media/libjpeg/jidctred.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  * jidctred.c
     3  *
     4  * Copyright (C) 1994-1998, Thomas G. Lane.
     5  * This file is part of the Independent JPEG Group's software.
     6  * For conditions of distribution and use, see the accompanying README file.
     7  *
     8  * This file contains inverse-DCT routines that produce reduced-size output:
     9  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
    10  *
    11  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
    12  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
    13  * with an 8-to-4 step that produces the four averages of two adjacent outputs
    14  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
    15  * These steps were derived by computing the corresponding values at the end
    16  * of the normal LL&M code, then simplifying as much as possible.
    17  *
    18  * 1x1 is trivial: just take the DC coefficient divided by 8.
    19  *
    20  * See jidctint.c for additional comments.
    21  */
    23 #define JPEG_INTERNALS
    24 #include "jinclude.h"
    25 #include "jpeglib.h"
    26 #include "jdct.h"		/* Private declarations for DCT subsystem */
    28 #ifdef IDCT_SCALING_SUPPORTED
    31 /*
    32  * This module is specialized to the case DCTSIZE = 8.
    33  */
    35 #if DCTSIZE != 8
    36   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
    37 #endif
    40 /* Scaling is the same as in jidctint.c. */
    42 #if BITS_IN_JSAMPLE == 8
    43 #define CONST_BITS  13
    44 #define PASS1_BITS  2
    45 #else
    46 #define CONST_BITS  13
    47 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
    48 #endif
    50 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
    51  * causing a lot of useless floating-point operations at run time.
    52  * To get around this we use the following pre-calculated constants.
    53  * If you change CONST_BITS you may want to add appropriate values.
    54  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
    55  */
    57 #if CONST_BITS == 13
    58 #define FIX_0_211164243  ((INT32)  1730)	/* FIX(0.211164243) */
    59 #define FIX_0_509795579  ((INT32)  4176)	/* FIX(0.509795579) */
    60 #define FIX_0_601344887  ((INT32)  4926)	/* FIX(0.601344887) */
    61 #define FIX_0_720959822  ((INT32)  5906)	/* FIX(0.720959822) */
    62 #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
    63 #define FIX_0_850430095  ((INT32)  6967)	/* FIX(0.850430095) */
    64 #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
    65 #define FIX_1_061594337  ((INT32)  8697)	/* FIX(1.061594337) */
    66 #define FIX_1_272758580  ((INT32)  10426)	/* FIX(1.272758580) */
    67 #define FIX_1_451774981  ((INT32)  11893)	/* FIX(1.451774981) */
    68 #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
    69 #define FIX_2_172734803  ((INT32)  17799)	/* FIX(2.172734803) */
    70 #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
    71 #define FIX_3_624509785  ((INT32)  29692)	/* FIX(3.624509785) */
    72 #else
    73 #define FIX_0_211164243  FIX(0.211164243)
    74 #define FIX_0_509795579  FIX(0.509795579)
    75 #define FIX_0_601344887  FIX(0.601344887)
    76 #define FIX_0_720959822  FIX(0.720959822)
    77 #define FIX_0_765366865  FIX(0.765366865)
    78 #define FIX_0_850430095  FIX(0.850430095)
    79 #define FIX_0_899976223  FIX(0.899976223)
    80 #define FIX_1_061594337  FIX(1.061594337)
    81 #define FIX_1_272758580  FIX(1.272758580)
    82 #define FIX_1_451774981  FIX(1.451774981)
    83 #define FIX_1_847759065  FIX(1.847759065)
    84 #define FIX_2_172734803  FIX(2.172734803)
    85 #define FIX_2_562915447  FIX(2.562915447)
    86 #define FIX_3_624509785  FIX(3.624509785)
    87 #endif
    90 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
    91  * For 8-bit samples with the recommended scaling, all the variable
    92  * and constant values involved are no more than 16 bits wide, so a
    93  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
    94  * For 12-bit samples, a full 32-bit multiplication will be needed.
