Thu, 22 Jan 2015 13:21:57 +0100
Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6
1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
28 #ifndef SILK_SIGPROC_FIX_H
29 #define SILK_SIGPROC_FIX_H
31 #ifdef __cplusplus
32 extern "C"
33 {
34 #endif
36 /*#define silk_MACRO_COUNT */ /* Used to enable WMOPS counting */
38 #define SILK_MAX_ORDER_LPC 16 /* max order of the LPC analysis in schur() and k2a() */
40 #include <string.h> /* for memset(), memcpy(), memmove() */
41 #include "typedef.h"
42 #include "resampler_structs.h"
43 #include "macros.h"
46 /********************************************************************/
47 /* SIGNAL PROCESSING FUNCTIONS */
48 /********************************************************************/
50 /*!
51 * Initialize/reset the resampler state for a given pair of input/output sampling rates
52 */
53 opus_int silk_resampler_init(
54 silk_resampler_state_struct *S, /* I/O Resampler state */
55 opus_int32 Fs_Hz_in, /* I Input sampling rate (Hz) */
56 opus_int32 Fs_Hz_out, /* I Output sampling rate (Hz) */
57 opus_int forEnc /* I If 1: encoder; if 0: decoder */
58 );
60 /*!
61 * Resampler: convert from one sampling rate to another
62 */
63 opus_int silk_resampler(
64 silk_resampler_state_struct *S, /* I/O Resampler state */
65 opus_int16 out[], /* O Output signal */
66 const opus_int16 in[], /* I Input signal */
67 opus_int32 inLen /* I Number of input samples */
68 );
70 /*!
71 * Downsample 2x, mediocre quality
72 */
73 void silk_resampler_down2(
74 opus_int32 *S, /* I/O State vector [ 2 ] */
75 opus_int16 *out, /* O Output signal [ len ] */
76 const opus_int16 *in, /* I Input signal [ floor(len/2) ] */
77 opus_int32 inLen /* I Number of input samples */
78 );
80 /*!
81 * Downsample by a factor 2/3, low quality
82 */
83 void silk_resampler_down2_3(
84 opus_int32 *S, /* I/O State vector [ 6 ] */
85 opus_int16 *out, /* O Output signal [ floor(2*inLen/3) ] */
86 const opus_int16 *in, /* I Input signal [ inLen ] */
87 opus_int32 inLen /* I Number of input samples */
88 );
90 /*!
91 * second order ARMA filter;
92 * slower than biquad() but uses more precise coefficients
93 * can handle (slowly) varying coefficients
94 */
95 void silk_biquad_alt(
96 const opus_int16 *in, /* I input signal */
97 const opus_int32 *B_Q28, /* I MA coefficients [3] */
98 const opus_int32 *A_Q28, /* I AR coefficients [2] */
99 opus_int32 *S, /* I/O State vector [2] */
100 opus_int16 *out, /* O output signal */
101 const opus_int32 len, /* I signal length (must be even) */
102 opus_int stride /* I Operate on interleaved signal if > 1 */
103 );
105 /* Variable order MA prediction error filter. */
106 void silk_LPC_analysis_filter(
107 opus_int16 *out, /* O Output signal */
108 const opus_int16 *in, /* I Input signal */
109 const opus_int16 *B, /* I MA prediction coefficients, Q12 [order] */
110 const opus_int32 len, /* I Signal length */
111 const opus_int32 d /* I Filter order */
112 );
114 /* Chirp (bandwidth expand) LP AR filter */
115 void silk_bwexpander(
116 opus_int16 *ar, /* I/O AR filter to be expanded (without leading 1) */
117 const opus_int d, /* I Length of ar */
118 opus_int32 chirp_Q16 /* I Chirp factor (typically in the range 0 to 1) */
119 );
121 /* Chirp (bandwidth expand) LP AR filter */
122 void silk_bwexpander_32(
123 opus_int32 *ar, /* I/O AR filter to be expanded (without leading 1) */
124 const opus_int d, /* I Length of ar */
125 opus_int32 chirp_Q16 /* I Chirp factor in Q16 */
