media/libjpeg/jfdctint.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  * jfdctint.c
     3  *
     4  * Copyright (C) 1991-1996, Thomas G. Lane.
     5  * This file is part of the Independent JPEG Group's software.
     6  * For conditions of distribution and use, see the accompanying README file.
     7  *
     8  * This file contains a slow-but-accurate integer implementation of the
     9  * forward DCT (Discrete Cosine Transform).
    10  *
    11  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
    12  * on each column.  Direct algorithms are also available, but they are
    13  * much more complex and seem not to be any faster when reduced to code.
    14  *
    15  * This implementation is based on an algorithm described in
    16  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
    17  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
    18  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
    19  * The primary algorithm described there uses 11 multiplies and 29 adds.
    20  * We use their alternate method with 12 multiplies and 32 adds.
    21  * The advantage of this method is that no data path contains more than one
    22  * multiplication; this allows a very simple and accurate implementation in
    23  * scaled fixed-point arithmetic, with a minimal number of shifts.
    24  */
    26 #define JPEG_INTERNALS
    27 #include "jinclude.h"
    28 #include "jpeglib.h"
    29 #include "jdct.h"		/* Private declarations for DCT subsystem */
    31 #ifdef DCT_ISLOW_SUPPORTED
    34 /*
    35  * This module is specialized to the case DCTSIZE = 8.
    36  */
    38 #if DCTSIZE != 8
    39   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
    40 #endif
    43 /*
    44  * The poop on this scaling stuff is as follows:
    45  *
    46  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
    47  * larger than the true DCT outputs.  The final outputs are therefore
    48  * a factor of N larger than desired; since N=8 this can be cured by
    49  * a simple right shift at the end of the algorithm.  The advantage of
    50  * this arrangement is that we save two multiplications per 1-D DCT,
    51  * because the y0 and y4 outputs need not be divided by sqrt(N).
    52  * In the IJG code, this factor of 8 is removed by the quantization step
    53  * (in jcdctmgr.c), NOT in this module.
    54  *
    55  * We have to do addition and subtraction of the integer inputs, which
    56  * is no problem, and multiplication by fractional constants, which is
    57  * a problem to do in integer arithmetic.  We multiply all the constants
    58  * by CONST_SCALE and convert them to integer constants (thus retaining
    59  * CONST_BITS bits of precision in the constants).  After doing a
    60  * multiplication we have to divide the product by CONST_SCALE, with proper
    61  * rounding, to produce the correct output.  This division can be done
    62  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
    63  * as long as possible so that partial sums can be added together with
    64  * full fractional precision.
    65  *
    66  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
    67  * they are represented to better-than-integral precision.  These outputs
    68  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
    69  * with the recommended scaling.  (For 12-bit sample data, the intermediate
    70  * array is INT32 anyway.)
    71  *
    72  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
    73  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
    74  * shows that the values given below are the most effective.
    75  */
    77 #if BITS_IN_JSAMPLE == 8
    78 #define CONST_BITS  13
    79 #define PASS1_BITS  2
    80 #else
    81 #define CONST_BITS  13
    82 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
    83 #endif
    85 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
    86  * causing a lot of useless floating-point operations at run time.
    87  * To get around this we use the following pre-calculated constants.
    88  * If you change CONST_BITS you may want to add appropriate values.
    89  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
    90  */
    92 #if CONST_BITS == 13
    93 #define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
    94 #define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
    95 #define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
    96 #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
    97 #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
    98 #define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
    99 #define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
   100 #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
   101 #define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
   102 #define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
   103 #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
   104 #define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
   105 #else
   106 #define FIX_0_298631336  FIX(0.298631336)
   107 #define FIX_0_390180644  FIX(0.390180644)
   108 #define FIX_0_541196100  FIX(0.541196100)
   109 #define FIX_0_765366865  FIX(0.765366865)
   110 #define FIX_0_899976223  FIX(0.899976223)
   111 #define FIX_1_175875602  FIX(1.175875602)
   112 #define FIX_1_501321110  FIX(1.501321110)
   113 #define FIX_1_847759065  FIX(1.847759065)
   114 #define FIX_1_961570560  FIX(1.961570560)
   115 #define FIX_2_053119869  FIX(2.053119869)
   116 #define FIX_2_562915447  FIX(2.562915447)
   117 #define FIX_3_072711026  FIX(3.072711026)
   118 #endif
   121 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
   122  * For 8-bit samples with the recommended scaling, all the variable
   123  * and constant values involved are no more than 16 bits wide, so a
   124  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
   125  * For 12-bit samples, a full 32-bit multiplication will be needed.
