media/libjpeg/jdarith.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  * jdarith.c
     3  *
     4  * Developed 1997-2009 by Guido Vollbeding.
     5  * This file is part of the Independent JPEG Group's software.
     6  * For conditions of distribution and use, see the accompanying README file.
     7  *
     8  * This file contains portable arithmetic entropy decoding routines for JPEG
     9  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
    10  *
    11  * Both sequential and progressive modes are supported in this single module.
    12  *
    13  * Suspension is not currently supported in this module.
    14  */
    16 #define JPEG_INTERNALS
    17 #include "jinclude.h"
    18 #include "jpeglib.h"
    21 /* Expanded entropy decoder object for arithmetic decoding. */
    23 typedef struct {
    24   struct jpeg_entropy_decoder pub; /* public fields */
    26   INT32 c;       /* C register, base of coding interval + input bit buffer */
    27   INT32 a;               /* A register, normalized size of coding interval */
    28   int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
    29                                                          /* init: ct = -16 */
    30                                                          /* run: ct = 0..7 */
    31                                                          /* error: ct = -1 */
    32   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
    33   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
    35   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
    37   /* Pointers to statistics areas (these workspaces have image lifespan) */
    38   unsigned char * dc_stats[NUM_ARITH_TBLS];
    39   unsigned char * ac_stats[NUM_ARITH_TBLS];
    41   /* Statistics bin for coding with fixed probability 0.5 */
    42   unsigned char fixed_bin[4];
    43 } arith_entropy_decoder;
    45 typedef arith_entropy_decoder * arith_entropy_ptr;
    47 /* The following two definitions specify the allocation chunk size
    48  * for the statistics area.
    49  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
    50  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
    51  *
    52  * We use a compact representation with 1 byte per statistics bin,
    53  * thus the numbers directly represent byte sizes.
    54  * This 1 byte per statistics bin contains the meaning of the MPS
    55  * (more probable symbol) in the highest bit (mask 0x80), and the
    56  * index into the probability estimation state machine table
    57  * in the lower bits (mask 0x7F).
    58  */
    60 #define DC_STAT_BINS 64
    61 #define AC_STAT_BINS 256
    64 LOCAL(int)
    65 get_byte (j_decompress_ptr cinfo)
    66 /* Read next input byte; we do not support suspension in this module. */
    67 {
    68   struct jpeg_source_mgr * src = cinfo->src;
    70   if (src->bytes_in_buffer == 0)
    71     if (! (*src->fill_input_buffer) (cinfo))
    72       ERREXIT(cinfo, JERR_CANT_SUSPEND);
    73   src->bytes_in_buffer--;
    74   return GETJOCTET(*src->next_input_byte++);
    75 }
    78 /*
    79  * The core arithmetic decoding routine (common in JPEG and JBIG).
    80  * This needs to go as fast as possible.
    81  * Machine-dependent optimization facilities
    82  * are not utilized in this portable implementation.
    83  * However, this code should be fairly efficient and
    84  * may be a good base for further optimizations anyway.
    85  *
    86  * Return value is 0 or 1 (binary decision).
    87  *
    88  * Note: I've changed the handling of the code base & bit
    89  * buffer register C compared to other implementations
    90  * based on the standards layout & procedures.
    91  * While it also contains both the actual base of the
    92  * coding interval (16 bits) and the next-bits buffer,
    93  * the cut-point between these two parts is floating
    94  * (instead of fixed) with the bit shift counter CT.
    95  * Thus, we also need only one (variable instead of
    96  * fixed size) shift for the LPS/MPS decision, and
    97  * we can get away with any renormalization update
    98  * of C (except for new data insertion, of course).
    99  *
   100  * I've also introduced a new scheme for accessing
   101  * the probability estimation state machine table,
   102  * derived from Markus Kuhn's JBIG implementation.
