Thu, 22 Jan 2015 13:21:57 +0100
Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6
1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
11 #include <assert.h>
12 #include <math.h>
14 #include "./vpx_config.h"
15 #include "./vp9_rtcd.h"
17 #include "vp9/common/vp9_blockd.h"
18 #include "vp9/common/vp9_idct.h"
19 #include "vp9/common/vp9_systemdependent.h"
21 #include "vp9/encoder/vp9_dct.h"
23 static INLINE int fdct_round_shift(int input) {
24 int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
25 assert(INT16_MIN <= rv && rv <= INT16_MAX);
26 return rv;
27 }
29 static void fdct4(const int16_t *input, int16_t *output) {
30 int16_t step[4];
31 int temp1, temp2;
33 step[0] = input[0] + input[3];
34 step[1] = input[1] + input[2];
35 step[2] = input[1] - input[2];
36 step[3] = input[0] - input[3];
38 temp1 = (step[0] + step[1]) * cospi_16_64;
39 temp2 = (step[0] - step[1]) * cospi_16_64;
40 output[0] = fdct_round_shift(temp1);
41 output[2] = fdct_round_shift(temp2);
42 temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
43 temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
44 output[1] = fdct_round_shift(temp1);
45 output[3] = fdct_round_shift(temp2);
46 }
48 void vp9_fdct4x4_c(const int16_t *input, int16_t *output, int stride) {
49 // The 2D transform is done with two passes which are actually pretty
50 // similar. In the first one, we transform the columns and transpose
51 // the results. In the second one, we transform the rows. To achieve that,
52 // as the first pass results are transposed, we tranpose the columns (that
53 // is the transposed rows) and transpose the results (so that it goes back
54 // in normal/row positions).
55 int pass;
56 // We need an intermediate buffer between passes.
57 int16_t intermediate[4 * 4];
58 const int16_t *in = input;
59 int16_t *out = intermediate;
60 // Do the two transform/transpose passes
61 for (pass = 0; pass < 2; ++pass) {
62 /*canbe16*/ int input[4];
63 /*canbe16*/ int step[4];
64 /*needs32*/ int temp1, temp2;
65 int i;
66 for (i = 0; i < 4; ++i) {
67 // Load inputs.
68 if (0 == pass) {
69 input[0] = in[0 * stride] * 16;
70 input[1] = in[1 * stride] * 16;
71 input[2] = in[2 * stride] * 16;
72 input[3] = in[3 * stride] * 16;
73 if (i == 0 && input[0]) {
74 input[0] += 1;
75 }
76 } else {
77 input[0] = in[0 * 4];
78 input[1] = in[1 * 4];
79 input[2] = in[2 * 4];
80 input[3] = in[3 * 4];
81 }
82 // Transform.
83 step[0] = input[0] + input[3];
84 step[1] = input[1] + input[2];
85 step[2] = input[1] - input[2];
86 step[3] = input[0] - input[3];
87 temp1 = (step[0] + step[1]) * cospi_16_64;
88 temp2 = (step[0] - step[1]) * cospi_16_64;
89 out[0] = fdct_round_shift(temp1);
90 out[2] = fdct_round_shift(temp2);
91 temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
92 temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
93 out[1] = fdct_round_shift(temp1);
94 out[3] = fdct_round_shift(temp2);
95 // Do next column (which is a transposed row in second/horizontal pass)
96 in++;
97 out += 4;
98 }
99 // Setup in/out for next pass.
100 in = intermediate;
101 out = output;
102 }
104 {
105 int i, j;
106 for (i = 0; i < 4; ++i) {
107 for (j = 0; j < 4; ++j)
108 output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
109 }
110 }
111 }
113 static void fadst4(const int16_t *input, int16_t *output) {
114 int x0, x1, x2, x3;
115 int s0, s1, s2, s3, s4, s5, s6, s7;
117 x0 = input[0];
118 x1 = input[1];
119 x2 = input[2];
120 x3 = input[3];
122 if (!(x0 | x1 | x2 | x3)) {
123 output[0] = output[1] = output[2] = output[3] = 0;
124 return;
125 }
127 s0 = sinpi_1_9 * x0;
128 s1 = sinpi_4_9 * x0;
129 s2 = sinpi_2_9 * x1;
130 s3 = sinpi_1_9 * x1;
131 s4 = sinpi_3_9 * x2;
132 s5 = sinpi_4_9 * x3;
133 s6 = sinpi_2_9 * x3;
134 s7 = x0 + x1 - x3;
136 x0 = s0 + s2 + s5;
137 x1 = sinpi_3_9 * s7;
138 x2 = s1 - s3 + s6;
139 x3 = s4;
141 s0 = x0 + x3;
142 s1 = x1;
143 s2 = x2 - x3;
144 s3 = x2 - x0 + x3;
146 // 1-D transform scaling factor is sqrt(2).
