media/libjpeg/simd/jimmxfst.asm

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 ;
     2 ; jimmxfst.asm - fast integer IDCT (MMX)
     3 ;
     4 ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
     5 ;
     6 ; Based on
     7 ; x86 SIMD extension for IJG JPEG library
     8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
     9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
    10 ;
    11 ; This file should be assembled with NASM (Netwide Assembler),
    12 ; can *not* be assembled with Microsoft's MASM or any compatible
    13 ; assembler (including Borland's Turbo Assembler).
    14 ; NASM is available from http://nasm.sourceforge.net/ or
    15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
    16 ;
    17 ; This file contains a fast, not so accurate integer implementation of
    18 ; the inverse DCT (Discrete Cosine Transform). The following code is
    19 ; based directly on the IJG's original jidctfst.c; see the jidctfst.c
    20 ; for more details.
    21 ;
    22 ; [TAB8]
    24 %include "jsimdext.inc"
    25 %include "jdct.inc"
    27 ; --------------------------------------------------------------------------
    29 %define CONST_BITS	8	; 14 is also OK.
    30 %define PASS1_BITS	2
    32 %if IFAST_SCALE_BITS != PASS1_BITS
    33 %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'."
    34 %endif
    36 %if CONST_BITS == 8
    37 F_1_082	equ	277		; FIX(1.082392200)
    38 F_1_414	equ	362		; FIX(1.414213562)
    39 F_1_847	equ	473		; FIX(1.847759065)
    40 F_2_613	equ	669		; FIX(2.613125930)
    41 F_1_613	equ	(F_2_613 - 256)	; FIX(2.613125930) - FIX(1)
    42 %else
    43 ; NASM cannot do compile-time arithmetic on floating-point constants.
    44 %define	DESCALE(x,n)  (((x)+(1<<((n)-1)))>>(n))
    45 F_1_082	equ	DESCALE(1162209775,30-CONST_BITS)	; FIX(1.082392200)
    46 F_1_414	equ	DESCALE(1518500249,30-CONST_BITS)	; FIX(1.414213562)
    47 F_1_847	equ	DESCALE(1984016188,30-CONST_BITS)	; FIX(1.847759065)
    48 F_2_613	equ	DESCALE(2805822602,30-CONST_BITS)	; FIX(2.613125930)
    49 F_1_613	equ	(F_2_613 - (1 << CONST_BITS))	; FIX(2.613125930) - FIX(1)
    50 %endif
    52 ; --------------------------------------------------------------------------
    53 	SECTION	SEG_CONST
    55 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
    56 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
    58 %define PRE_MULTIPLY_SCALE_BITS   2
    59 %define CONST_SHIFT     (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
    61 	alignz	16
    62 	global	EXTN(jconst_idct_ifast_mmx)
    64 EXTN(jconst_idct_ifast_mmx):
    66 PW_F1414	times 4 dw  F_1_414 << CONST_SHIFT
    67 PW_F1847	times 4 dw  F_1_847 << CONST_SHIFT
    68 PW_MF1613	times 4 dw -F_1_613 << CONST_SHIFT
    69 PW_F1082	times 4 dw  F_1_082 << CONST_SHIFT
    70 PB_CENTERJSAMP	times 8 db  CENTERJSAMPLE
    72 	alignz	16
    74 ; --------------------------------------------------------------------------
    75 	SECTION	SEG_TEXT
    76 	BITS	32
    77 ;
    78 ; Perform dequantization and inverse DCT on one block of coefficients.
