media/libopus/silk/VAD.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /***********************************************************************
     2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
     3 Redistribution and use in source and binary forms, with or without
     4 modification, are permitted provided that the following conditions
     5 are met:
     6 - Redistributions of source code must retain the above copyright notice,
     7 this list of conditions and the following disclaimer.
     8 - Redistributions in binary form must reproduce the above copyright
     9 notice, this list of conditions and the following disclaimer in the
    10 documentation and/or other materials provided with the distribution.
    11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
    12 names of specific contributors, may be used to endorse or promote
    13 products derived from this software without specific prior written
    14 permission.
    15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
    19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    25 POSSIBILITY OF SUCH DAMAGE.
    26 ***********************************************************************/
    28 #ifdef HAVE_CONFIG_H
    29 #include "config.h"
    30 #endif
    32 #include "main.h"
    33 #include "stack_alloc.h"
    35 /* Silk VAD noise level estimation */
    36 static OPUS_INLINE void silk_VAD_GetNoiseLevels(
    37     const opus_int32             pX[ VAD_N_BANDS ], /* I    subband energies                            */
    38     silk_VAD_state              *psSilk_VAD         /* I/O  Pointer to Silk VAD state                   */
    39 );
    41 /**********************************/
    42 /* Initialization of the Silk VAD */
    43 /**********************************/
    44 opus_int silk_VAD_Init(                                         /* O    Return value, 0 if success                  */
    45     silk_VAD_state              *psSilk_VAD                     /* I/O  Pointer to Silk VAD state                   */
    46 )
    47 {
    48     opus_int b, ret = 0;
    50     /* reset state memory */
    51     silk_memset( psSilk_VAD, 0, sizeof( silk_VAD_state ) );
    53     /* init noise levels */
    54     /* Initialize array with approx pink noise levels (psd proportional to inverse of frequency) */
    55     for( b = 0; b < VAD_N_BANDS; b++ ) {
    56         psSilk_VAD->NoiseLevelBias[ b ] = silk_max_32( silk_DIV32_16( VAD_NOISE_LEVELS_BIAS, b + 1 ), 1 );
    57     }
    59     /* Initialize state */
    60     for( b = 0; b < VAD_N_BANDS; b++ ) {
    61         psSilk_VAD->NL[ b ]     = silk_MUL( 100, psSilk_VAD->NoiseLevelBias[ b ] );
    62         psSilk_VAD->inv_NL[ b ] = silk_DIV32( silk_int32_MAX, psSilk_VAD->NL[ b ] );
    63     }
    64     psSilk_VAD->counter = 15;
    66     /* init smoothed energy-to-noise ratio*/
    67     for( b = 0; b < VAD_N_BANDS; b++ ) {
    68         psSilk_VAD->NrgRatioSmth_Q8[ b ] = 100 * 256;       /* 100 * 256 --> 20 dB SNR */
    69     }
    71     return( ret );
    72 }
    74 /* Weighting factors for tilt measure */
    75 static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 };
    77 /***************************************/
    78 /* Get the speech activity level in Q8 */
    79 /***************************************/
    80 opus_int silk_VAD_GetSA_Q8(                                     /* O    Return value, 0 if success                  */
    81     silk_encoder_state          *psEncC,                        /* I/O  Encoder state                               */
    82     const opus_int16            pIn[]                           /* I    PCM input                                   */
    83 )
    84 {
    85     opus_int   SA_Q15, pSNR_dB_Q7, input_tilt;
    86     opus_int   decimated_framelength1, decimated_framelength2;
    87     opus_int   decimated_framelength;
    88     opus_int   dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s;
    89     opus_int32 sumSquared, smooth_coef_Q16;
    90     opus_int16 HPstateTmp;
    91     VARDECL( opus_int16, X );
    92     opus_int32 Xnrg[ VAD_N_BANDS ];
    93     opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ];
    94     opus_int32 speech_nrg, x_tmp;
    95     opus_int   X_offset[ VAD_N_BANDS ];
    96     opus_int   ret = 0;
    97     silk_VAD_state *psSilk_VAD = &psEncC->sVAD;
    98     SAVE_STACK;
   100     /* Safety checks */
   101     silk_assert( VAD_N_BANDS == 4 );
   102     silk_assert( MAX_FRAME_LENGTH >= psEncC->frame_length );
   103     silk_assert( psEncC->frame_length <= 512 );
   104     silk_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) );
   106     /***********************/
   107     /* Filter and Decimate */
   108     /***********************/
   109     decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 );
   110     decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 );
   111     decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 );
   112     /* Decimate into 4 bands:
   113        0       L      3L       L              3L                             5L
   114                -      --       -              --                             --
   115                8       8       2               4                              4