126 );
128 /* Compute inverse of LPC prediction gain, and */
129 /* test if LPC coefficients are stable (all poles within unit circle) */
130 opus_int32 silk_LPC_inverse_pred_gain( /* O Returns inverse prediction gain in energy domain, Q30 */
131 const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */
132 const opus_int order /* I Prediction order */
133 );
135 /* For input in Q24 domain */
136 opus_int32 silk_LPC_inverse_pred_gain_Q24( /* O Returns inverse prediction gain in energy domain, Q30 */
137 const opus_int32 *A_Q24, /* I Prediction coefficients [order] */
138 const opus_int order /* I Prediction order */
139 );
141 /* Split signal in two decimated bands using first-order allpass filters */
142 void silk_ana_filt_bank_1(
143 const opus_int16 *in, /* I Input signal [N] */
144 opus_int32 *S, /* I/O State vector [2] */
145 opus_int16 *outL, /* O Low band [N/2] */
146 opus_int16 *outH, /* O High band [N/2] */
147 const opus_int32 N /* I Number of input samples */
148 );
150 /********************************************************************/
151 /* SCALAR FUNCTIONS */
152 /********************************************************************/
154 /* Approximation of 128 * log2() (exact inverse of approx 2^() below) */
155 /* Convert input to a log scale */
156 opus_int32 silk_lin2log(
157 const opus_int32 inLin /* I input in linear scale */
158 );
160 /* Approximation of a sigmoid function */
161 opus_int silk_sigm_Q15(
162 opus_int in_Q5 /* I */
163 );
165 /* Approximation of 2^() (exact inverse of approx log2() above) */
166 /* Convert input to a linear scale */
167 opus_int32 silk_log2lin(
168 const opus_int32 inLog_Q7 /* I input on log scale */
169 );
171 /* Compute number of bits to right shift the sum of squares of a vector */
172 /* of int16s to make it fit in an int32 */
173 void silk_sum_sqr_shift(
174 opus_int32 *energy, /* O Energy of x, after shifting to the right */
175 opus_int *shift, /* O Number of bits right shift applied to energy */
176 const opus_int16 *x, /* I Input vector */
177 opus_int len /* I Length of input vector */
178 );
180 /* Calculates the reflection coefficients from the correlation sequence */
181 /* Faster than schur64(), but much less accurate. */
182 /* uses SMLAWB(), requiring armv5E and higher. */
183 opus_int32 silk_schur( /* O Returns residual energy */
184 opus_int16 *rc_Q15, /* O reflection coefficients [order] Q15 */
185 const opus_int32 *c, /* I correlations [order+1] */
186 const opus_int32 order /* I prediction order */
187 );
189 /* Calculates the reflection coefficients from the correlation sequence */
190 /* Slower than schur(), but more accurate. */
191 /* Uses SMULL(), available on armv4 */
192 opus_int32 silk_schur64( /* O returns residual energy */
193 opus_int32 rc_Q16[], /* O Reflection coefficients [order] Q16 */
194 const opus_int32 c[], /* I Correlations [order+1] */
195 opus_int32 order /* I Prediction order */
196 );
198 /* Step up function, converts reflection coefficients to prediction coefficients */
199 void silk_k2a(
200 opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */
201 const opus_int16 *rc_Q15, /* I Reflection coefficients [order] Q15 */
202 const opus_int32 order /* I Prediction order */
203 );
205 /* Step up function, converts reflection coefficients to prediction coefficients */
206 void silk_k2a_Q16(
207 opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */
208 const opus_int32 *rc_Q16, /* I Reflection coefficients [order] Q16 */