    95  */
    97 #if BITS_IN_JSAMPLE == 8
    98 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
    99 #else
   100 #define MULTIPLY(var,const)  ((var) * (const))
   101 #endif
   104 /* Dequantize a coefficient by multiplying it by the multiplier-table
   105  * entry; produce an int result.  In this module, both inputs and result
   106  * are 16 bits or less, so either int or short multiply will work.
   107  */
   109 #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
   112 /*
   113  * Perform dequantization and inverse DCT on one block of coefficients,
   114  * producing a reduced-size 4x4 output block.
   115  */
   117 GLOBAL(void)
   118 jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
   119 	       JCOEFPTR coef_block,
   120 	       JSAMPARRAY output_buf, JDIMENSION output_col)
   121 {
   122   INT32 tmp0, tmp2, tmp10, tmp12;
   123   INT32 z1, z2, z3, z4;
   124   JCOEFPTR inptr;
   125   ISLOW_MULT_TYPE * quantptr;
   126   int * wsptr;
   127   JSAMPROW outptr;
   128   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
   129   int ctr;
   130   int workspace[DCTSIZE*4];	/* buffers data between passes */
   131   SHIFT_TEMPS
   133   /* Pass 1: process columns from input, store into work array. */
   135   inptr = coef_block;
   136   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
   137   wsptr = workspace;
   138   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
   139     /* Don't bother to process column 4, because second pass won't use it */
   140     if (ctr == DCTSIZE-4)
   141       continue;
   142     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
   143 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
   144 	inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
   145       /* AC terms all zero; we need not examine term 4 for 4x4 output */
   146       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
   148       wsptr[DCTSIZE*0] = dcval;
   149       wsptr[DCTSIZE*1] = dcval;
   150       wsptr[DCTSIZE*2] = dcval;
   151       wsptr[DCTSIZE*3] = dcval;
   153       continue;
   154     }
   156     /* Even part */
   158     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
   159     tmp0 <<= (CONST_BITS+1);
   161     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
   162     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
   164     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
   166     tmp10 = tmp0 + tmp2;
   167     tmp12 = tmp0 - tmp2;
   169     /* Odd part */
   171     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
   172     z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
   173     z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
   174     z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
   176     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
   177 	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
   178 	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
   179 	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
   181     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
   182 	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
   183 	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
   184 	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
   186     /* Final output stage */
   188     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
   189     wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
   190     wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
   191     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
   192   }
   194   /* Pass 2: process 4 rows from work array, store into output array. */
   196   wsptr = workspace;
   197   for (ctr = 0; ctr < 4; ctr++) {
   198     outptr = output_buf[ctr] + output_col;
   199     /* It's not clear whether a zero row test is worthwhile here ... */
   201 #ifndef NO_ZERO_ROW_TEST
   202     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
   203 	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
   204       /* AC terms all zero */
   205       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
   206 				  & RANGE_MASK];
   208       outptr[0] = dcval;
   209       outptr[1] = dcval;
   210       outptr[2] = dcval;
   211       outptr[3] = dcval;
   213       wsptr += DCTSIZE;		/* advance pointer to next row */
   214       continue;
   215     }
   216 #endif
   218     /* Even part */
   220     tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
   222     tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
   223 	 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
   225     tmp10 = tmp0 + tmp2;
   226     tmp12 = tmp0 - tmp2;
   228     /* Odd part */
   230     z1 = (INT32) wsptr[7];
   231     z2 = (INT32) wsptr[5];
   232     z3 = (INT32) wsptr[3];
   233     z4 = (INT32) wsptr[1];
   235     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
   236 	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
   237 	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
   238 	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
   240     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
   241 	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
   242 	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
   243 	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
   245     /* Final output stage */
   247     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
   248 					  CONST_BITS+PASS1_BITS+3+1)
   249 			    & RANGE_MASK];
   250     outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
   251 					  CONST_BITS+PASS1_BITS+3+1)
   252 			    & RANGE_MASK];
   253     outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
   254 					  CONST_BITS+PASS1_BITS+3+1)
   255 			    & RANGE_MASK];
   256     outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
   257 					  CONST_BITS+PASS1_BITS+3+1)
   258 			    & RANGE_MASK];
   260     wsptr += DCTSIZE;		/* advance pointer to next row */
   261   }
   262 }
   265 /*
   266  * Perform dequantization and inverse DCT on one block of coefficients,
   267  * producing a reduced-size 2x2 output block.