    79 ;
    80 ; GLOBAL(void)
    81 ; jsimd_idct_ifast_mmx (void * dct_table, JCOEFPTR coef_block,
    82 ;                       JSAMPARRAY output_buf, JDIMENSION output_col)
    83 ;
    85 %define dct_table(b)	(b)+8			; jpeg_component_info * compptr
    86 %define coef_block(b)	(b)+12		; JCOEFPTR coef_block
    87 %define output_buf(b)	(b)+16		; JSAMPARRAY output_buf
    88 %define output_col(b)	(b)+20		; JDIMENSION output_col
    90 %define original_ebp	ebp+0
    91 %define wk(i)		ebp-(WK_NUM-(i))*SIZEOF_MMWORD	; mmword wk[WK_NUM]
    92 %define WK_NUM		2
    93 %define workspace	wk(0)-DCTSIZE2*SIZEOF_JCOEF
    94 					; JCOEF workspace[DCTSIZE2]
    96 	align	16
    97 	global	EXTN(jsimd_idct_ifast_mmx)
    99 EXTN(jsimd_idct_ifast_mmx):
   100 	push	ebp
   101 	mov	eax,esp				; eax = original ebp
   102 	sub	esp, byte 4
   103 	and	esp, byte (-SIZEOF_MMWORD)	; align to 64 bits
   104 	mov	[esp],eax
   105 	mov	ebp,esp				; ebp = aligned ebp
   106 	lea	esp, [workspace]
   107 	push	ebx
   108 ;	push	ecx		; need not be preserved
   109 ;	push	edx		; need not be preserved
   110 	push	esi
   111 	push	edi
   113 	get_GOT	ebx		; get GOT address
   115 	; ---- Pass 1: process columns from input, store into work array.
   117 ;	mov	eax, [original_ebp]
   118 	mov	edx, POINTER [dct_table(eax)]	; quantptr
   119 	mov	esi, JCOEFPTR [coef_block(eax)]		; inptr
   120 	lea	edi, [workspace]			; JCOEF * wsptr
   121 	mov	ecx, DCTSIZE/4				; ctr
   122 	alignx	16,7
   123 .columnloop:
   124 %ifndef NO_ZERO_COLUMN_TEST_IFAST_MMX
   125 	mov	eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)]
   126 	or	eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)]
   127 	jnz	short .columnDCT
   129 	movq	mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
   130 	movq	mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
   131 	por	mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
   132 	por	mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
   133 	por	mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
   134 	por	mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
   135 	por	mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
   136 	por	mm1,mm0
   137 	packsswb mm1,mm1
   138 	movd	eax,mm1
   139 	test	eax,eax
   140 	jnz	short .columnDCT
   142 	; -- AC terms all zero
   144 	movq	mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
   145 	pmullw	mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   147 	movq      mm2,mm0		; mm0=in0=(00 01 02 03)
   148 	punpcklwd mm0,mm0		; mm0=(00 00 01 01)
   149 	punpckhwd mm2,mm2		; mm2=(02 02 03 03)
   151 	movq      mm1,mm0
   152 	punpckldq mm0,mm0		; mm0=(00 00 00 00)
   153 	punpckhdq mm1,mm1		; mm1=(01 01 01 01)
   154 	movq      mm3,mm2
   155 	punpckldq mm2,mm2		; mm2=(02 02 02 02)
   156 	punpckhdq mm3,mm3		; mm3=(03 03 03 03)
   158 	movq	MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0
   159 	movq	MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0
   160 	movq	MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1