209 const opus_int32 order /* I Prediction order */
210 );
212 /* Apply sine window to signal vector. */
213 /* Window types: */
214 /* 1 -> sine window from 0 to pi/2 */
215 /* 2 -> sine window from pi/2 to pi */
216 /* every other sample of window is linearly interpolated, for speed */
217 void silk_apply_sine_window(
218 opus_int16 px_win[], /* O Pointer to windowed signal */
219 const opus_int16 px[], /* I Pointer to input signal */
220 const opus_int win_type, /* I Selects a window type */
221 const opus_int length /* I Window length, multiple of 4 */
222 );
224 /* Compute autocorrelation */
225 void silk_autocorr(
226 opus_int32 *results, /* O Result (length correlationCount) */
227 opus_int *scale, /* O Scaling of the correlation vector */
228 const opus_int16 *inputData, /* I Input data to correlate */
229 const opus_int inputDataSize, /* I Length of input */
230 const opus_int correlationCount, /* I Number of correlation taps to compute */
231 int arch /* I Run-time architecture */
232 );
234 void silk_decode_pitch(
235 opus_int16 lagIndex, /* I */
236 opus_int8 contourIndex, /* O */
237 opus_int pitch_lags[], /* O 4 pitch values */
238 const opus_int Fs_kHz, /* I sampling frequency (kHz) */
239 const opus_int nb_subfr /* I number of sub frames */
240 );
242 opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */
243 const opus_int16 *frame, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
244 opus_int *pitch_out, /* O 4 pitch lag values */
245 opus_int16 *lagIndex, /* O Lag Index */
246 opus_int8 *contourIndex, /* O Pitch contour Index */
247 opus_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */
248 opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */
249 const opus_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */
250 const opus_int search_thres2_Q13, /* I Final threshold for lag candidates 0 - 1 */
251 const opus_int Fs_kHz, /* I Sample frequency (kHz) */
252 const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
253 const opus_int nb_subfr, /* I number of 5 ms subframes */
254 int arch /* I Run-time architecture */
255 );
257 /* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */
258 /* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
259 void silk_A2NLSF(
260 opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
261 opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */
262 const opus_int d /* I Filter order (must be even) */
263 );
265 /* compute whitening filter coefficients from normalized line spectral frequencies */
266 void silk_NLSF2A(
267 opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */
268 const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */
269 const opus_int d /* I filter order (should be even) */
270 );
272 void silk_insertion_sort_increasing(
273 opus_int32 *a, /* I/O Unsorted / Sorted vector */
274 opus_int *idx, /* O Index vector for the sorted elements */
275 const opus_int L, /* I Vector length */
276 const opus_int K /* I Number of correctly sorted positions */
277 );
279 void silk_insertion_sort_decreasing_int16(
280 opus_int16 *a, /* I/O Unsorted / Sorted vector */
281 opus_int *idx, /* O Index vector for the sorted elements */
282 const opus_int L, /* I Vector length */
283 const opus_int K /* I Number of correctly sorted positions */
284 );
286 void silk_insertion_sort_increasing_all_values_int16(
287 opus_int16 *a, /* I/O Unsorted / Sorted vector */
288 const opus_int L /* I Vector length */
