media/libjpeg/simd/jfss2fst.asm

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 ;
     2 ; jfss2fst.asm - fast integer FDCT (SSE2)
     3 ;
     4 ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
     5 ;
     6 ; Based on
     7 ; x86 SIMD extension for IJG JPEG library
     8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
     9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
    10 ;
    11 ; This file should be assembled with NASM (Netwide Assembler),
    12 ; can *not* be assembled with Microsoft's MASM or any compatible
    13 ; assembler (including Borland's Turbo Assembler).
    14 ; NASM is available from http://nasm.sourceforge.net/ or
    15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
    16 ;
    17 ; This file contains a fast, not so accurate integer implementation of
    18 ; the forward DCT (Discrete Cosine Transform). The following code is
    19 ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c
    20 ; for more details.
    21 ;
    22 ; [TAB8]
    24 %include "jsimdext.inc"
    25 %include "jdct.inc"
    27 ; --------------------------------------------------------------------------
    29 %define CONST_BITS	8	; 14 is also OK.
    31 %if CONST_BITS == 8
    32 F_0_382	equ	 98		; FIX(0.382683433)
    33 F_0_541	equ	139		; FIX(0.541196100)
    34 F_0_707	equ	181		; FIX(0.707106781)
    35 F_1_306	equ	334		; FIX(1.306562965)
    36 %else
    37 ; NASM cannot do compile-time arithmetic on floating-point constants.
    38 %define DESCALE(x,n)  (((x)+(1<<((n)-1)))>>(n))
    39 F_0_382	equ	DESCALE( 410903207,30-CONST_BITS)	; FIX(0.382683433)
    40 F_0_541	equ	DESCALE( 581104887,30-CONST_BITS)	; FIX(0.541196100)
    41 F_0_707	equ	DESCALE( 759250124,30-CONST_BITS)	; FIX(0.707106781)
    42 F_1_306	equ	DESCALE(1402911301,30-CONST_BITS)	; FIX(1.306562965)
    43 %endif
    45 ; --------------------------------------------------------------------------
    46 	SECTION	SEG_CONST
    48 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
    49 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
    51 %define PRE_MULTIPLY_SCALE_BITS   2
    52 %define CONST_SHIFT     (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
    54 	alignz	16
    55 	global	EXTN(jconst_fdct_ifast_sse2)
    57 EXTN(jconst_fdct_ifast_sse2):
    59 PW_F0707	times 8 dw  F_0_707 << CONST_SHIFT
    60 PW_F0382	times 8 dw  F_0_382 << CONST_SHIFT
    61 PW_F0541	times 8 dw  F_0_541 << CONST_SHIFT
    62 PW_F1306	times 8 dw  F_1_306 << CONST_SHIFT
    64 	alignz	16
    66 ; --------------------------------------------------------------------------
    67 	SECTION	SEG_TEXT
    68 	BITS	32
    69 ;
    70 ; Perform the forward DCT on one block of samples.
    71 ;
    72 ; GLOBAL(void)
    73 ; jsimd_fdct_ifast_sse2 (DCTELEM * data)
    74 ;
    76 %define data(b)		(b)+8		; DCTELEM * data
    78 %define original_ebp	ebp+0
    79 %define wk(i)		ebp-(WK_NUM-(i))*SIZEOF_XMMWORD	; xmmword wk[WK_NUM]
    80 %define WK_NUM		2
    82 	align	16
    83 	global	EXTN(jsimd_fdct_ifast_sse2)
    85 EXTN(jsimd_fdct_ifast_sse2):
    86 	push	ebp
    87 	mov	eax,esp				; eax = original ebp
    88 	sub	esp, byte 4
    89 	and	esp, byte (-SIZEOF_XMMWORD)	; align to 128 bits
    90 	mov	[esp],eax
    91 	mov	ebp,esp				; ebp = aligned ebp
    92 	lea	esp, [wk(0)]
    93 	pushpic	ebx
    94 ;	push	ecx		; unused
    95 ;	push	edx		; need not be preserved
    96 ;	push	esi		; unused
    97 ;	push	edi		; unused
    99 	get_GOT	ebx		; get GOT address
   101 	; ---- Pass 1: process rows.
