_data[outrow];
   233     bias = 0;			/* bias = 0,1,0,1,... for successive samples */
   234     for (outcol = 0; outcol < output_cols; outcol++) {
   235       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
   236 			      + bias) >> 1);
   237       bias ^= 1;		/* 0=>1, 1=>0 */
   238       inptr += 2;
   239     }
   240   }
   241 }
   244 /*
   245  * Downsample pixel values of a single component.
   246  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
   247  * without smoothing.
   248  */
   250 METHODDEF(void)
   251 h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
   252 		 JSAMPARRAY input_data, JSAMPARRAY output_data)
   253 {
   254   int inrow, outrow;
   255   JDIMENSION outcol;
   256   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
   257   register JSAMPROW inptr0, inptr1, outptr;
   258   register int bias;
   260   /* Expand input data enough to let all the output samples be generated
   261    * by the standard loop.  Special-casing padded output would be more
   262    * efficient.
   263    */
   264   expand_right_edge(input_data, cinfo->max_v_samp_factor,
   265 		    cinfo->image_width, output_cols * 2);
   267   inrow = 0;
   268   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
   269     outptr = output_data[outrow];
   270     inptr0 = input_data[inrow];
   271     inptr1 = input_data[inrow+1];
   272     bias = 1;			/* bias = 1,2,1,2,... for successive samples */
   273     for (outcol = 0; outcol < output_cols; outcol++) {
   274       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
   275 			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
   276 			      + bias) >> 2);
   277       bias ^= 3;		/* 1=>2, 2=>1 */
   278       inptr0 += 2; inptr1 += 2;
   279     }
   280     inrow += 2;
   281   }
   282 }
   285 #ifdef INPUT_SMOOTHING_SUPPORTED
   287 /*
   288  * Downsample pixel values of a single component.
   289  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
   290  * with smoothing.  One row of context is required.
   291  */
   293 METHODDEF(void)
   294 h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
   295 			JSAMPARRAY input_data, JSAMPARRAY output_data)
   296 {
   297   int inrow, outrow;
   298   JDIMENSION colctr;
   299   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
   300   register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
   301   INT32 membersum, neighsum, memberscale, neighscale;
   303   /* Expand input data enough to let all the output samples be generated
   304    * by the standard loop.  Special-casing padded output would be more
   305    * efficient.
   306    */
   307   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
   308 		    cinfo->image_width, output_cols * 2);
   310   /* We don't bother to form the individual "smoothed" input pixel values;
   311    * we can directly compute the output which is the average of the four
   312    * smoothed values.  Each of the four member pixels contributes a fraction
   313    * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
   314    * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
   315    * output.  The four corner-adjacent neighbor pixels contribute a fraction
   316    * SF to just one smoothed pixel, or SF/4 to the final output; while the
   317    * eight edge-adjacent neighbors contribute SF to each of two smoothed
   318    * pixels, or SF/2 overall.  In order to use integer arithmetic, these
   319    * factors are scaled by 2^16 = 65536.
   320    * Also recall that SF = smoothing_factor / 1024.
   321    */
   323   memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
   324   neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
   326   inrow = 0;
   327   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
   328     outptr = output_data[outrow];
   329     inptr0 = input_data[inrow];
   330     inptr1 = input_data[inrow+1];
   331     above_ptr = input_data[inrow-1];
   332     below_ptr = input_data[inrow+2];
   334     /* Special case for first column: pretend column -1 is same as column 0 */
   335     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
   336 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
   337     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
   338 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
   339 	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
   340 	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
   341     neighsum += neighsum;
   342     neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
   343 		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
   344     membersum = membersum * memberscale + neighsum * neighscale;
   345     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
   346     inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
   348     for (colctr = output_cols - 2; colctr > 0; colctr--) {
   349       /* sum of pixels directly mapped to this output element */
   350       membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
   351 		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
   352       /* sum of edge-neighbor pixels */
   353       neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
   354 		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
   355 		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
   356 		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
   357       /* The edge-neighbors count twice as much as corner-neighbors */
   358       neighsum += neighsum;
   359       /* Add in the corner-neighbors */
   360       neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
   361 		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
   362       /* form final output scaled up by 2^16 */
   363       membersum = membersum * memberscale + neighsum * neighscale;
   364       /* round, descale and output it */
   365       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
   366       inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
   367     }
   369     /* Special case for last column */
   370     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
   371 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
   372     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
   373 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
   374 	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
   375 	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
   376     neighsum += neighsum;
   377     neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
   378 		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
   379     membersum = membersum * memberscale + neighsum * neighscale;
   380     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
   382     inrow += 2;
   383   }
   384 }
   387 /*
   388  * Downsample pixel values of a single component.
   389  * This version handles the special case of a full-size component,
   390  * with smoothing.  One row of context is required.