   103  */
   105 LOCAL(int)
   106 arith_decode (j_decompress_ptr cinfo, unsigned char *st)
   107 {
   108   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
   109   register unsigned char nl, nm;
   110   register INT32 qe, temp;
   111   register int sv, data;
   113   /* Renormalization & data input per section D.2.6 */
   114   while (e->a < 0x8000L) {
   115     if (--e->ct < 0) {
   116       /* Need to fetch next data byte */
   117       if (cinfo->unread_marker)
   118 	data = 0;		/* stuff zero data */
   119       else {
   120 	data = get_byte(cinfo);	/* read next input byte */
   121 	if (data == 0xFF) {	/* zero stuff or marker code */
   122 	  do data = get_byte(cinfo);
   123 	  while (data == 0xFF);	/* swallow extra 0xFF bytes */
   124 	  if (data == 0)
   125 	    data = 0xFF;	/* discard stuffed zero byte */
   126 	  else {
   127 	    /* Note: Different from the Huffman decoder, hitting
   128 	     * a marker while processing the compressed data
   129 	     * segment is legal in arithmetic coding.
   130 	     * The convention is to supply zero data
   131 	     * then until decoding is complete.
   132 	     */
   133 	    cinfo->unread_marker = data;
   134 	    data = 0;
   135 	  }
   136 	}
   137       }
   138       e->c = (e->c << 8) | data; /* insert data into C register */
   139       if ((e->ct += 8) < 0)	 /* update bit shift counter */
   140 	/* Need more initial bytes */
   141 	if (++e->ct == 0)
   142 	  /* Got 2 initial bytes -> re-init A and exit loop */
   143 	  e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
   144     }
   145     e->a <<= 1;
   146   }
   148   /* Fetch values from our compact representation of Table D.2:
   149    * Qe values and probability estimation state machine
   150    */
   151   sv = *st;
   152   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
   153   nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
   154   nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
   156   /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
   157   temp = e->a - qe;
   158   e->a = temp;
   159   temp <<= e->ct;
   160   if (e->c >= temp) {
   161     e->c -= temp;
   162     /* Conditional LPS (less probable symbol) exchange */
   163     if (e->a < qe) {
   164       e->a = qe;
   165       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
   166     } else {
   167       e->a = qe;
   168       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
   169       sv ^= 0x80;		/* Exchange LPS/MPS */
   170     }
   171   } else if (e->a < 0x8000L) {
   172     /* Conditional MPS (more probable symbol) exchange */
   173     if (e->a < qe) {
   174       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
   175       sv ^= 0x80;		/* Exchange LPS/MPS */
   176     } else {
   177       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
   178     }
   179   }
   181   return sv >> 7;
   182 }
   185 /*
   186  * Check for a restart marker & resynchronize decoder.
   187  */
   189 LOCAL(void)
   190 process_restart (j_decompress_ptr cinfo)
   191 {
   192   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   193   int ci;
   194   jpeg_component_info * compptr;
   196   /* Advance past the RSTn marker */
   197   if (! (*cinfo->marker->read_restart_marker) (cinfo))
   198     ERREXIT(cinfo, JERR_CANT_SUSPEND);
   200   /* Re-initialize statistics areas */
   201   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   202     compptr = cinfo->cur_comp_info[ci];
   203     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
   204       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
   205       /* Reset DC predictions to 0 */
   206       entropy->last_dc_val[ci] = 0;
   207       entropy->dc_context[ci] = 0;
   208     }
   209     if (! cinfo->progressive_mode || cinfo->Ss) {
   210       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
   211     }
   212   }
   214   /* Reset arithmetic decoding variables */
   215   entropy->c = 0;
   216   entropy->a = 0;
   217   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
   219   /* Reset restart counter */
   220   entropy->restarts_to_go = cinfo->restart_interval;
   221 }
   224 /*
   225  * Arithmetic MCU decoding.
   226  * Each of these routines decodes and returns one MCU's worth of
   227  * arithmetic-compressed coefficients.
   228  * The coefficients are reordered from zigzag order into natural array order,
   229  * but are not dequantized.
   230  *
   231  * The i'th block of the MCU is stored into the block pointed to by
   232  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
   233  */
   235 /*
   236  * MCU decoding for DC initial scan (either spectral selection,
   237  * or first pass of successive approximation).