   117        [0-1 kHz| temp. |1-2 kHz|    2-4 kHz    |            4-8 kHz           |
   119        They're arranged to allow the minimal ( frame_length / 4 ) extra
   120        scratch space during the downsampling process */
   121     X_offset[ 0 ] = 0;
   122     X_offset[ 1 ] = decimated_framelength + decimated_framelength2;
   123     X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength;
   124     X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2;
   125     ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 );
   127     /* 0-8 kHz to 0-4 kHz and 4-8 kHz */
   128     silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[  0 ],
   129         X, &X[ X_offset[ 3 ] ], psEncC->frame_length );
   131     /* 0-4 kHz to 0-2 kHz and 2-4 kHz */
   132     silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ],
   133         X, &X[ X_offset[ 2 ] ], decimated_framelength1 );
   135     /* 0-2 kHz to 0-1 kHz and 1-2 kHz */
   136     silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ],
   137         X, &X[ X_offset[ 1 ] ], decimated_framelength2 );
   139     /*********************************************/
   140     /* HP filter on lowest band (differentiator) */
   141     /*********************************************/
   142     X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 );
   143     HPstateTmp = X[ decimated_framelength - 1 ];
   144     for( i = decimated_framelength - 1; i > 0; i-- ) {
   145         X[ i - 1 ]  = silk_RSHIFT( X[ i - 1 ], 1 );
   146         X[ i ]     -= X[ i - 1 ];
   147     }
   148     X[ 0 ] -= psSilk_VAD->HPstate;
   149     psSilk_VAD->HPstate = HPstateTmp;
   151     /*************************************/
   152     /* Calculate the energy in each band */
   153     /*************************************/
   154     for( b = 0; b < VAD_N_BANDS; b++ ) {
   155         /* Find the decimated framelength in the non-uniformly divided bands */
   156         decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) );
   158         /* Split length into subframe lengths */
   159         dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 );
   160         dec_subframe_offset = 0;
   162         /* Compute energy per sub-frame */
   163         /* initialize with summed energy of last subframe */
   164         Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ];
   165         for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) {
   166             sumSquared = 0;
   167             for( i = 0; i < dec_subframe_length; i++ ) {
   168                 /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2.            */
   169                 /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128)  */
   170                 x_tmp = silk_RSHIFT(
   171                     X[ X_offset[ b ] + i + dec_subframe_offset ], 3 );
   172                 sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp );
   174                 /* Safety check */
   175                 silk_assert( sumSquared >= 0 );
   176             }
   178             /* Add/saturate summed energy of current subframe */
   179             if( s < VAD_INTERNAL_SUBFRAMES - 1 ) {
   180                 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared );
   181             } else {
   182                 /* Look-ahead subframe */
   183                 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) );
   184             }
   186             dec_subframe_offset += dec_subframe_length;
   187         }
   188         psSilk_VAD->XnrgSubfr[ b ] = sumSquared;
   189     }
   191     /********************/
   192     /* Noise estimation */
   193     /********************/
   194     silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD );
   196     /***********************************************/
   197     /* Signal-plus-noise to noise ratio estimation */
   198     /***********************************************/
   199     sumSquared = 0;
   200     input_tilt = 0;
   201     for( b = 0; b < VAD_N_BANDS; b++ ) {
   202         speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ];
   203         if( speech_nrg > 0 ) {
   204             /* Divide, with sufficient resolution */
   205             if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) {
   206                 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 );
   207             } else {
   208                 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 );
   209             }
   211             /* Convert to log domain */
   212             SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128;
   214             /* Sum-of-squares */
   215             sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 );          /* Q14 */
   217             /* Tilt measure */
   218             if( speech_nrg < ( (opus_int32)1 << 20 ) ) {
   219                 /* Scale down SNR value for small subband speech energies */
   220                 SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 );
   221             }
   222             input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 );
   223         } else {
   224             NrgToNoiseRatio_Q8[ b ] = 256;
   225         }
   226     }
   228     /* Mean-of-squares */
   229     sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */
   231     /* Root-mean-square approximation, scale to dBs, and write to output pointer */
   232     pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */
   234     /*********************************/
   235     /* Speech Probability Estimation */
   236     /*********************************/
   237     SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 );
   239     /**************************/
   240     /* Frequency Tilt Measure */
   241     /**************************/
   242     psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 );
   244     /**************************************************/
   245     /* Scale the sigmoid output based on power levels */
   246     /**************************************************/
   247     speech_nrg = 0;
   248     for( b = 0; b < VAD_N_BANDS; b++ ) {
   249         /* Accumulate signal-without-noise energies, higher frequency bands have more weight */
   250         speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 );
   251     }
   253     /* Power scaling */
   254     if( speech_nrg <= 0 ) {
   255         SA_Q15 = silk_RSHIFT( SA_Q15, 1 );
   256     } else if( speech_nrg < 32768 ) {
   257         if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
   258             speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 16 );
   259         } else {
   260             speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 15 );
   261         }
   263         /* square-root */
   264         speech_nrg = silk_SQRT_APPROX( speech_nrg );
   265         SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 );
   266     }
   268     /* Copy the resulting speech activity in Q8 */
   269     psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX );
   271     /***********************************/
   272     /* Energy Level and SNR estimation */
   273     /***********************************/
   274     /* Smoothing coefficient */
   275     smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) );
   277     if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
   278         smooth_coef_Q16 >>= 1;
   279     }
   281     for( b = 0; b < VAD_N_BANDS; b++ ) {
   282         /* compute smoothed energy-to-noise ratio per band */
   283         psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ],
   284             NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 );
   286         /* signal to noise ratio in dB per band */
   287         SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 );
   288         /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */
   289         psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) );
   290     }
   292     RESTORE_STACK;
   293     return( ret );
   294 }
   296 /**************************/
   297 /* Noise level estimation */
   298 /**************************/
   299 static OPUS_INLINE void silk_VAD_GetNoiseLevels(
   300     const opus_int32            pX[ VAD_N_BANDS ],  /* I    subband energies                            */
   301     silk_VAD_state              *psSilk_VAD         /* I/O  Pointer to Silk VAD state                   */
   302 )
   303 {
   304     opus_int   k;
   305     opus_int32 nl, nrg, inv_nrg;
   306     opus_int   coef, min_coef;
   308     /* Initially faster smoothing */
   309     if( psSilk_VAD->counter < 1000 ) { /* 1000 = 20 sec */
   310         min_coef = silk_DIV32_16( silk_int16_MAX, silk_RSHIFT( psSilk_VAD->counter, 4 ) + 1 );
   311     } else {
   312         min_coef = 0;
   313     }
   315     for( k = 0; k < VAD_N_BANDS; k++ ) {
   316         /* Get old noise level estimate for current band */
   317         nl = psSilk_VAD->NL[ k ];
   318         silk_assert( nl >= 0 );
   320         /* Add bias */
   321         nrg = silk_ADD_POS_SAT32( pX[ k ], psSilk_VAD->NoiseLevelBias[ k ] );
   322         silk_assert( nrg > 0 );
   324         /* Invert energies */
   325         inv_nrg = silk_DIV32( silk_int32_MAX, nrg );
   326         silk_assert( inv_nrg >= 0 );
   328         /* Less update when subband energy is high */
   329         if( nrg > silk_LSHIFT( nl, 3 ) ) {
   330             coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 >> 3;
   331         } else if( nrg < nl ) {
   332             coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16;
   333         } else {
   334             coef = silk_SMULWB( silk_SMULWW( inv_nrg, nl ), VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 << 1 );
   335         }
   337         /* Initially faster smoothing */
   338         coef = silk_max_int( coef, min_coef );
   340         /* Smooth inverse energies */
   341         psSilk_VAD->inv_NL[ k ] = silk_SMLAWB( psSilk_VAD->inv_NL[ k ], inv_nrg - psSilk_VAD->inv_NL[ k ], coef );
   342         silk_assert( psSilk_VAD->inv_NL[ k ] >= 0 );
   344         /* Compute noise level by inverting again */
   345         nl = silk_DIV32( silk_int32_MAX, psSilk_VAD->inv_NL[ k ] );
   346         silk_assert( nl >= 0 );
   348         /* Limit noise levels (guarantee 7 bits of head room) */
   349         nl = silk_min( nl, 0x00FFFFFF );
   351         /* Store as part of state */
   352         psSilk_VAD->NL[ k ] = nl;
   353     }
   355     /* Increment frame counter */
   356     psSilk_VAD->counter++;
   357 }

mercurial