   103 	mov	edx, POINTER [data(eax)]	; (DCTELEM *)
   105 	movdqa	xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)]
   106 	movdqa	xmm1, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)]
   107 	movdqa	xmm2, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)]
   108 	movdqa	xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)]
   110 	; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27)
   111 	; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37)
   113 	movdqa    xmm4,xmm0		; transpose coefficients(phase 1)
   114 	punpcklwd xmm0,xmm1		; xmm0=(00 10 01 11 02 12 03 13)
   115 	punpckhwd xmm4,xmm1		; xmm4=(04 14 05 15 06 16 07 17)
   116 	movdqa    xmm5,xmm2		; transpose coefficients(phase 1)
   117 	punpcklwd xmm2,xmm3		; xmm2=(20 30 21 31 22 32 23 33)
   118 	punpckhwd xmm5,xmm3		; xmm5=(24 34 25 35 26 36 27 37)
   120 	movdqa	xmm6, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)]
   121 	movdqa	xmm7, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)]
   122 	movdqa	xmm1, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)]
   123 	movdqa	xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)]
   125 	; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62)
   126 	; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63)
   128 	movdqa	XMMWORD [wk(0)], xmm2	; wk(0)=(20 30 21 31 22 32 23 33)
   129 	movdqa	XMMWORD [wk(1)], xmm5	; wk(1)=(24 34 25 35 26 36 27 37)
   131 	movdqa    xmm2,xmm6		; transpose coefficients(phase 1)
   132 	punpcklwd xmm6,xmm7		; xmm6=(40 50 41 51 42 52 43 53)
   133 	punpckhwd xmm2,xmm7		; xmm2=(44 54 45 55 46 56 47 57)
   134 	movdqa    xmm5,xmm1		; transpose coefficients(phase 1)
   135 	punpcklwd xmm1,xmm3		; xmm1=(60 70 61 71 62 72 63 73)
   136 	punpckhwd xmm5,xmm3		; xmm5=(64 74 65 75 66 76 67 77)
   138 	movdqa    xmm7,xmm6		; transpose coefficients(phase 2)
   139 	punpckldq xmm6,xmm1		; xmm6=(40 50 60 70 41 51 61 71)
   140 	punpckhdq xmm7,xmm1		; xmm7=(42 52 62 72 43 53 63 73)
   141 	movdqa    xmm3,xmm2		; transpose coefficients(phase 2)
   142 	punpckldq xmm2,xmm5		; xmm2=(44 54 64 74 45 55 65 75)
   143 	punpckhdq xmm3,xmm5		; xmm3=(46 56 66 76 47 57 67 77)
   145 	movdqa	xmm1, XMMWORD [wk(0)]	; xmm1=(20 30 21 31 22 32 23 33)
   146 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=(24 34 25 35 26 36 27 37)
   147 	movdqa	XMMWORD [wk(0)], xmm7	; wk(0)=(42 52 62 72 43 53 63 73)
   148 	movdqa	XMMWORD [wk(1)], xmm2	; wk(1)=(44 54 64 74 45 55 65 75)
   150 	movdqa    xmm7,xmm0		; transpose coefficients(phase 2)