   238  */
   240 METHODDEF(boolean)
   241 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
   242 {
   243   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   244   JBLOCKROW block;
   245   unsigned char *st;
   246   int blkn, ci, tbl, sign;
   247   int v, m;
   249   /* Process restart marker if needed */
   250   if (cinfo->restart_interval) {
   251     if (entropy->restarts_to_go == 0)
   252       process_restart(cinfo);
   253     entropy->restarts_to_go--;
   254   }
   256   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
   258   /* Outer loop handles each block in the MCU */
   260   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
   261     block = MCU_data[blkn];
   262     ci = cinfo->MCU_membership[blkn];
   263     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
   265     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
   267     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
   268     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
   270     /* Figure F.19: Decode_DC_DIFF */
   271     if (arith_decode(cinfo, st) == 0)
   272       entropy->dc_context[ci] = 0;
   273     else {
   274       /* Figure F.21: Decoding nonzero value v */
   275       /* Figure F.22: Decoding the sign of v */
   276       sign = arith_decode(cinfo, st + 1);
   277       st += 2; st += sign;
   278       /* Figure F.23: Decoding the magnitude category of v */
   279       if ((m = arith_decode(cinfo, st)) != 0) {
   280 	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
   281 	while (arith_decode(cinfo, st)) {
   282 	  if ((m <<= 1) == 0x8000) {
   283 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
   284 	    entropy->ct = -1;			/* magnitude overflow */
   285 	    return TRUE;
   286 	  }
   287 	  st += 1;
   288 	}
   289       }
   290       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
   291       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
   292 	entropy->dc_context[ci] = 0;		   /* zero diff category */
   293       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
   294 	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
   295       else
   296 	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
   297       v = m;
   298       /* Figure F.24: Decoding the magnitude bit pattern of v */
   299       st += 14;
   300       while (m >>= 1)
   301 	if (arith_decode(cinfo, st)) v |= m;
   302       v += 1; if (sign) v = -v;
   303       entropy->last_dc_val[ci] += v;
   304     }
   306     /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
   307     (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
   308   }
   310   return TRUE;
   311 }
   314 /*
   315  * MCU decoding for AC initial scan (either spectral selection,
   316  * or first pass of successive approximation).
   317  */
   319 METHODDEF(boolean)
   320 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
   321 {
   322   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   323   JBLOCKROW block;
   324   unsigned char *st;
   325   int tbl, sign, k;
   326   int v, m;
   328   /* Process restart marker if needed */
   329   if (cinfo->restart_interval) {
   330     if (entropy->restarts_to_go == 0)
   331       process_restart(cinfo);
   332     entropy->restarts_to_go--;
   333   }
   335   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
   337   /* There is always only one block per MCU */
   338   block = MCU_data[0];
   339   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
   341   /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
   343   /* Figure F.20: Decode_AC_coefficients */
   344   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
   345     st = entropy->ac_stats[tbl] + 3 * (k - 1);
   346     if (arith_decode(cinfo, st)) break;		/* EOB flag */
   347     while (arith_decode(cinfo, st + 1) == 0) {
   348       st += 3; k++;
   349       if (k > cinfo->Se) {
   350 	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
   351 	entropy->ct = -1;			/* spectral overflow */
   352 	return TRUE;
   353       }
   354     }
   355     /* Figure F.21: Decoding nonzero value v */
   356     /* Figure F.22: Decoding the sign of v */
   357     sign = arith_decode(cinfo, entropy->fixed_bin);
   358     st += 2;
   359     /* Figure F.23: Decoding the magnitude category of v */
   360     if ((m = arith_decode(cinfo, st)) != 0) {
   361       if (arith_decode(cinfo, st)) {
   362 	m <<= 1;
   363 	st = entropy->ac_stats[tbl] +
   364 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
   365 	while (arith_decode(cinfo, st)) {
   366 	  if ((m <<= 1) == 0x8000) {
   367 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
   368 	    entropy->ct = -1;			/* magnitude overflow */
   369 	    return TRUE;
   370 	  }
   371 	  st += 1;
   372 	}
   373       }
   374     }
   375     v = m;
   376     /* Figure F.24: Decoding the magnitude bit pattern of v */
   377     st += 14;
   378     while (m >>= 1)
   379       if (arith_decode(cinfo, st)) v |= m;
   380     v += 1; if (sign) v = -v;
   381     /* Scale and output coefficient in natural (dezigzagged) order */
   382     (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al);
   383   }
   385   return TRUE;
   386 }
   389 /*
   390  * MCU decoding for DC successive approximation refinement scan.