289 );
291 /* NLSF stabilizer, for a single input data vector */
292 void silk_NLSF_stabilize(
293 opus_int16 *NLSF_Q15, /* I/O Unstable/stabilized normalized LSF vector in Q15 [L] */
294 const opus_int16 *NDeltaMin_Q15, /* I Min distance vector, NDeltaMin_Q15[L] must be >= 1 [L+1] */
295 const opus_int L /* I Number of NLSF parameters in the input vector */
296 );
298 /* Laroia low complexity NLSF weights */
299 void silk_NLSF_VQ_weights_laroia(
300 opus_int16 *pNLSFW_Q_OUT, /* O Pointer to input vector weights [D] */
301 const opus_int16 *pNLSF_Q15, /* I Pointer to input vector [D] */
302 const opus_int D /* I Input vector dimension (even) */
303 );
305 /* Compute reflection coefficients from input signal */
306 void silk_burg_modified(
307 opus_int32 *res_nrg, /* O Residual energy */
308 opus_int *res_nrg_Q, /* O Residual energy Q value */
309 opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
310 const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
311 const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
312 const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
313 const opus_int nb_subfr, /* I Number of subframes stacked in x */
314 const opus_int D, /* I Order */
315 int arch /* I Run-time architecture */
316 );
318 /* Copy and multiply a vector by a constant */
319 void silk_scale_copy_vector16(
320 opus_int16 *data_out,
321 const opus_int16 *data_in,
322 opus_int32 gain_Q16, /* I Gain in Q16 */
323 const opus_int dataSize /* I Length */
324 );
326 /* Some for the LTP related function requires Q26 to work.*/
327 void silk_scale_vector32_Q26_lshift_18(
328 opus_int32 *data1, /* I/O Q0/Q18 */
329 opus_int32 gain_Q26, /* I Q26 */
330 opus_int dataSize /* I length */
331 );
333 /********************************************************************/
334 /* INLINE ARM MATH */
335 /********************************************************************/
337 /* return sum( inVec1[i] * inVec2[i] ) */
338 opus_int32 silk_inner_prod_aligned(
339 const opus_int16 *const inVec1, /* I input vector 1 */
340 const opus_int16 *const inVec2, /* I input vector 2 */
341 const opus_int len /* I vector lengths */
342 );
344 opus_int32 silk_inner_prod_aligned_scale(
345 const opus_int16 *const inVec1, /* I input vector 1 */
346 const opus_int16 *const inVec2, /* I input vector 2 */
347 const opus_int scale, /* I number of bits to shift */
348 const opus_int len /* I vector lengths */
349 );
351 opus_int64 silk_inner_prod16_aligned_64(
352 const opus_int16 *inVec1, /* I input vector 1 */
353 const opus_int16 *inVec2, /* I input vector 2 */
354 const opus_int len /* I vector lengths */
355 );
357 /********************************************************************/
358 /* MACROS */
359 /********************************************************************/
361 /* Rotate a32 right by 'rot' bits. Negative rot values result in rotating
362 left. Output is 32bit int.
363 Note: contemporary compilers recognize the C expression below and
364 compile it into a 'ror' instruction if available. No need for OPUS_INLINE ASM! */
365 static OPUS_INLINE opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
366 {
367 opus_uint32 x = (opus_uint32) a32;
368 opus_uint32 r = (opus_uint32) rot;
369 opus_uint32 m = (opus_uint32) -rot;
370 if( rot == 0 ) {
371 return a32;
372 } else if( rot < 0 ) {
373 return (opus_int32) ((x << m) | (x >> (32 - m)));
374 } else {
375 return (opus_int32) ((x << (32 - r)) | (x >> r));