   151 	punpckldq xmm0,xmm1		; xmm0=(00 10 20 30 01 11 21 31)
   152 	punpckhdq xmm7,xmm1		; xmm7=(02 12 22 32 03 13 23 33)
   153 	movdqa    xmm2,xmm4		; transpose coefficients(phase 2)
   154 	punpckldq xmm4,xmm5		; xmm4=(04 14 24 34 05 15 25 35)
   155 	punpckhdq xmm2,xmm5		; xmm2=(06 16 26 36 07 17 27 37)
   157 	movdqa     xmm1,xmm0		; transpose coefficients(phase 3)
   158 	punpcklqdq xmm0,xmm6		; xmm0=(00 10 20 30 40 50 60 70)=data0
   159 	punpckhqdq xmm1,xmm6		; xmm1=(01 11 21 31 41 51 61 71)=data1
   160 	movdqa     xmm5,xmm2		; transpose coefficients(phase 3)
   161 	punpcklqdq xmm2,xmm3		; xmm2=(06 16 26 36 46 56 66 76)=data6
   162 	punpckhqdq xmm5,xmm3		; xmm5=(07 17 27 37 47 57 67 77)=data7
   164 	movdqa	xmm6,xmm1
   165 	movdqa	xmm3,xmm0
   166 	psubw	xmm1,xmm2		; xmm1=data1-data6=tmp6
   167 	psubw	xmm0,xmm5		; xmm0=data0-data7=tmp7
   168 	paddw	xmm6,xmm2		; xmm6=data1+data6=tmp1
   169 	paddw	xmm3,xmm5		; xmm3=data0+data7=tmp0
   171 	movdqa	xmm2, XMMWORD [wk(0)]	; xmm2=(42 52 62 72 43 53 63 73)
   172 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=(44 54 64 74 45 55 65 75)
   173 	movdqa	XMMWORD [wk(0)], xmm1	; wk(0)=tmp6
   174 	movdqa	XMMWORD [wk(1)], xmm0	; wk(1)=tmp7
   176 	movdqa     xmm1,xmm7		; transpose coefficients(phase 3)
   177 	punpcklqdq xmm7,xmm2		; xmm7=(02 12 22 32 42 52 62 72)=data2
   178 	punpckhqdq xmm1,xmm2		; xmm1=(03 13 23 33 43 53 63 73)=data3
   179 	movdqa     xmm0,xmm4		; transpose coefficients(phase 3)
   180 	punpcklqdq xmm4,xmm5		; xmm4=(04 14 24 34 44 54 64 74)=data4
   181 	punpckhqdq xmm0,xmm5		; xmm0=(05 15 25 35 45 55 65 75)=data5
   183 	movdqa	xmm2,xmm1
   184 	movdqa	xmm5,xmm7
   185 	paddw	xmm1,xmm4		; xmm1=data3+data4=tmp3
   186 	paddw	xmm7,xmm0		; xmm7=data2+data5=tmp2
   187 	psubw	xmm2,xmm4		; xmm2=data3-data4=tmp4
   188 	psubw	xmm5,xmm0		; xmm5=data2-data5=tmp5
   190 	; -- Even part
   192 	movdqa	xmm4,xmm3
   193 	movdqa	xmm0,xmm6
   194 	psubw	xmm3,xmm1		; xmm3=tmp13
   195 	psubw	xmm6,xmm7		; xmm6=tmp12
   196 	paddw	xmm4,xmm1		; xmm4=tmp10
   197 	paddw	xmm0,xmm7		; xmm0=tmp11
   199 	paddw	xmm6,xmm3
   200 	psllw	xmm6,PRE_MULTIPLY_SCALE_BITS
   201 	pmulhw	xmm6,[GOTOFF(ebx,PW_F0707)] ; xmm6=z1
   203 	movdqa	xmm1,xmm4
   204 	movdqa	xmm7,xmm3
   205 	psubw	xmm4,xmm0		; xmm4=data4
   206 	psubw	xmm3,xmm6		; xmm3=data6
   207 	paddw	xmm1,xmm0		; xmm1=data0
   208 	paddw	xmm7,xmm6		; xmm7=data2
   210 	movdqa	xmm0, XMMWORD [wk(0)]	; xmm0=tmp6
   211 	movdqa	xmm6, XMMWORD [wk(1)]	; xmm6=tmp7
   212 	movdqa	XMMWORD [wk(0)], xmm4	; wk(0)=data4
