media/libjpeg/jfdctfst.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  * jfdctfst.c
     3  *
     4  * Copyright (C) 1994-1996, Thomas G. Lane.
     5  * This file is part of the Independent JPEG Group's software.
     6  * For conditions of distribution and use, see the accompanying README file.
     7  *
     8  * This file contains a fast, not so accurate integer implementation of the
     9  * forward DCT (Discrete Cosine Transform).
    10  *
    11  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
    12  * on each column.  Direct algorithms are also available, but they are
    13  * much more complex and seem not to be any faster when reduced to code.
    14  *
    15  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
    16  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
    17  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
    18  * JPEG textbook (see REFERENCES section in file README).  The following code
    19  * is based directly on figure 4-8 in P&M.
    20  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
    21  * possible to arrange the computation so that many of the multiplies are
    22  * simple scalings of the final outputs.  These multiplies can then be
    23  * folded into the multiplications or divisions by the JPEG quantization
    24  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
    25  * to be done in the DCT itself.
    26  * The primary disadvantage of this method is that with fixed-point math,
    27  * accuracy is lost due to imprecise representation of the scaled
    28  * quantization values.  The smaller the quantization table entry, the less
    29  * precise the scaled value, so this implementation does worse with high-
    30  * quality-setting files than with low-quality ones.
    31  */
    33 #define JPEG_INTERNALS
    34 #include "jinclude.h"
    35 #include "jpeglib.h"
    36 #include "jdct.h"		/* Private declarations for DCT subsystem */
    38 #ifdef DCT_IFAST_SUPPORTED
    41 /*
    42  * This module is specialized to the case DCTSIZE = 8.
    43  */
    45 #if DCTSIZE != 8
    46   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
    47 #endif
    50 /* Scaling decisions are generally the same as in the LL&M algorithm;
    51  * see jfdctint.c for more details.  However, we choose to descale
    52  * (right shift) multiplication products as soon as they are formed,
    53  * rather than carrying additional fractional bits into subsequent additions.
    54  * This compromises accuracy slightly, but it lets us save a few shifts.
    55  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
    56  * everywhere except in the multiplications proper; this saves a good deal
    57  * of work on 16-bit-int machines.
    58  *
    59  * Again to save a few shifts, the intermediate results between pass 1 and
    60  * pass 2 are not upscaled, but are represented only to integral precision.
    61  *
    62  * A final compromise is to represent the multiplicative constants to only
    63  * 8 fractional bits, rather than 13.  This saves some shifting work on some
    64  * machines, and may also reduce the cost of multiplication (since there
    65  * are fewer one-bits in the constants).
    66  */
    68 #define CONST_BITS  8
    71 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
    72  * causing a lot of useless floating-point operations at run time.
    73  * To get around this we use the following pre-calculated constants.
    74  * If you change CONST_BITS you may want to add appropriate values.
    75  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
    76  */
    78 #if CONST_BITS == 8
    79 #define FIX_0_382683433  ((INT32)   98)		/* FIX(0.382683433) */
    80 #define FIX_0_541196100  ((INT32)  139)		/* FIX(0.541196100) */
    81 #define FIX_0_707106781  ((INT32)  181)		/* FIX(0.707106781) */
    82 #define FIX_1_306562965  ((INT32)  334)		/* FIX(1.306562965) */
    83 #else
    84 #define FIX_0_382683433  FIX(0.382683433)
    85 #define FIX_0_541196100  FIX(0.541196100)
    86 #define FIX_0_707106781  FIX(0.707106781)
    87 #define FIX_1_306562965  FIX(1.306562965)
    88 #endif
    91 /* We can gain a little more speed, with a further compromise in accuracy,
    92  * by omitting the addition in a descaling shift.  This yields an incorrectly
    93  * rounded result half the time...
    94  */
    96 #ifndef USE_ACCURATE_ROUNDING
    97 #undef DESCALE
    98 #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
    99 #endif
   102 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
   103  * descale to yield a DCTELEM result.