   391  */
   393 METHODDEF(void)
   394 fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
   395 			    JSAMPARRAY input_data, JSAMPARRAY output_data)
   396 {
   397   int outrow;
   398   JDIMENSION colctr;
   399   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
   400   register JSAMPROW inptr, above_ptr, below_ptr, outptr;
   401   INT32 membersum, neighsum, memberscale, neighscale;
   402   int colsum, lastcolsum, nextcolsum;
   404   /* Expand input data enough to let all the output samples be generated
   405    * by the standard loop.  Special-casing padded output would be more
   406    * efficient.
   407    */
   408   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
   409 		    cinfo->image_width, output_cols);
   411   /* Each of the eight neighbor pixels contributes a fraction SF to the
   412    * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
   413    * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
   414    * Also recall that SF = smoothing_factor / 1024.
   415    */
   417   memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
   418   neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
   420   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
   421     outptr = output_data[outrow];
   422     inptr = input_data[outrow];
   423     above_ptr = input_data[outrow-1];
   424     below_ptr = input_data[outrow+1];
   426     /* Special case for first column */
   427     colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
   428 	     GETJSAMPLE(*inptr);
   429     membersum = GETJSAMPLE(*inptr++);
   430     nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
   431 		 GETJSAMPLE(*inptr);
   432     neighsum = colsum + (colsum - membersum) + nextcolsum;
   433     membersum = membersum * memberscale + neighsum * neighscale;
   434     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
   435     lastcolsum = colsum; colsum = nextcolsum;
   437     for (colctr = output_cols - 2; colctr > 0; colctr--) {
   438       membersum = GETJSAMPLE(*inptr++);
   439       above_ptr++; below_ptr++;
   440       nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
   441 		   GETJSAMPLE(*inptr);
   442       neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
   443       membersum = membersum * memberscale + neighsum * neighscale;
   444       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
   445       lastcolsum = colsum; colsum = nextcolsum;
   446     }
   448     /* Special case for last column */
   449     membersum = GETJSAMPLE(*inptr);
   450     neighsum = lastcolsum + (colsum - membersum) + colsum;
   451     membersum = membersum * memberscale + neighsum * neighscale;
   452     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
   454   }
   455 }
   457 #endif /* INPUT_SMOOTHING_SUPPORTED */
   460 /*
   461  * Module initialization routine for downsampling.
   462  * Note that we must select a routine for each component.
   463  */
   465 GLOBAL(void)
   466 jinit_downsampler (j_compress_ptr cinfo)
   467 {
   468   my_downsample_ptr downsample;
   469   int ci;
   470   jpeg_component_info * compptr;
   471   boolean smoothok = TRUE;
   473   downsample = (my_downsample_ptr)
   474     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   475 				SIZEOF(my_downsampler));
   476   cinfo->downsample = (struct jpeg_downsampler *) downsample;
   477   downsample->pub.start_pass = start_pass_downsample;
   478   downsample->pub.downsample = sep_downsample;
   479   downsample->pub.need_context_rows = FALSE;
   481   if (cinfo->CCIR601_sampling)
   482     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
   484   /* Verify we can handle the sampling factors, and set up method pointers */
   485   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
   486        ci++, compptr++) {
   487     if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
   488 	compptr->v_samp_factor == cinfo->max_v_samp_factor) {
   489 #ifdef INPUT_SMOOTHING_SUPPORTED
   490       if (cinfo->smoothing_factor) {
   491 	downsample->methods[ci] = fullsize_smooth_downsample;
   492 	downsample->pub.need_context_rows = TRUE;
   493       } else
   494 #endif
   495 	downsample->methods[ci] = fullsize_downsample;
   496     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
   497 	       compptr->v_samp_factor == cinfo->max_v_samp_factor) {
   498       smoothok = FALSE;
   499       if (jsimd_can_h2v1_downsample())
   500         downsample->methods[ci] = jsimd_h2v1_downsample;
   501       else
   502         downsample->methods[ci] = h2v1_downsample;
   503     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
   504 	       compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
   505 #ifdef INPUT_SMOOTHING_SUPPORTED
   506       if (cinfo->smoothing_factor) {
   507 	downsample->methods[ci] = h2v2_smooth_downsample;
   508 	downsample->pub.need_context_rows = TRUE;
   509       } else
   510 #endif
   511 	if (jsimd_can_h2v2_downsample())
   512 	  downsample->methods[ci] = jsimd_h2v2_downsample;
   513 	else
   514 	  downsample->methods[ci] = h2v2_downsample;
   515     } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
   516 	       (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
   517       smoothok = FALSE;
   518       downsample->methods[ci] = int_downsample;
   519     } else
   520       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
   521   }
   523 #ifdef INPUT_SMOOTHING_SUPPORTED
   524   if (cinfo->smoothing_factor && !smoothok)
   525     TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
   526 #endif
   527 }

mercurial