   213 	movdqa	XMMWORD [wk(1)], xmm3	; wk(1)=data6
   215 	; -- Odd part
   217 	paddw	xmm2,xmm5		; xmm2=tmp10
   218 	paddw	xmm5,xmm0		; xmm5=tmp11
   219 	paddw	xmm0,xmm6		; xmm0=tmp12, xmm6=tmp7
   221 	psllw	xmm2,PRE_MULTIPLY_SCALE_BITS
   222 	psllw	xmm0,PRE_MULTIPLY_SCALE_BITS
   224 	psllw	xmm5,PRE_MULTIPLY_SCALE_BITS
   225 	pmulhw	xmm5,[GOTOFF(ebx,PW_F0707)] ; xmm5=z3
   227 	movdqa	xmm4,xmm2		; xmm4=tmp10
   228 	psubw	xmm2,xmm0
   229 	pmulhw	xmm2,[GOTOFF(ebx,PW_F0382)] ; xmm2=z5
   230 	pmulhw	xmm4,[GOTOFF(ebx,PW_F0541)] ; xmm4=MULTIPLY(tmp10,FIX_0_541196)
   231 	pmulhw	xmm0,[GOTOFF(ebx,PW_F1306)] ; xmm0=MULTIPLY(tmp12,FIX_1_306562)
   232 	paddw	xmm4,xmm2		; xmm4=z2
   233 	paddw	xmm0,xmm2		; xmm0=z4
   235 	movdqa	xmm3,xmm6
   236 	psubw	xmm6,xmm5		; xmm6=z13
   237 	paddw	xmm3,xmm5		; xmm3=z11
   239 	movdqa	xmm2,xmm6
   240 	movdqa	xmm5,xmm3
   241 	psubw	xmm6,xmm4		; xmm6=data3
   242 	psubw	xmm3,xmm0		; xmm3=data7
   243 	paddw	xmm2,xmm4		; xmm2=data5
   244 	paddw	xmm5,xmm0		; xmm5=data1
   246 	; ---- Pass 2: process columns.
   248 ;	mov	edx, POINTER [data(eax)]	; (DCTELEM *)
   250 	; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72)
   251 	; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73)
   253 	movdqa    xmm4,xmm1		; transpose coefficients(phase 1)
   254 	punpcklwd xmm1,xmm5		; xmm1=(00 01 10 11 20 21 30 31)
   255 	punpckhwd xmm4,xmm5		; xmm4=(40 41 50 51 60 61 70 71)
   256 	movdqa    xmm0,xmm7		; transpose coefficients(phase 1)
   257 	punpcklwd xmm7,xmm6		; xmm7=(02 03 12 13 22 23 32 33)
   258 	punpckhwd xmm0,xmm6		; xmm0=(42 43 52 53 62 63 72 73)
   260 	movdqa	xmm5, XMMWORD [wk(0)]	; xmm5=col4
   261 	movdqa	xmm6, XMMWORD [wk(1)]	; xmm6=col6
   263 	; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76)
   264 	; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77)
   266 	movdqa	XMMWORD [wk(0)], xmm7	; wk(0)=(02 03 12 13 22 23 32 33)
   267 	movdqa	XMMWORD [wk(1)], xmm0	; wk(1)=(42 43 52 53 62 63 72 73)
   269 	movdqa    xmm7,xmm5		; transpose coefficients(phase 1)
   270 	punpcklwd xmm5,xmm2		; xmm5=(04 05 14 15 24 25 34 35)
   271 	punpckhwd xmm7,xmm2		; xmm7=(44 45 54 55 64 65 74 75)
   272 	movdqa    xmm0,xmm6		; transpose coefficients(phase 1)
   273 	punpcklwd xmm6,xmm3		; xmm6=(06 07 16 17 26 27 36 37)
   274 	punpckhwd xmm0,xmm3		; xmm0=(46 47 56 57 66 67 76 77)
   276 	movdqa    xmm2,xmm5		; transpose coefficients(phase 2)
   277 	punpckldq xmm5,xmm6		; xmm5=(04 05 06 07 14 15 16 17)