   161 	movq	MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm1
   162 	movq	MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2
   163 	movq	MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2
   164 	movq	MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3
   165 	movq	MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm3
   166 	jmp	near .nextcolumn
   167 	alignx	16,7
   168 %endif
   169 .columnDCT:
   171 	; -- Even part
   173 	movq	mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
   174 	movq	mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
   175 	pmullw	mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   176 	pmullw	mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   177 	movq	mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
   178 	movq	mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
   179 	pmullw	mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   180 	pmullw	mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   182 	movq	mm4,mm0
   183 	movq	mm5,mm1
   184 	psubw	mm0,mm2			; mm0=tmp11
   185 	psubw	mm1,mm3
   186 	paddw	mm4,mm2			; mm4=tmp10
   187 	paddw	mm5,mm3			; mm5=tmp13
   189 	psllw	mm1,PRE_MULTIPLY_SCALE_BITS
   190 	pmulhw	mm1,[GOTOFF(ebx,PW_F1414)]
   191 	psubw	mm1,mm5			; mm1=tmp12
   193 	movq	mm6,mm4
   194 	movq	mm7,mm0
   195 	psubw	mm4,mm5			; mm4=tmp3
   196 	psubw	mm0,mm1			; mm0=tmp2
   197 	paddw	mm6,mm5			; mm6=tmp0
   198 	paddw	mm7,mm1			; mm7=tmp1
   200 	movq	MMWORD [wk(1)], mm4	; wk(1)=tmp3
   201 	movq	MMWORD [wk(0)], mm0	; wk(0)=tmp2
   203 	; -- Odd part
   205 	movq	mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
   206 	movq	mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
   207 	pmullw	mm2, MMWORD [MMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   208 	pmullw	mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   209 	movq	mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
   210 	movq	mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
   211 	pmullw	mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   212 	pmullw	mm1, MMWORD [MMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   214 	movq	mm4,mm2
   215 	movq	mm0,mm5
   216 	psubw	mm2,mm1			; mm2=z12
   217 	psubw	mm5,mm3			; mm5=z10
   218 	paddw	mm4,mm1			; mm4=z11
   219 	paddw	mm0,mm3			; mm0=z13
   221 	movq	mm1,mm5			; mm1=z10(unscaled)
   222 	psllw	mm2,PRE_MULTIPLY_SCALE_BITS
   223 	psllw	mm5,PRE_MULTIPLY_SCALE_BITS
   225 	movq	mm3,mm4
   226 	psubw	mm4,mm0
   227 	paddw	mm3,mm0			; mm3=tmp7
   229 	psllw	mm4,PRE_MULTIPLY_SCALE_BITS
   230 	pmulhw	mm4,[GOTOFF(ebx,PW_F1414)]	; mm4=tmp11
   232 	; To avoid overflow...
   233 	;
   234 	; (Original)
   235 	; tmp12 = -2.613125930 * z10 + z5;
   236 	;
   237 	; (This implementation)
   238 	; tmp12 = (-1.613125930 - 1) * z10 + z5;
   239 	;       = -1.613125930 * z10 - z10 + z5;
   241 	movq	mm0,mm5
   242 	paddw	mm5,mm2
   243 	pmulhw	mm5,[GOTOFF(ebx,PW_F1847)]	; mm5=z5
   244 	pmulhw	mm0,[GOTOFF(ebx,PW_MF1613)]
   245 	pmulhw	mm2,[GOTOFF(ebx,PW_F1082)]
   246 	psubw	mm0,mm1
   247 	psubw	mm2,mm5			; mm2=tmp10