   268  */
   270 GLOBAL(void)
   271 jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
   272 	       JCOEFPTR coef_block,
   273 	       JSAMPARRAY output_buf, JDIMENSION output_col)
   274 {
   275   INT32 tmp0, tmp10, z1;
   276   JCOEFPTR inptr;
   277   ISLOW_MULT_TYPE * quantptr;
   278   int * wsptr;
   279   JSAMPROW outptr;
   280   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
   281   int ctr;
   282   int workspace[DCTSIZE*2];	/* buffers data between passes */
   283   SHIFT_TEMPS
   285   /* Pass 1: process columns from input, store into work array. */
   287   inptr = coef_block;
   288   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
   289   wsptr = workspace;
   290   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
   291     /* Don't bother to process columns 2,4,6 */
   292     if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
   293       continue;
   294     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
   295 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
   296       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
   297       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
   299       wsptr[DCTSIZE*0] = dcval;
   300       wsptr[DCTSIZE*1] = dcval;
   302       continue;
   303     }
   305     /* Even part */
   307     z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
   308     tmp10 = z1 << (CONST_BITS+2);
   310     /* Odd part */
   312     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
   313     tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
   314     z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
   315     tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
   316     z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
   317     tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
   318     z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
   319     tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
   321     /* Final output stage */
   323     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
   324     wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
   325   }
   327   /* Pass 2: process 2 rows from work array, store into output array. */
   329   wsptr = workspace;
   330   for (ctr = 0; ctr < 2; ctr++) {
   331     outptr = output_buf[ctr] + output_col;
   332     /* It's not clear whether a zero row test is worthwhile here ... */
   334 #ifndef NO_ZERO_ROW_TEST
   335     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
   336       /* AC terms all zero */
   337       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
   338 				  & RANGE_MASK];
   340       outptr[0] = dcval;
   341       outptr[1] = dcval;
   343       wsptr += DCTSIZE;		/* advance pointer to next row */
   344       continue;
   345     }
   346 #endif
   348     /* Even part */
   350     tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
   352     /* Odd part */
   354     tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
   355 	 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
   356 	 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
   357 	 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
   359     /* Final output stage */
   361     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
   362 					  CONST_BITS+PASS1_BITS+3+2)
   363 			    & RANGE_MASK];
   364     outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
   365 					  CONST_BITS+PASS1_BITS+3+2)
   366 			    & RANGE_MASK];
   368     wsptr += DCTSIZE;		/* advance pointer to next row */
   369   }
   370 }
   373 /*
   374  * Perform dequantization and inverse DCT on one block of coefficients,
   375  * producing a reduced-size 1x1 output block.
   376  */
   378 GLOBAL(void)
   379 jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
   380 	       JCOEFPTR coef_block,
   381 	       JSAMPARRAY output_buf, JDIMENSION output_col)
   382 {
   383   int dcval;
   384   ISLOW_MULT_TYPE * quantptr;
   385   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
   386   SHIFT_TEMPS
   388   /* We hardly need an inverse DCT routine for this: just take the
   389    * average pixel value, which is one-eighth of the DC coefficient.
   390    */
   391   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
   392   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
   393   dcval = (int) DESCALE((INT32) dcval, 3);
   395   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
   396 }
   398 #endif /* IDCT_SCALING_SUPPORTED */

mercurial