   278 	punpckhdq xmm2,xmm6		; xmm2=(24 25 26 27 34 35 36 37)
   279 	movdqa    xmm3,xmm7		; transpose coefficients(phase 2)
   280 	punpckldq xmm7,xmm0		; xmm7=(44 45 46 47 54 55 56 57)
   281 	punpckhdq xmm3,xmm0		; xmm3=(64 65 66 67 74 75 76 77)
   283 	movdqa	xmm6, XMMWORD [wk(0)]	; xmm6=(02 03 12 13 22 23 32 33)
   284 	movdqa	xmm0, XMMWORD [wk(1)]	; xmm0=(42 43 52 53 62 63 72 73)
   285 	movdqa	XMMWORD [wk(0)], xmm2	; wk(0)=(24 25 26 27 34 35 36 37)
   286 	movdqa	XMMWORD [wk(1)], xmm7	; wk(1)=(44 45 46 47 54 55 56 57)
   288 	movdqa    xmm2,xmm1		; transpose coefficients(phase 2)
   289 	punpckldq xmm1,xmm6		; xmm1=(00 01 02 03 10 11 12 13)
   290 	punpckhdq xmm2,xmm6		; xmm2=(20 21 22 23 30 31 32 33)
   291 	movdqa    xmm7,xmm4		; transpose coefficients(phase 2)
   292 	punpckldq xmm4,xmm0		; xmm4=(40 41 42 43 50 51 52 53)
   293 	punpckhdq xmm7,xmm0		; xmm7=(60 61 62 63 70 71 72 73)
   295 	movdqa     xmm6,xmm1		; transpose coefficients(phase 3)
   296 	punpcklqdq xmm1,xmm5		; xmm1=(00 01 02 03 04 05 06 07)=data0
   297 	punpckhqdq xmm6,xmm5		; xmm6=(10 11 12 13 14 15 16 17)=data1
   298 	movdqa     xmm0,xmm7		; transpose coefficients(phase 3)
   299 	punpcklqdq xmm7,xmm3		; xmm7=(60 61 62 63 64 65 66 67)=data6
   300 	punpckhqdq xmm0,xmm3		; xmm0=(70 71 72 73 74 75 76 77)=data7
   302 	movdqa	xmm5,xmm6
   303 	movdqa	xmm3,xmm1
   304 	psubw	xmm6,xmm7		; xmm6=data1-data6=tmp6
   305 	psubw	xmm1,xmm0		; xmm1=data0-data7=tmp7
   306 	paddw	xmm5,xmm7		; xmm5=data1+data6=tmp1
   307 	paddw	xmm3,xmm0		; xmm3=data0+data7=tmp0
   309 	movdqa	xmm7, XMMWORD [wk(0)]	; xmm7=(24 25 26 27 34 35 36 37)
   310 	movdqa	xmm0, XMMWORD [wk(1)]	; xmm0=(44 45 46 47 54 55 56 57)
   311 	movdqa	XMMWORD [wk(0)], xmm6	; wk(0)=tmp6
   312 	movdqa	XMMWORD [wk(1)], xmm1	; wk(1)=tmp7
   314 	movdqa     xmm6,xmm2		; transpose coefficients(phase 3)
   315 	punpcklqdq xmm2,xmm7		; xmm2=(20 21 22 23 24 25 26 27)=data2
   316 	punpckhqdq xmm6,xmm7		; xmm6=(30 31 32 33 34 35 36 37)=data3
   317 	movdqa     xmm1,xmm4		; transpose coefficients(phase 3)
   318 	punpcklqdq xmm4,xmm0		; xmm4=(40 41 42 43 44 45 46 47)=data4
   319 	punpckhqdq xmm1,xmm0		; xmm1=(50 51 52 53 54 55 56 57)=data5
   321 	movdqa	xmm7,xmm6
   322 	movdqa	xmm0,xmm2
   323 	paddw	xmm6,xmm4		; xmm6=data3+data4=tmp3
   324 	paddw	xmm2,xmm1		; xmm2=data2+data5=tmp2
   325 	psubw	xmm7,xmm4		; xmm7=data3-data4=tmp4
   326 	psubw	xmm0,xmm1		; xmm0=data2-data5=tmp5
   328 	; -- Even part
   330 	movdqa	xmm4,xmm3
   331 	movdqa	xmm1,xmm5
   332 	psubw	xmm3,xmm6		; xmm3=tmp13