   248 	paddw	mm0,mm5			; mm0=tmp12
   250 	; -- Final output stage
   252 	psubw	mm0,mm3			; mm0=tmp6
   253 	movq	mm1,mm6
   254 	movq	mm5,mm7
   255 	paddw	mm6,mm3			; mm6=data0=(00 01 02 03)
   256 	paddw	mm7,mm0			; mm7=data1=(10 11 12 13)
   257 	psubw	mm1,mm3			; mm1=data7=(70 71 72 73)
   258 	psubw	mm5,mm0			; mm5=data6=(60 61 62 63)
   259 	psubw	mm4,mm0			; mm4=tmp5
   261 	movq      mm3,mm6		; transpose coefficients(phase 1)
   262 	punpcklwd mm6,mm7		; mm6=(00 10 01 11)
   263 	punpckhwd mm3,mm7		; mm3=(02 12 03 13)
   264 	movq      mm0,mm5		; transpose coefficients(phase 1)
   265 	punpcklwd mm5,mm1		; mm5=(60 70 61 71)
   266 	punpckhwd mm0,mm1		; mm0=(62 72 63 73)
   268 	movq	mm7, MMWORD [wk(0)]	; mm7=tmp2
   269 	movq	mm1, MMWORD [wk(1)]	; mm1=tmp3
   271 	movq	MMWORD [wk(0)], mm5	; wk(0)=(60 70 61 71)
   272 	movq	MMWORD [wk(1)], mm0	; wk(1)=(62 72 63 73)
   274 	paddw	mm2,mm4			; mm2=tmp4
   275 	movq	mm5,mm7
   276 	movq	mm0,mm1
   277 	paddw	mm7,mm4			; mm7=data2=(20 21 22 23)
   278 	paddw	mm1,mm2			; mm1=data4=(40 41 42 43)
   279 	psubw	mm5,mm4			; mm5=data5=(50 51 52 53)
   280 	psubw	mm0,mm2			; mm0=data3=(30 31 32 33)
   282 	movq      mm4,mm7		; transpose coefficients(phase 1)
   283 	punpcklwd mm7,mm0		; mm7=(20 30 21 31)
   284 	punpckhwd mm4,mm0		; mm4=(22 32 23 33)
   285 	movq      mm2,mm1		; transpose coefficients(phase 1)
   286 	punpcklwd mm1,mm5		; mm1=(40 50 41 51)
   287 	punpckhwd mm2,mm5		; mm2=(42 52 43 53)
   289 	movq      mm0,mm6		; transpose coefficients(phase 2)
   290 	punpckldq mm6,mm7		; mm6=(00 10 20 30)
   291 	punpckhdq mm0,mm7		; mm0=(01 11 21 31)
   292 	movq      mm5,mm3		; transpose coefficients(phase 2)
   293 	punpckldq mm3,mm4		; mm3=(02 12 22 32)
   294 	punpckhdq mm5,mm4		; mm5=(03 13 23 33)
   296 	movq	mm7, MMWORD [wk(0)]	; mm7=(60 70 61 71)
   297 	movq	mm4, MMWORD [wk(1)]	; mm4=(62 72 63 73)
   299 	movq	MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm6
   300 	movq	MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm0
   301 	movq	MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm3
   302 	movq	MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm5
   304 	movq      mm6,mm1		; transpose coefficients(phase 2)
   305 	punpckldq mm1,mm7		; mm1=(40 50 60 70)
   306 	punpckhdq mm6,mm7		; mm6=(41 51 61 71)
   307 	movq      mm0,mm2		; transpose coefficients(phase 2)
   308 	punpckldq mm2,mm4		; mm2=(42 52 62 72)
   309 	punpckhdq mm0,mm4		; mm0=(43 53 63 73)
   311 	movq	MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm1
   312 	movq	MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm6
   313 	movq	MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2
   314 	movq	MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm0
   316 .nextcolumn:
   317 	add	esi, byte 4*SIZEOF_JCOEF		; coef_block
   318 	add	edx, byte 4*SIZEOF_IFAST_MULT_TYPE	; quantptr
   319 	add	edi, byte 4*DCTSIZE*SIZEOF_JCOEF	; wsptr
   320 	dec	ecx					; ctr
   321 	jnz	near .columnloop
   323 	; ---- Pass 2: process rows from work array, store into output array.