   391  */
   393 METHODDEF(boolean)
   394 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
   395 {
   396   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   397   unsigned char *st;
   398   int p1, blkn;
   400   /* Process restart marker if needed */
   401   if (cinfo->restart_interval) {
   402     if (entropy->restarts_to_go == 0)
   403       process_restart(cinfo);
   404     entropy->restarts_to_go--;
   405   }
   407   st = entropy->fixed_bin;	/* use fixed probability estimation */
   408   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
   410   /* Outer loop handles each block in the MCU */
   412   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
   413     /* Encoded data is simply the next bit of the two's-complement DC value */
   414     if (arith_decode(cinfo, st))
   415       MCU_data[blkn][0][0] |= p1;
   416   }
   418   return TRUE;
   419 }
   422 /*
   423  * MCU decoding for AC successive approximation refinement scan.
   424  */
   426 METHODDEF(boolean)
   427 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
   428 {
   429   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   430   JBLOCKROW block;
   431   JCOEFPTR thiscoef;
   432   unsigned char *st;
   433   int tbl, k, kex;
   434   int p1, m1;
   436   /* Process restart marker if needed */
   437   if (cinfo->restart_interval) {
   438     if (entropy->restarts_to_go == 0)
   439       process_restart(cinfo);
   440     entropy->restarts_to_go--;
   441   }
   443   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
   445   /* There is always only one block per MCU */
   446   block = MCU_data[0];
   447   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
   449   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
   450   m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
   452   /* Establish EOBx (previous stage end-of-block) index */
   453   for (kex = cinfo->Se; kex > 0; kex--)
   454     if ((*block)[jpeg_natural_order[kex]]) break;
   456   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
   457     st = entropy->ac_stats[tbl] + 3 * (k - 1);
   458     if (k > kex)
   459       if (arith_decode(cinfo, st)) break;	/* EOB flag */
   460     for (;;) {
   461       thiscoef = *block + jpeg_natural_order[k];
   462       if (*thiscoef) {				/* previously nonzero coef */
   463 	if (arith_decode(cinfo, st + 2)) {
   464 	  if (*thiscoef < 0)
   465 	    *thiscoef += m1;
   466 	  else
   467 	    *thiscoef += p1;
   468 	}
   469 	break;
   470       }
   471       if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */
   472 	if (arith_decode(cinfo, entropy->fixed_bin))
   473 	  *thiscoef = m1;
   474 	else
   475 	  *thiscoef = p1;
   476 	break;
   477       }
   478       st += 3; k++;
   479       if (k > cinfo->Se) {
   480 	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
   481 	entropy->ct = -1;			/* spectral overflow */
   482 	return TRUE;
   483       }
   484     }
   485   }
   487   return TRUE;
   488 }
   491 /*
   492  * Decode one MCU's worth of arithmetic-compressed coefficients.