376 }
377 }
379 /* Allocate opus_int16 aligned to 4-byte memory address */
380 #if EMBEDDED_ARM
381 #define silk_DWORD_ALIGN __attribute__((aligned(4)))
382 #else
383 #define silk_DWORD_ALIGN
384 #endif
386 /* Useful Macros that can be adjusted to other platforms */
387 #define silk_memcpy(dest, src, size) memcpy((dest), (src), (size))
388 #define silk_memset(dest, src, size) memset((dest), (src), (size))
389 #define silk_memmove(dest, src, size) memmove((dest), (src), (size))
391 /* Fixed point macros */
393 /* (a32 * b32) output have to be 32bit int */
394 #define silk_MUL(a32, b32) ((a32) * (b32))
396 /* (a32 * b32) output have to be 32bit uint */
397 #define silk_MUL_uint(a32, b32) silk_MUL(a32, b32)
399 /* a32 + (b32 * c32) output have to be 32bit int */
400 #define silk_MLA(a32, b32, c32) silk_ADD32((a32),((b32) * (c32)))
402 /* a32 + (b32 * c32) output have to be 32bit uint */
403 #define silk_MLA_uint(a32, b32, c32) silk_MLA(a32, b32, c32)
405 /* ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */
406 #define silk_SMULTT(a32, b32) (((a32) >> 16) * ((b32) >> 16))
408 /* a32 + ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */
409 #define silk_SMLATT(a32, b32, c32) silk_ADD32((a32),((b32) >> 16) * ((c32) >> 16))
411 #define silk_SMLALBB(a64, b16, c16) silk_ADD64((a64),(opus_int64)((opus_int32)(b16) * (opus_int32)(c16)))
413 /* (a32 * b32) */
414 #define silk_SMULL(a32, b32) ((opus_int64)(a32) * /*(opus_int64)*/(b32))
416 /* Adds two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
417 (just standard two's complement implementation-specific behaviour) */
418 #define silk_ADD32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) + (opus_uint32)(b)))
419 /* Subtractss two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
420 (just standard two's complement implementation-specific behaviour) */
421 #define silk_SUB32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) - (opus_uint32)(b)))
423 /* Multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode) */
424 #define silk_MLA_ovflw(a32, b32, c32) silk_ADD32_ovflw((a32), (opus_uint32)(b32) * (opus_uint32)(c32))
425 #define silk_SMLABB_ovflw(a32, b32, c32) (silk_ADD32_ovflw((a32) , ((opus_int32)((opus_int16)(b32))) * (opus_int32)((opus_int16)(c32))))
427 #define silk_DIV32_16(a32, b16) ((opus_int32)((a32) / (b16)))
428 #define silk_DIV32(a32, b32) ((opus_int32)((a32) / (b32)))
430 /* These macros enables checking for overflow in silk_API_Debug.h*/
431 #define silk_ADD16(a, b) ((a) + (b))
432 #define silk_ADD32(a, b) ((a) + (b))
433 #define silk_ADD64(a, b) ((a) + (b))
435 #define silk_SUB16(a, b) ((a) - (b))
436 #define silk_SUB32(a, b) ((a) - (b))
437 #define silk_SUB64(a, b) ((a) - (b))
439 #define silk_SAT8(a) ((a) > silk_int8_MAX ? silk_int8_MAX : \
440 ((a) < silk_int8_MIN ? silk_int8_MIN : (a)))
441 #define silk_SAT16(a) ((a) > silk_int16_MAX ? silk_int16_MAX : \
442 ((a) < silk_int16_MIN ? silk_int16_MIN : (a)))
443 #define silk_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : \
444 ((a) < silk_int32_MIN ? silk_int32_MIN : (a)))
446 #define silk_CHECK_FIT8(a) (a)
447 #define silk_CHECK_FIT16(a) (a)
448 #define silk_CHECK_FIT32(a) (a)
450 #define silk_ADD_SAT16(a, b) (opus_int16)silk_SAT16( silk_ADD32( (opus_int32)(a), (b) ) )
451 #define silk_ADD_SAT64(a, b) ((((a) + (b)) & 0x8000000000000000LL) == 0 ? \
452 ((((a) & (b)) & 0x8000000000000000LL) != 0 ? silk_int64_MIN : (a)+(b)) : \