   325 	mov	eax, [original_ebp]
   326 	lea	esi, [workspace]			; JCOEF * wsptr
   327 	mov	edi, JSAMPARRAY [output_buf(eax)]	; (JSAMPROW *)
   328 	mov	eax, JDIMENSION [output_col(eax)]
   329 	mov	ecx, DCTSIZE/4				; ctr
   330 	alignx	16,7
   331 .rowloop:
   333 	; -- Even part
   335 	movq	mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
   336 	movq	mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
   337 	movq	mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
   338 	movq	mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
   340 	movq	mm4,mm0
   341 	movq	mm5,mm1
   342 	psubw	mm0,mm2			; mm0=tmp11
   343 	psubw	mm1,mm3
   344 	paddw	mm4,mm2			; mm4=tmp10
   345 	paddw	mm5,mm3			; mm5=tmp13
   347 	psllw	mm1,PRE_MULTIPLY_SCALE_BITS
   348 	pmulhw	mm1,[GOTOFF(ebx,PW_F1414)]
   349 	psubw	mm1,mm5			; mm1=tmp12
   351 	movq	mm6,mm4
   352 	movq	mm7,mm0
   353 	psubw	mm4,mm5			; mm4=tmp3
   354 	psubw	mm0,mm1			; mm0=tmp2
   355 	paddw	mm6,mm5			; mm6=tmp0
   356 	paddw	mm7,mm1			; mm7=tmp1
   358 	movq	MMWORD [wk(1)], mm4	; wk(1)=tmp3
   359 	movq	MMWORD [wk(0)], mm0	; wk(0)=tmp2
   361 	; -- Odd part
   363 	movq	mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
   364 	movq	mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
   365 	movq	mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
   366 	movq	mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
   368 	movq	mm4,mm2
   369 	movq	mm0,mm5
   370 	psubw	mm2,mm1			; mm2=z12
   371 	psubw	mm5,mm3			; mm5=z10
   372 	paddw	mm4,mm1			; mm4=z11
   373 	paddw	mm0,mm3			; mm0=z13
   375 	movq	mm1,mm5			; mm1=z10(unscaled)
   376 	psllw	mm2,PRE_MULTIPLY_SCALE_BITS
   377 	psllw	mm5,PRE_MULTIPLY_SCALE_BITS
   379 	movq	mm3,mm4
   380 	psubw	mm4,mm0
   381 	paddw	mm3,mm0			; mm3=tmp7
   383 	psllw	mm4,PRE_MULTIPLY_SCALE_BITS
   384 	pmulhw	mm4,[GOTOFF(ebx,PW_F1414)]	; mm4=tmp11
   386 	; To avoid overflow...
   387 	;
   388 	; (Original)
   389 	; tmp12 = -2.613125930 * z10 + z5;
   390 	;
   391 	; (This implementation)
   392 	; tmp12 = (-1.613125930 - 1) * z10 + z5;
   393 	;       = -1.613125930 * z10 - z10 + z5;
   395 	movq	mm0,mm5
   396 	paddw	mm5,mm2
   397 	pmulhw	mm5,[GOTOFF(ebx,PW_F1847)]	; mm5=z5
   398 	pmulhw	mm0,[GOTOFF(ebx,PW_MF1613)]
   399 	pmulhw	mm2,[GOTOFF(ebx,PW_F1082)]
   400 	psubw	mm0,mm1
   401 	psubw	mm2,mm5			; mm2=tmp10
   402 	paddw	mm0,mm5			; mm0=tmp12
   404 	; -- Final output stage
   406 	psubw	mm0,mm3			; mm0=tmp6
   407 	movq	mm1,mm6
   408 	movq	mm5,mm7
   409 	paddw	mm6,mm3			; mm6=data0=(00 10 20 30)
   410 	paddw	mm7,mm0			; mm7=data1=(01 11 21 31)
   411 	psraw	mm6,(PASS1_BITS+3)	; descale
   412 	psraw	mm7,(PASS1_BITS+3)	; descale
   413 	psubw	mm1,mm3			; mm1=data7=(07 17 27 37)
   414 	psubw	mm5,mm0			; mm5=data6=(06 16 26 36)
   415 	psraw	mm1,(PASS1_BITS+3)	; descale
   416 	psraw	mm5,(PASS1_BITS+3)	; descale
   417 	psubw	mm4,mm0			; mm4=tmp5
   419 	packsswb  mm6,mm5		; mm6=(00 10 20 30 06 16 26 36)
   420 	packsswb  mm7,mm1		; mm7=(01 11 21 31 07 17 27 37)