   104  */
   106 #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
   109 /*
   110  * Perform the forward DCT on one block of samples.
   111  */
   113 GLOBAL(void)
   114 jpeg_fdct_ifast (DCTELEM * data)
   115 {
   116   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
   117   DCTELEM tmp10, tmp11, tmp12, tmp13;
   118   DCTELEM z1, z2, z3, z4, z5, z11, z13;
   119   DCTELEM *dataptr;
   120   int ctr;
   121   SHIFT_TEMPS
   123   /* Pass 1: process rows. */
   125   dataptr = data;
   126   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   127     tmp0 = dataptr[0] + dataptr[7];
   128     tmp7 = dataptr[0] - dataptr[7];
   129     tmp1 = dataptr[1] + dataptr[6];
   130     tmp6 = dataptr[1] - dataptr[6];
   131     tmp2 = dataptr[2] + dataptr[5];
   132     tmp5 = dataptr[2] - dataptr[5];
   133     tmp3 = dataptr[3] + dataptr[4];
   134     tmp4 = dataptr[3] - dataptr[4];
   136     /* Even part */
   138     tmp10 = tmp0 + tmp3;	/* phase 2 */
   139     tmp13 = tmp0 - tmp3;
   140     tmp11 = tmp1 + tmp2;
   141     tmp12 = tmp1 - tmp2;
   143     dataptr[0] = tmp10 + tmp11; /* phase 3 */
   144     dataptr[4] = tmp10 - tmp11;
   146     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
   147     dataptr[2] = tmp13 + z1;	/* phase 5 */
   148     dataptr[6] = tmp13 - z1;
   150     /* Odd part */
   152     tmp10 = tmp4 + tmp5;	/* phase 2 */
   153     tmp11 = tmp5 + tmp6;
   154     tmp12 = tmp6 + tmp7;
   156     /* The rotator is modified from fig 4-8 to avoid extra negations. */
   157     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
   158     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
   159     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
   160     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
   162     z11 = tmp7 + z3;		/* phase 5 */
   163     z13 = tmp7 - z3;
   165     dataptr[5] = z13 + z2;	/* phase 6 */
   166     dataptr[3] = z13 - z2;
   167     dataptr[1] = z11 + z4;
   168     dataptr[7] = z11 - z4;
   170     dataptr += DCTSIZE;		/* advance pointer to next row */
   171   }
   173   /* Pass 2: process columns. */
   175   dataptr = data;
   176   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   177     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
   178     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
   179     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
   180     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
   181     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
   182     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
   183     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
   184     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
   186     /* Even part */
   188     tmp10 = tmp0 + tmp3;	/* phase 2 */
   189     tmp13 = tmp0 - tmp3;
   190     tmp11 = tmp1 + tmp2;
   191     tmp12 = tmp1 - tmp2;
   193     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
   194     dataptr[DCTSIZE*4] = tmp10 - tmp11;
   196     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
   197     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
   198     dataptr[DCTSIZE*6] = tmp13 - z1;
   200     /* Odd part */
   202     tmp10 = tmp4 + tmp5;	/* phase 2 */
   203     tmp11 = tmp5 + tmp6;
   204     tmp12 = tmp6 + tmp7;
   206     /* The rotator is modified from fig 4-8 to avoid extra negations. */
   207     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
   208     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
   209     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
   210     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
   212     z11 = tmp7 + z3;		/* phase 5 */
   213     z13 = tmp7 - z3;
   215     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
   216     dataptr[DCTSIZE*3] = z13 - z2;
   217     dataptr[DCTSIZE*1] = z11 + z4;
   218     dataptr[DCTSIZE*7] = z11 - z4;
   220     dataptr++;			/* advance pointer to next column */
   221   }
   222 }
   224 #endif /* DCT_IFAST_SUPPORTED */

mercurial