   126  */
   128 #if BITS_IN_JSAMPLE == 8
   129 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
   130 #else
   131 #define MULTIPLY(var,const)  ((var) * (const))
   132 #endif
   135 /*
   136  * Perform the forward DCT on one block of samples.
   137  */
   139 GLOBAL(void)
   140 jpeg_fdct_islow (DCTELEM * data)
   141 {
   142   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
   143   INT32 tmp10, tmp11, tmp12, tmp13;
   144   INT32 z1, z2, z3, z4, z5;
   145   DCTELEM *dataptr;
   146   int ctr;
   147   SHIFT_TEMPS
   149   /* Pass 1: process rows. */
   150   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   151   /* furthermore, we scale the results by 2**PASS1_BITS. */
   153   dataptr = data;
   154   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   155     tmp0 = dataptr[0] + dataptr[7];
   156     tmp7 = dataptr[0] - dataptr[7];
   157     tmp1 = dataptr[1] + dataptr[6];
   158     tmp6 = dataptr[1] - dataptr[6];
   159     tmp2 = dataptr[2] + dataptr[5];
   160     tmp5 = dataptr[2] - dataptr[5];
   161     tmp3 = dataptr[3] + dataptr[4];
   162     tmp4 = dataptr[3] - dataptr[4];
   164     /* Even part per LL&M figure 1 --- note that published figure is faulty;
   165      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
   166      */
   168     tmp10 = tmp0 + tmp3;
   169     tmp13 = tmp0 - tmp3;
   170     tmp11 = tmp1 + tmp2;
   171     tmp12 = tmp1 - tmp2;
   173     dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
   174     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
   176     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
   177     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
   178 				   CONST_BITS-PASS1_BITS);
   179     dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
   180 				   CONST_BITS-PASS1_BITS);
   182     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
   183      * cK represents cos(K*pi/16).
   184      * i0..i3 in the paper are tmp4..tmp7 here.
   185      */
   187     z1 = tmp4 + tmp7;
   188     z2 = tmp5 + tmp6;
   189     z3 = tmp4 + tmp6;
   190     z4 = tmp5 + tmp7;
   191     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
   193     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
   194     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
   195     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
   196     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
   197     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
   198     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
   199     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
   200     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
   202     z3 += z5;
   203     z4 += z5;
   205     dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
   206     dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
   207     dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
   208     dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
   210     dataptr += DCTSIZE;		/* advance pointer to next row */
   211   }
   213   /* Pass 2: process columns.
   214    * We remove the PASS1_BITS scaling, but leave the results scaled up
   215    * by an overall factor of 8.
   216    */
   218   dataptr = data;
   219   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   220     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
   221     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
   222     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
   223     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
   224     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
   225     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
   226     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
   227     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
   229     /* Even part per LL&M figure 1 --- note that published figure is faulty;
   230      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
   231      */
   233     tmp10 = tmp0 + tmp3;
   234     tmp13 = tmp0 - tmp3;
   235     tmp11 = tmp1 + tmp2;
   236     tmp12 = tmp1 - tmp2;
   238     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
   239     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
   241     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
   242     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
   243 					   CONST_BITS+PASS1_BITS);
   244     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
   245 					   CONST_BITS+PASS1_BITS);
   247     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
   248      * cK represents cos(K*pi/16).
   249      * i0..i3 in the paper are tmp4..tmp7 here.
   250      */
   252     z1 = tmp4 + tmp7;
   253     z2 = tmp5 + tmp6;
   254     z3 = tmp4 + tmp6;
   255     z4 = tmp5 + tmp7;
   256     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
   258     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
   259     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
   260     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
   261     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
   262     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
   263     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
   264     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
   265     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
   267     z3 += z5;
   268     z4 += z5;
   270     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
   271 					   CONST_BITS+PASS1_BITS);
   272     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
   273 					   CONST_BITS+PASS1_BITS);
   274     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
   275 					   CONST_BITS+PASS1_BITS);
   276     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
   277 					   CONST_BITS+PASS1_BITS);
   279     dataptr++;			/* advance pointer to next column */
   280   }
   281 }
   283 #endif /* DCT_ISLOW_SUPPORTED */

mercurial