   422 	movq	mm3, MMWORD [wk(0)]	; mm3=tmp2
   423 	movq	mm0, MMWORD [wk(1)]	; mm0=tmp3
   425 	paddw	mm2,mm4			; mm2=tmp4
   426 	movq	mm5,mm3
   427 	movq	mm1,mm0
   428 	paddw	mm3,mm4			; mm3=data2=(02 12 22 32)
   429 	paddw	mm0,mm2			; mm0=data4=(04 14 24 34)
   430 	psraw	mm3,(PASS1_BITS+3)	; descale
   431 	psraw	mm0,(PASS1_BITS+3)	; descale
   432 	psubw	mm5,mm4			; mm5=data5=(05 15 25 35)
   433 	psubw	mm1,mm2			; mm1=data3=(03 13 23 33)
   434 	psraw	mm5,(PASS1_BITS+3)	; descale
   435 	psraw	mm1,(PASS1_BITS+3)	; descale
   437 	movq      mm4,[GOTOFF(ebx,PB_CENTERJSAMP)]	; mm4=[PB_CENTERJSAMP]
   439 	packsswb  mm3,mm0		; mm3=(02 12 22 32 04 14 24 34)
   440 	packsswb  mm1,mm5		; mm1=(03 13 23 33 05 15 25 35)
   442 	paddb     mm6,mm4
   443 	paddb     mm7,mm4
   444 	paddb     mm3,mm4
   445 	paddb     mm1,mm4
   447 	movq      mm2,mm6		; transpose coefficients(phase 1)
   448 	punpcklbw mm6,mm7		; mm6=(00 01 10 11 20 21 30 31)
   449 	punpckhbw mm2,mm7		; mm2=(06 07 16 17 26 27 36 37)
   450 	movq      mm0,mm3		; transpose coefficients(phase 1)
   451 	punpcklbw mm3,mm1		; mm3=(02 03 12 13 22 23 32 33)
   452 	punpckhbw mm0,mm1		; mm0=(04 05 14 15 24 25 34 35)
   454 	movq      mm5,mm6		; transpose coefficients(phase 2)
   455 	punpcklwd mm6,mm3		; mm6=(00 01 02 03 10 11 12 13)
   456 	punpckhwd mm5,mm3		; mm5=(20 21 22 23 30 31 32 33)
   457 	movq      mm4,mm0		; transpose coefficients(phase 2)
   458 	punpcklwd mm0,mm2		; mm0=(04 05 06 07 14 15 16 17)
   459 	punpckhwd mm4,mm2		; mm4=(24 25 26 27 34 35 36 37)
   461 	movq      mm7,mm6		; transpose coefficients(phase 3)
   462 	punpckldq mm6,mm0		; mm6=(00 01 02 03 04 05 06 07)
   463 	punpckhdq mm7,mm0		; mm7=(10 11 12 13 14 15 16 17)
   464 	movq      mm1,mm5		; transpose coefficients(phase 3)
   465 	punpckldq mm5,mm4		; mm5=(20 21 22 23 24 25 26 27)
   466 	punpckhdq mm1,mm4		; mm1=(30 31 32 33 34 35 36 37)
   468 	pushpic	ebx			; save GOT address
   470 	mov	edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW]
   471 	mov	ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW]
   472 	movq	MMWORD [edx+eax*SIZEOF_JSAMPLE], mm6
   473 	movq	MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm7
   474 	mov	edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW]
   475 	mov	ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW]
   476 	movq	MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5
   477 	movq	MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1
   479 	poppic	ebx			; restore GOT address
   481 	add	esi, byte 4*SIZEOF_JCOEF	; wsptr
   482 	add	edi, byte 4*SIZEOF_JSAMPROW
   483 	dec	ecx				; ctr
   484 	jnz	near .rowloop
   486 	emms		; empty MMX state
   488 	pop	edi
   489 	pop	esi
   490 ;	pop	edx		; need not be preserved
   491 ;	pop	ecx		; need not be preserved
   492 	pop	ebx
   493 	mov	esp,ebp		; esp <- aligned ebp
   494 	pop	esp		; esp <- original ebp
   495 	pop	ebp
   496 	ret
   498 ; For some reason, the OS X linker does not honor the request to align the
   499 ; segment unless we do this.
   500 	align	16

mercurial