147 output[0] = fdct_round_shift(s0);
148 output[1] = fdct_round_shift(s1);
149 output[2] = fdct_round_shift(s2);
150 output[3] = fdct_round_shift(s3);
151 }
153 static const transform_2d FHT_4[] = {
154 { fdct4, fdct4 }, // DCT_DCT = 0
155 { fadst4, fdct4 }, // ADST_DCT = 1
156 { fdct4, fadst4 }, // DCT_ADST = 2
157 { fadst4, fadst4 } // ADST_ADST = 3
158 };
160 void vp9_short_fht4x4_c(const int16_t *input, int16_t *output,
161 int stride, int tx_type) {
162 int16_t out[4 * 4];
163 int16_t *outptr = &out[0];
164 int i, j;
165 int16_t temp_in[4], temp_out[4];
166 const transform_2d ht = FHT_4[tx_type];
168 // Columns
169 for (i = 0; i < 4; ++i) {
170 for (j = 0; j < 4; ++j)
171 temp_in[j] = input[j * stride + i] * 16;
172 if (i == 0 && temp_in[0])
173 temp_in[0] += 1;
174 ht.cols(temp_in, temp_out);
175 for (j = 0; j < 4; ++j)
176 outptr[j * 4 + i] = temp_out[j];
177 }
179 // Rows
180 for (i = 0; i < 4; ++i) {
181 for (j = 0; j < 4; ++j)
182 temp_in[j] = out[j + i * 4];
183 ht.rows(temp_in, temp_out);
184 for (j = 0; j < 4; ++j)
185 output[j + i * 4] = (temp_out[j] + 1) >> 2;
186 }
187 }
189 static void fdct8(const int16_t *input, int16_t *output) {
190 /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7;
191 /*needs32*/ int t0, t1, t2, t3;
192 /*canbe16*/ int x0, x1, x2, x3;
194 // stage 1
195 s0 = input[0] + input[7];
196 s1 = input[1] + input[6];
197 s2 = input[2] + input[5];
198 s3 = input[3] + input[4];
199 s4 = input[3] - input[4];
200 s5 = input[2] - input[5];
201 s6 = input[1] - input[6];
202 s7 = input[0] - input[7];
204 // fdct4(step, step);
205 x0 = s0 + s3;
206 x1 = s1 + s2;
207 x2 = s1 - s2;
208 x3 = s0 - s3;
209 t0 = (x0 + x1) * cospi_16_64;
210 t1 = (x0 - x1) * cospi_16_64;
211 t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
212 t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
213 output[0] = fdct_round_shift(t0);
214 output[2] = fdct_round_shift(t2);
215 output[4] = fdct_round_shift(t1);
216 output[6] = fdct_round_shift(t3);
218 // Stage 2
219 t0 = (s6 - s5) * cospi_16_64;
220 t1 = (s6 + s5) * cospi_16_64;
221 t2 = fdct_round_shift(t0);
222 t3 = fdct_round_shift(t1);
224 // Stage 3
225 x0 = s4 + t2;
226 x1 = s4 - t2;
227 x2 = s7 - t3;
228 x3 = s7 + t3;
230 // Stage 4
231 t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
232 t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
233 t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
234 t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
235 output[1] = fdct_round_shift(t0);
236 output[3] = fdct_round_shift(t2);
237 output[5] = fdct_round_shift(t1);
238 output[7] = fdct_round_shift(t3);
239 }
241 void vp9_fdct8x8_c(const int16_t *input, int16_t *final_output, int stride) {
242 int i, j;
243 int16_t intermediate[64];
245 // Transform columns
246 {
247 int16_t *output = intermediate;
248 /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7;
249 /*needs32*/ int t0, t1, t2, t3;
250 /*canbe16*/ int x0, x1, x2, x3;
252 int i;
253 for (i = 0; i < 8; i++) {
254 // stage 1
255 s0 = (input[0 * stride] + input[7 * stride]) * 4;
256 s1 = (input[1 * stride] + input[6 * stride]) * 4;