453 ((((a) | (b)) & 0x8000000000000000LL) == 0 ? silk_int64_MAX : (a)+(b)) )
455 #define silk_SUB_SAT16(a, b) (opus_int16)silk_SAT16( silk_SUB32( (opus_int32)(a), (b) ) )
456 #define silk_SUB_SAT64(a, b) ((((a)-(b)) & 0x8000000000000000LL) == 0 ? \
457 (( (a) & ((b)^0x8000000000000000LL) & 0x8000000000000000LL) ? silk_int64_MIN : (a)-(b)) : \
458 ((((a)^0x8000000000000000LL) & (b) & 0x8000000000000000LL) ? silk_int64_MAX : (a)-(b)) )
460 /* Saturation for positive input values */
461 #define silk_POS_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : (a))
463 /* Add with saturation for positive input values */
464 #define silk_ADD_POS_SAT8(a, b) ((((a)+(b)) & 0x80) ? silk_int8_MAX : ((a)+(b)))
465 #define silk_ADD_POS_SAT16(a, b) ((((a)+(b)) & 0x8000) ? silk_int16_MAX : ((a)+(b)))
466 #define silk_ADD_POS_SAT32(a, b) ((((a)+(b)) & 0x80000000) ? silk_int32_MAX : ((a)+(b)))
467 #define silk_ADD_POS_SAT64(a, b) ((((a)+(b)) & 0x8000000000000000LL) ? silk_int64_MAX : ((a)+(b)))
469 #define silk_LSHIFT8(a, shift) ((opus_int8)((opus_uint8)(a)<<(shift))) /* shift >= 0, shift < 8 */
470 #define silk_LSHIFT16(a, shift) ((opus_int16)((opus_uint16)(a)<<(shift))) /* shift >= 0, shift < 16 */
471 #define silk_LSHIFT32(a, shift) ((opus_int32)((opus_uint32)(a)<<(shift))) /* shift >= 0, shift < 32 */
472 #define silk_LSHIFT64(a, shift) ((opus_int64)((opus_uint64)(a)<<(shift))) /* shift >= 0, shift < 64 */
473 #define silk_LSHIFT(a, shift) silk_LSHIFT32(a, shift) /* shift >= 0, shift < 32 */
475 #define silk_RSHIFT8(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 8 */
476 #define silk_RSHIFT16(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 16 */
477 #define silk_RSHIFT32(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 32 */
478 #define silk_RSHIFT64(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 64 */
479 #define silk_RSHIFT(a, shift) silk_RSHIFT32(a, shift) /* shift >= 0, shift < 32 */
481 /* saturates before shifting */
482 #define silk_LSHIFT_SAT32(a, shift) (silk_LSHIFT32( silk_LIMIT( (a), silk_RSHIFT32( silk_int32_MIN, (shift) ), \
483 silk_RSHIFT32( silk_int32_MAX, (shift) ) ), (shift) ))
485 #define silk_LSHIFT_ovflw(a, shift) ((opus_int32)((opus_uint32)(a) << (shift))) /* shift >= 0, allowed to overflow */
486 #define silk_LSHIFT_uint(a, shift) ((a) << (shift)) /* shift >= 0 */
487 #define silk_RSHIFT_uint(a, shift) ((a) >> (shift)) /* shift >= 0 */
489 #define silk_ADD_LSHIFT(a, b, shift) ((a) + silk_LSHIFT((b), (shift))) /* shift >= 0 */
490 #define silk_ADD_LSHIFT32(a, b, shift) silk_ADD32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
491 #define silk_ADD_LSHIFT_uint(a, b, shift) ((a) + silk_LSHIFT_uint((b), (shift))) /* shift >= 0 */
492 #define silk_ADD_RSHIFT(a, b, shift) ((a) + silk_RSHIFT((b), (shift))) /* shift >= 0 */
493 #define silk_ADD_RSHIFT32(a, b, shift) silk_ADD32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
494 #define silk_ADD_RSHIFT_uint(a, b, shift) ((a) + silk_RSHIFT_uint((b), (shift))) /* shift >= 0 */
495 #define silk_SUB_LSHIFT32(a, b, shift) silk_SUB32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
496 #define silk_SUB_RSHIFT32(a, b, shift) silk_SUB32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
498 /* Requires that shift > 0 */
499 #define silk_RSHIFT_ROUND(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
500 #define silk_RSHIFT_ROUND64(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
502 /* Number of rightshift required to fit the multiplication */