   493  */
   495 METHODDEF(boolean)
   496 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
   497 {
   498   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   499   jpeg_component_info * compptr;
   500   JBLOCKROW block;
   501   unsigned char *st;
   502   int blkn, ci, tbl, sign, k;
   503   int v, m;
   505   /* Process restart marker if needed */
   506   if (cinfo->restart_interval) {
   507     if (entropy->restarts_to_go == 0)
   508       process_restart(cinfo);
   509     entropy->restarts_to_go--;
   510   }
   512   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
   514   /* Outer loop handles each block in the MCU */
   516   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
   517     block = MCU_data[blkn];
   518     ci = cinfo->MCU_membership[blkn];
   519     compptr = cinfo->cur_comp_info[ci];
   521     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
   523     tbl = compptr->dc_tbl_no;
   525     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
   526     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
   528     /* Figure F.19: Decode_DC_DIFF */
   529     if (arith_decode(cinfo, st) == 0)
   530       entropy->dc_context[ci] = 0;
   531     else {
   532       /* Figure F.21: Decoding nonzero value v */
   533       /* Figure F.22: Decoding the sign of v */
   534       sign = arith_decode(cinfo, st + 1);
   535       st += 2; st += sign;
   536       /* Figure F.23: Decoding the magnitude category of v */
   537       if ((m = arith_decode(cinfo, st)) != 0) {
   538 	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
   539 	while (arith_decode(cinfo, st)) {
   540 	  if ((m <<= 1) == 0x8000) {
   541 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
   542 	    entropy->ct = -1;			/* magnitude overflow */
   543 	    return TRUE;
   544 	  }
   545 	  st += 1;
   546 	}
   547       }
   548       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
   549       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
   550 	entropy->dc_context[ci] = 0;		   /* zero diff category */
   551       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
   552 	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
   553       else
   554 	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
   555       v = m;
   556       /* Figure F.24: Decoding the magnitude bit pattern of v */
   557       st += 14;
   558       while (m >>= 1)
   559 	if (arith_decode(cinfo, st)) v |= m;
   560       v += 1; if (sign) v = -v;
   561       entropy->last_dc_val[ci] += v;
   562     }
   564     (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
   566     /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
   568     tbl = compptr->ac_tbl_no;
   570     /* Figure F.20: Decode_AC_coefficients */
   571     for (k = 1; k <= DCTSIZE2 - 1; k++) {
   572       st = entropy->ac_stats[tbl] + 3 * (k - 1);
   573       if (arith_decode(cinfo, st)) break;	/* EOB flag */
   574       while (arith_decode(cinfo, st + 1) == 0) {
   575 	st += 3; k++;
   576 	if (k > DCTSIZE2 - 1) {
   577 	  WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
   578 	  entropy->ct = -1;			/* spectral overflow */
   579 	  return TRUE;
   580 	}
   581       }
   582       /* Figure F.21: Decoding nonzero value v */
   583       /* Figure F.22: Decoding the sign of v */
   584       sign = arith_decode(cinfo, entropy->fixed_bin);
   585       st += 2;
   586       /* Figure F.23: Decoding the magnitude category of v */
   587       if ((m = arith_decode(cinfo, st)) != 0) {
   588 	if (arith_decode(cinfo, st)) {
   589 	  m <<= 1;
   590 	  st = entropy->ac_stats[tbl] +
   591 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
   592 	  while (arith_decode(cinfo, st)) {
   593 	    if ((m <<= 1) == 0x8000) {
   594 	      WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
   595 	      entropy->ct = -1;			/* magnitude overflow */
   596 	      return TRUE;
   597 	    }
   598 	    st += 1;
   599 	  }
   600 	}
   601       }
   602       v = m;
   603       /* Figure F.24: Decoding the magnitude bit pattern of v */
   604       st += 14;
   605       while (m >>= 1)
   606 	if (arith_decode(cinfo, st)) v |= m;
   607       v += 1; if (sign) v = -v;
   608       (*block)[jpeg_natural_order[k]] = (JCOEF) v;
   609     }
   610   }
   612   return TRUE;
   613 }
   616 /*
   617  * Initialize for an arithmetic-compressed scan.
   618  */
   620 METHODDEF(void)
   621 start_pass (j_decompress_ptr cinfo)
   622 {
   623   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   624   int ci, tbl;
   625   jpeg_component_info * compptr;
   627   if (cinfo->progressive_mode) {
   628     /* Validate progressive scan parameters */
   629     if (cinfo->Ss == 0) {
   630       if (cinfo->Se != 0)
   631 	goto bad;
   632     } else {
   633       /* need not check Ss/Se < 0 since they came from unsigned bytes */
   634       if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1)
   635 	goto bad;
   636       /* AC scans may have only one component */
   637       if (cinfo->comps_in_scan != 1)
   638 	goto bad;
   639     }
   640     if (cinfo->Ah != 0) {
   641       /* Successive approximation refinement scan: must have Al = Ah-1. */
   642       if (cinfo->Ah-1 != cinfo->Al)
   643 	goto bad;
   644     }
   645     if (cinfo->Al > 13) {	/* need not check for < 0 */
   646       bad:
   647       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
   648 	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
   649     }
   650     /* Update progression status, and verify that scan order is legal.