257 s2 = (input[2 * stride] + input[5 * stride]) * 4;
258 s3 = (input[3 * stride] + input[4 * stride]) * 4;
259 s4 = (input[3 * stride] - input[4 * stride]) * 4;
260 s5 = (input[2 * stride] - input[5 * stride]) * 4;
261 s6 = (input[1 * stride] - input[6 * stride]) * 4;
262 s7 = (input[0 * stride] - input[7 * stride]) * 4;
264 // fdct4(step, step);
265 x0 = s0 + s3;
266 x1 = s1 + s2;
267 x2 = s1 - s2;
268 x3 = s0 - s3;
269 t0 = (x0 + x1) * cospi_16_64;
270 t1 = (x0 - x1) * cospi_16_64;
271 t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
272 t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
273 output[0 * 8] = fdct_round_shift(t0);
274 output[2 * 8] = fdct_round_shift(t2);
275 output[4 * 8] = fdct_round_shift(t1);
276 output[6 * 8] = fdct_round_shift(t3);
278 // Stage 2
279 t0 = (s6 - s5) * cospi_16_64;
280 t1 = (s6 + s5) * cospi_16_64;
281 t2 = fdct_round_shift(t0);
282 t3 = fdct_round_shift(t1);
284 // Stage 3
285 x0 = s4 + t2;
286 x1 = s4 - t2;
287 x2 = s7 - t3;
288 x3 = s7 + t3;
290 // Stage 4
291 t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
292 t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
293 t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
294 t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
295 output[1 * 8] = fdct_round_shift(t0);
296 output[3 * 8] = fdct_round_shift(t2);
297 output[5 * 8] = fdct_round_shift(t1);
298 output[7 * 8] = fdct_round_shift(t3);
299 input++;
300 output++;
301 }
302 }
304 // Rows
305 for (i = 0; i < 8; ++i) {
306 fdct8(&intermediate[i * 8], &final_output[i * 8]);
307 for (j = 0; j < 8; ++j)
308 final_output[j + i * 8] /= 2;
309 }
310 }
312 void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) {
313 // The 2D transform is done with two passes which are actually pretty
314 // similar. In the first one, we transform the columns and transpose
315 // the results. In the second one, we transform the rows. To achieve that,
316 // as the first pass results are transposed, we tranpose the columns (that
317 // is the transposed rows) and transpose the results (so that it goes back
318 // in normal/row positions).
319 int pass;
320 // We need an intermediate buffer between passes.
321 int16_t intermediate[256];
322 const int16_t *in = input;
323 int16_t *out = intermediate;
324 // Do the two transform/transpose passes
325 for (pass = 0; pass < 2; ++pass) {
326 /*canbe16*/ int step1[8];
327 /*canbe16*/ int step2[8];
328 /*canbe16*/ int step3[8];
329 /*canbe16*/ int input[8];
330 /*needs32*/ int temp1, temp2;
331 int i;
332 for (i = 0; i < 16; i++) {
333 if (0 == pass) {
334 // Calculate input for the first 8 results.
335 input[0] = (in[0 * stride] + in[15 * stride]) * 4;
336 input[1] = (in[1 * stride] + in[14 * stride]) * 4;
337 input[2] = (in[2 * stride] + in[13 * stride]) * 4;
338 input[3] = (in[3 * stride] + in[12 * stride]) * 4;
339 input[4] = (in[4 * stride] + in[11 * stride]) * 4;
340 input[5] = (in[5 * stride] + in[10 * stride]) * 4;
341 input[6] = (in[6 * stride] + in[ 9 * stride]) * 4;
342 input[7] = (in[7 * stride] + in[ 8 * stride]) * 4;
343 // Calculate input for the next 8 results.