503 #define silk_NSHIFT_MUL_32_32(a, b) ( -(31- (32-silk_CLZ32(silk_abs(a)) + (32-silk_CLZ32(silk_abs(b))))) )
504 #define silk_NSHIFT_MUL_16_16(a, b) ( -(15- (16-silk_CLZ16(silk_abs(a)) + (16-silk_CLZ16(silk_abs(b))))) )
507 #define silk_min(a, b) (((a) < (b)) ? (a) : (b))
508 #define silk_max(a, b) (((a) > (b)) ? (a) : (b))
510 /* Macro to convert floating-point constants to fixed-point */
511 #define SILK_FIX_CONST( C, Q ) ((opus_int32)((C) * ((opus_int64)1 << (Q)) + 0.5))
513 /* silk_min() versions with typecast in the function call */
514 static OPUS_INLINE opus_int silk_min_int(opus_int a, opus_int b)
515 {
516 return (((a) < (b)) ? (a) : (b));
517 }
518 static OPUS_INLINE opus_int16 silk_min_16(opus_int16 a, opus_int16 b)
519 {
520 return (((a) < (b)) ? (a) : (b));
521 }
522 static OPUS_INLINE opus_int32 silk_min_32(opus_int32 a, opus_int32 b)
523 {
524 return (((a) < (b)) ? (a) : (b));
525 }
526 static OPUS_INLINE opus_int64 silk_min_64(opus_int64 a, opus_int64 b)
527 {
528 return (((a) < (b)) ? (a) : (b));
529 }
531 /* silk_min() versions with typecast in the function call */
532 static OPUS_INLINE opus_int silk_max_int(opus_int a, opus_int b)
533 {
534 return (((a) > (b)) ? (a) : (b));
535 }
536 static OPUS_INLINE opus_int16 silk_max_16(opus_int16 a, opus_int16 b)
537 {
538 return (((a) > (b)) ? (a) : (b));
539 }
540 static OPUS_INLINE opus_int32 silk_max_32(opus_int32 a, opus_int32 b)
541 {
542 return (((a) > (b)) ? (a) : (b));
543 }
544 static OPUS_INLINE opus_int64 silk_max_64(opus_int64 a, opus_int64 b)
545 {
546 return (((a) > (b)) ? (a) : (b));
547 }
549 #define silk_LIMIT( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \
550 : ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a))))
552 #define silk_LIMIT_int silk_LIMIT
553 #define silk_LIMIT_16 silk_LIMIT
554 #define silk_LIMIT_32 silk_LIMIT
556 #define silk_abs(a) (((a) > 0) ? (a) : -(a)) /* Be careful, silk_abs returns wrong when input equals to silk_intXX_MIN */
557 #define silk_abs_int(a) (((a) ^ ((a) >> (8 * sizeof(a) - 1))) - ((a) >> (8 * sizeof(a) - 1)))
558 #define silk_abs_int32(a) (((a) ^ ((a) >> 31)) - ((a) >> 31))
559 #define silk_abs_int64(a) (((a) > 0) ? (a) : -(a))
561 #define silk_sign(a) ((a) > 0 ? 1 : ( (a) < 0 ? -1 : 0 ))
563 /* PSEUDO-RANDOM GENERATOR */
564 /* Make sure to store the result as the seed for the next call (also in between */
565 /* frames), otherwise result won't be random at all. When only using some of the */
566 /* bits, take the most significant bits by right-shifting. */
567 #define silk_RAND(seed) (silk_MLA_ovflw(907633515, (seed), 196314165))
569 /* Add some multiplication functions that can be easily mapped to ARM. */
571 /* silk_SMMUL: Signed top word multiply.
572 ARMv6 2 instruction cycles.
573 ARMv3M+ 3 instruction cycles. use SMULL and ignore LSB registers.(except xM)*/
574 /*#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT(silk_SMLAL(silk_SMULWB((a32), (b32)), (a32), silk_RSHIFT_ROUND((b32), 16)), 16)*/
575 /* the following seems faster on x86 */
576 #define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT64(silk_SMULL((a32), (b32)), 32)
578 #include "Inlines.h"
579 #include "MacroCount.h"
580 #include "MacroDebug.h"
582 #ifdef OPUS_ARM_INLINE_ASM
583 #include "arm/SigProc_FIX_armv4.h"
584 #endif
586 #ifdef OPUS_ARM_INLINE_EDSP
587 #include "arm/SigProc_FIX_armv5e.h"
588 #endif
590 #ifdef __cplusplus
591 }
592 #endif
594 #endif /* SILK_SIGPROC_FIX_H */