   651      * Note that inter-scan inconsistencies are treated as warnings
   652      * not fatal errors ... not clear if this is right way to behave.
   653      */
   654     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   655       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
   656       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
   657       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
   658 	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
   659       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
   660 	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
   661 	if (cinfo->Ah != expected)
   662 	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
   663 	coef_bit_ptr[coefi] = cinfo->Al;
   664       }
   665     }
   666     /* Select MCU decoding routine */
   667     if (cinfo->Ah == 0) {
   668       if (cinfo->Ss == 0)
   669 	entropy->pub.decode_mcu = decode_mcu_DC_first;
   670       else
   671 	entropy->pub.decode_mcu = decode_mcu_AC_first;
   672     } else {
   673       if (cinfo->Ss == 0)
   674 	entropy->pub.decode_mcu = decode_mcu_DC_refine;
   675       else
   676 	entropy->pub.decode_mcu = decode_mcu_AC_refine;
   677     }
   678   } else {
   679     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
   680      * This ought to be an error condition, but we make it a warning.
   681      */
   682     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
   683 	(cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1))
   684       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
   685     /* Select MCU decoding routine */
   686     entropy->pub.decode_mcu = decode_mcu;
   687   }
   689   /* Allocate & initialize requested statistics areas */
   690   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   691     compptr = cinfo->cur_comp_info[ci];
   692     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
   693       tbl = compptr->dc_tbl_no;
   694       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
   695 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
   696       if (entropy->dc_stats[tbl] == NULL)
   697 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
   698 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
   699       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
   700       /* Initialize DC predictions to 0 */
   701       entropy->last_dc_val[ci] = 0;
   702       entropy->dc_context[ci] = 0;
   703     }
   704     if (! cinfo->progressive_mode || cinfo->Ss) {
   705       tbl = compptr->ac_tbl_no;
   706       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
   707 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
   708       if (entropy->ac_stats[tbl] == NULL)
   709 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
   710 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
   711       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
   712     }
   713   }
   715   /* Initialize arithmetic decoding variables */
   716   entropy->c = 0;
   717   entropy->a = 0;
   718   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
   720   /* Initialize restart counter */
   721   entropy->restarts_to_go = cinfo->restart_interval;
   722 }
   725 /*
   726  * Module initialization routine for arithmetic entropy decoding.
   727  */
   729 GLOBAL(void)
   730 jinit_arith_decoder (j_decompress_ptr cinfo)
   731 {
   732   arith_entropy_ptr entropy;
   733   int i;
   735   entropy = (arith_entropy_ptr)
   736     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   737 				SIZEOF(arith_entropy_decoder));
   738   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
   739   entropy->pub.start_pass = start_pass;
   741   /* Mark tables unallocated */
   742   for (i = 0; i < NUM_ARITH_TBLS; i++) {
   743     entropy->dc_stats[i] = NULL;
   744     entropy->ac_stats[i] = NULL;
   745   }
   747   /* Initialize index for fixed probability estimation */
   748   entropy->fixed_bin[0] = 113;
   750   if (cinfo->progressive_mode) {
   751     /* Create progression status table */
   752     int *coef_bit_ptr, ci;
   753     cinfo->coef_bits = (int (*)[DCTSIZE2])
   754       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   755 				  cinfo->num_components*DCTSIZE2*SIZEOF(int));
   756     coef_bit_ptr = & cinfo->coef_bits[0][0];
   757     for (ci = 0; ci < cinfo->num_components; ci++) 
   758       for (i = 0; i < DCTSIZE2; i++)
   759 	*coef_bit_ptr++ = -1;
   760   }
   761 }

mercurial