344 step1[0] = (in[7 * stride] - in[ 8 * stride]) * 4;
345 step1[1] = (in[6 * stride] - in[ 9 * stride]) * 4;
346 step1[2] = (in[5 * stride] - in[10 * stride]) * 4;
347 step1[3] = (in[4 * stride] - in[11 * stride]) * 4;
348 step1[4] = (in[3 * stride] - in[12 * stride]) * 4;
349 step1[5] = (in[2 * stride] - in[13 * stride]) * 4;
350 step1[6] = (in[1 * stride] - in[14 * stride]) * 4;
351 step1[7] = (in[0 * stride] - in[15 * stride]) * 4;
352 } else {
353 // Calculate input for the first 8 results.
354 input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2);
355 input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2);
356 input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2);
357 input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2);
358 input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2);
359 input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2);
360 input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2);
361 input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2);
362 // Calculate input for the next 8 results.
363 step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2);
364 step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2);
365 step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2);
366 step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2);
367 step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2);
368 step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2);
369 step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2);
370 step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2);
371 }
372 // Work on the first eight values; fdct8(input, even_results);
373 {
374 /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7;
375 /*needs32*/ int t0, t1, t2, t3;
376 /*canbe16*/ int x0, x1, x2, x3;
378 // stage 1
379 s0 = input[0] + input[7];
380 s1 = input[1] + input[6];
381 s2 = input[2] + input[5];
382 s3 = input[3] + input[4];
383 s4 = input[3] - input[4];
384 s5 = input[2] - input[5];
385 s6 = input[1] - input[6];
386 s7 = input[0] - input[7];
388 // fdct4(step, step);
389 x0 = s0 + s3;
390 x1 = s1 + s2;
391 x2 = s1 - s2;
392 x3 = s0 - s3;
393 t0 = (x0 + x1) * cospi_16_64;
394 t1 = (x0 - x1) * cospi_16_64;
395 t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
396 t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
397 out[0] = fdct_round_shift(t0);
398 out[4] = fdct_round_shift(t2);
399 out[8] = fdct_round_shift(t1);
400 out[12] = fdct_round_shift(t3);
402 // Stage 2
403 t0 = (s6 - s5) * cospi_16_64;
404 t1 = (s6 + s5) * cospi_16_64;
405 t2 = fdct_round_shift(t0);
406 t3 = fdct_round_shift(t1);
408 // Stage 3
409 x0 = s4 + t2;
410 x1 = s4 - t2;
411 x2 = s7 - t3;
412 x3 = s7 + t3;
414 // Stage 4
415 t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
416 t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
417 t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
418 t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
419 out[2] = fdct_round_shift(t0);
420 out[6] = fdct_round_shift(t2);
421 out[10] = fdct_round_shift(t1);
422 out[14] = fdct_round_shift(t3);
423 }
424 // Work on the next eight values; step1 -> odd_results
425 {
426 // step 2
427 temp1 = (step1[5] - step1[2]) * cospi_16_64;
428 temp2 = (step1[4] - step1[3]) * cospi_16_64;
429 step2[2] = fdct_round_shift(temp1);
430 step2[3] = fdct_round_shift(temp2);
431 temp1 = (step1[4] + step1[3]) * cospi_16_64;
432 temp2 = (step1[5] + step1[2]) * cospi_16_64;
433 step2[4] = fdct_round_shift(temp1);
434 step2[5] = fdct_round_shift(temp2);
435 // step 3
436 step3[0] = step1[0] + step2[3];
437 step3[1] = step1[1] + step2[2];
438 step3[2] = step1[1] - step2[2];
439 step3[3] = step1[0] - step2[3];
440 step3[4] = step1[7] - step2[4];
441 step3[5] = step1[6] - step2[5];
442 step3[6] = step1[6] + step2[5];
443 step3[7] = step1[7] + step2[4];
444 // step 4
445 temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
446 temp2 = step3[2] * -cospi_24_64 - step3[5] * cospi_8_64;
447 step2[1] = fdct_round_shift(temp1);
448 step2[2] = fdct_round_shift(temp2);
449 temp1 = step3[2] * -cospi_8_64 + step3[5] * cospi_24_64;
450 temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
451 step2[5] = fdct_round_shift(temp1);
452 step2[6] = fdct_round_shift(temp2);
453 // step 5
454 step1[0] = step3[0] + step2[1];
455 step1[1] = step3[0] - step2[1];
456 step1[2] = step3[3] - step2[2];
457 step1[3] = step3[3] + step2[2];
458 step1[4] = step3[4] + step2[5];
459 step1[5] = step3[4] - step2[5];
460 step1[6] = step3[7] - step2[6];
461 step1[7] = step3[7] + step2[6];
462 // step 6
463 temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
464 temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
465 out[1] = fdct_round_shift(temp1);
466 out[9] = fdct_round_shift(temp2);
467 temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
468 temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
469 out[5] = fdct_round_shift(temp1);
470 out[13] = fdct_round_shift(temp2);
471 temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
472 temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
473 out[3] = fdct_round_shift(temp1);
474 out[11] = fdct_round_shift(temp2);
475 temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
476 temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
477 out[7] = fdct_round_shift(temp1);
478 out[15] = fdct_round_shift(temp2);
479 }
480 // Do next column (which is a transposed row in second/horizontal pass)
481 in++;
482 out += 16;
483 }
484 // Setup in/out for next pass.