   333 	psubw	xmm5,xmm2		; xmm5=tmp12
   334 	paddw	xmm4,xmm6		; xmm4=tmp10
   335 	paddw	xmm1,xmm2		; xmm1=tmp11
   337 	paddw	xmm5,xmm3
   338 	psllw	xmm5,PRE_MULTIPLY_SCALE_BITS
   339 	pmulhw	xmm5,[GOTOFF(ebx,PW_F0707)] ; xmm5=z1
   341 	movdqa	xmm6,xmm4
   342 	movdqa	xmm2,xmm3
   343 	psubw	xmm4,xmm1		; xmm4=data4
   344 	psubw	xmm3,xmm5		; xmm3=data6
   345 	paddw	xmm6,xmm1		; xmm6=data0
   346 	paddw	xmm2,xmm5		; xmm2=data2
   348 	movdqa	XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)], xmm4
   349 	movdqa	XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)], xmm3
   350 	movdqa	XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)], xmm6
   351 	movdqa	XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)], xmm2
   353 	; -- Odd part
   355 	movdqa	xmm1, XMMWORD [wk(0)]	; xmm1=tmp6
   356 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=tmp7
   358 	paddw	xmm7,xmm0		; xmm7=tmp10
   359 	paddw	xmm0,xmm1		; xmm0=tmp11
   360 	paddw	xmm1,xmm5		; xmm1=tmp12, xmm5=tmp7
   362 	psllw	xmm7,PRE_MULTIPLY_SCALE_BITS
   363 	psllw	xmm1,PRE_MULTIPLY_SCALE_BITS
   365 	psllw	xmm0,PRE_MULTIPLY_SCALE_BITS
   366 	pmulhw	xmm0,[GOTOFF(ebx,PW_F0707)] ; xmm0=z3
   368 	movdqa	xmm4,xmm7		; xmm4=tmp10
   369 	psubw	xmm7,xmm1
   370 	pmulhw	xmm7,[GOTOFF(ebx,PW_F0382)] ; xmm7=z5
   371 	pmulhw	xmm4,[GOTOFF(ebx,PW_F0541)] ; xmm4=MULTIPLY(tmp10,FIX_0_541196)
   372 	pmulhw	xmm1,[GOTOFF(ebx,PW_F1306)] ; xmm1=MULTIPLY(tmp12,FIX_1_306562)
   373 	paddw	xmm4,xmm7		; xmm4=z2
   374 	paddw	xmm1,xmm7		; xmm1=z4
   376 	movdqa	xmm3,xmm5
   377 	psubw	xmm5,xmm0		; xmm5=z13
   378 	paddw	xmm3,xmm0		; xmm3=z11
   380 	movdqa	xmm6,xmm5
   381 	movdqa	xmm2,xmm3
   382 	psubw	xmm5,xmm4		; xmm5=data3
   383 	psubw	xmm3,xmm1		; xmm3=data7
   384 	paddw	xmm6,xmm4		; xmm6=data5
   385 	paddw	xmm2,xmm1		; xmm2=data1
   387 	movdqa	XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)], xmm5
   388 	movdqa	XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)], xmm3
   389 	movdqa	XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)], xmm6
   390 	movdqa	XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)], xmm2
   392 ;	pop	edi		; unused
   393 ;	pop	esi		; unused
   394 ;	pop	edx		; need not be preserved
   395 ;	pop	ecx		; unused
   396 	poppic	ebx
   397 	mov	esp,ebp		; esp <- aligned ebp
   398 	pop	esp		; esp <- original ebp
   399 	pop	ebp
   400 	ret
   402 ; For some reason, the OS X linker does not honor the request to align the
   403 ; segment unless we do this.
   404 	align	16

mercurial