485 in = intermediate;
486 out = output;
487 }
488 }
490 static void fadst8(const int16_t *input, int16_t *output) {
491 int s0, s1, s2, s3, s4, s5, s6, s7;
493 int x0 = input[7];
494 int x1 = input[0];
495 int x2 = input[5];
496 int x3 = input[2];
497 int x4 = input[3];
498 int x5 = input[4];
499 int x6 = input[1];
500 int x7 = input[6];
502 // stage 1
503 s0 = cospi_2_64 * x0 + cospi_30_64 * x1;
504 s1 = cospi_30_64 * x0 - cospi_2_64 * x1;
505 s2 = cospi_10_64 * x2 + cospi_22_64 * x3;
506 s3 = cospi_22_64 * x2 - cospi_10_64 * x3;
507 s4 = cospi_18_64 * x4 + cospi_14_64 * x5;
508 s5 = cospi_14_64 * x4 - cospi_18_64 * x5;
509 s6 = cospi_26_64 * x6 + cospi_6_64 * x7;
510 s7 = cospi_6_64 * x6 - cospi_26_64 * x7;
512 x0 = fdct_round_shift(s0 + s4);
513 x1 = fdct_round_shift(s1 + s5);
514 x2 = fdct_round_shift(s2 + s6);
515 x3 = fdct_round_shift(s3 + s7);
516 x4 = fdct_round_shift(s0 - s4);
517 x5 = fdct_round_shift(s1 - s5);
518 x6 = fdct_round_shift(s2 - s6);
519 x7 = fdct_round_shift(s3 - s7);
521 // stage 2
522 s0 = x0;
523 s1 = x1;
524 s2 = x2;
525 s3 = x3;
526 s4 = cospi_8_64 * x4 + cospi_24_64 * x5;
527 s5 = cospi_24_64 * x4 - cospi_8_64 * x5;
528 s6 = - cospi_24_64 * x6 + cospi_8_64 * x7;
529 s7 = cospi_8_64 * x6 + cospi_24_64 * x7;
531 x0 = s0 + s2;
532 x1 = s1 + s3;
533 x2 = s0 - s2;
534 x3 = s1 - s3;
535 x4 = fdct_round_shift(s4 + s6);
536 x5 = fdct_round_shift(s5 + s7);
537 x6 = fdct_round_shift(s4 - s6);
538 x7 = fdct_round_shift(s5 - s7);
540 // stage 3
541 s2 = cospi_16_64 * (x2 + x3);
542 s3 = cospi_16_64 * (x2 - x3);
543 s6 = cospi_16_64 * (x6 + x7);
544 s7 = cospi_16_64 * (x6 - x7);
546 x2 = fdct_round_shift(s2);
547 x3 = fdct_round_shift(s3);
548 x6 = fdct_round_shift(s6);
549 x7 = fdct_round_shift(s7);
551 output[0] = x0;
552 output[1] = - x4;
553 output[2] = x6;
554 output[3] = - x2;
555 output[4] = x3;
556 output[5] = - x7;
557 output[6] = x5;
558 output[7] = - x1;
559 }
561 static const transform_2d FHT_8[] = {
562 { fdct8, fdct8 }, // DCT_DCT = 0
563 { fadst8, fdct8 }, // ADST_DCT = 1
564 { fdct8, fadst8 }, // DCT_ADST = 2
565 { fadst8, fadst8 } // ADST_ADST = 3
566 };
568 void vp9_short_fht8x8_c(const int16_t *input, int16_t *output,
569 int stride, int tx_type) {
570 int16_t out[64];
571 int16_t *outptr = &out[0];
572 int i, j;
573 int16_t temp_in[8], temp_out[8];
574 const transform_2d ht = FHT_8[tx_type];
576 // Columns
577 for (i = 0; i < 8; ++i) {
578 for (j = 0; j < 8; ++j)
579 temp_in[j] = input[j * stride + i] * 4;
580 ht.cols(temp_in, temp_out);
581 for (j = 0; j < 8; ++j)
582 outptr[j * 8 + i] = temp_out[j];
583 }
585 // Rows
586 for (i = 0; i < 8; ++i) {
587 for (j = 0; j < 8; ++j)
588 temp_in[j] = out[j + i * 8];
589 ht.rows(temp_in, temp_out);
590 for (j = 0; j < 8; ++j)
591 output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
592 }
593 }
595 /* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per
596 pixel. */
597 void vp9_fwht4x4_c(const int16_t *input, int16_t *output, int stride) {
598 int i;
599 int a1, b1, c1, d1, e1;
600 const int16_t *ip = input;
601 int16_t *op = output;
603 for (i = 0; i < 4; i++) {
604 a1 = ip[0 * stride];
605 b1 = ip[1 * stride];
606 c1 = ip[2 * stride];
607 d1 = ip[3 * stride];
609 a1 += b1;
610 d1 = d1 - c1;
611 e1 = (a1 - d1) >> 1;
612 b1 = e1 - b1;
613 c1 = e1 - c1;
614 a1 -= c1;
615 d1 += b1;
616 op[0] = a1;
617 op[4] = c1;
618 op[8] = d1;
619 op[12] = b1;
621 ip++;
622 op++;
623 }
624 ip = output;
625 op = output;
627 for (i = 0; i < 4; i++) {
628 a1 = ip[0];
629 b1 = ip[1];
630 c1 = ip[2];
631 d1 = ip[3];
633 a1 += b1;
634 d1 -= c1;
635 e1 = (a1 - d1) >> 1;
636 b1 = e1 - b1;
637 c1 = e1 - c1;
638 a1 -= c1;
639 d1 += b1;
640 op[0] = a1 * UNIT_QUANT_FACTOR;
641 op[1] = c1 * UNIT_QUANT_FACTOR;
642 op[2] = d1 * UNIT_QUANT_FACTOR;
643 op[3] = b1 * UNIT_QUANT_FACTOR;
645 ip += 4;
646 op += 4;
647 }
648 }
650 // Rewrote to use same algorithm as others.
651 static void fdct16(const int16_t in[16], int16_t out[16]) {
652 /*canbe16*/ int step1[8];
653 /*canbe16*/ int step2[8];
654 /*canbe16*/ int step3[8];
655 /*canbe16*/ int input[8];
656 /*needs32*/ int temp1, temp2;
658 // step 1
659 input[0] = in[0] + in[15];
660 input[1] = in[1] + in[14];
661 input[2] = in[2] + in[13];
662 input[3] = in[3] + in[12];
663 input[4] = in[4] + in[11];
664 input[5] = in[5] + in[10];
665 input[6] = in[6] + in[ 9];
666 input[7] = in[7] + in[ 8];
668 step1[0] = in[7] - in[ 8];
669 step1[1] = in[6] - in[ 9];
670 step1[2] = in[5] - in[10];
671 step1[3] = in[4] - in[11];
672 step1[4] = in[3] - in[12];
673 step1[5] = in[2] - in[13];
674 step1[6] = in[1] - in[14];
675 step1[7] = in[0] - in[15];
677 // fdct8(step, step);
678 {
679 /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7;
680 /*needs32*/ int t0, t1, t2, t3;
681 /*canbe16*/ int x0, x1, x2, x3;
683 // stage 1
684 s0 = input[0] + input[7];
685 s1 = input[1] + input[6];
686 s2 = input[2] + input[5];
687 s3 = input[3] + input[4];
688 s4 = input[3] - input[4];
689 s5 = input[2] - input[5];
690 s6 = input[1] - input[6];
691 s7 = input[0] - input[7];
693 // fdct4(step, step);
694 x0 = s0 + s3;
695 x1 = s1 + s2;
696 x2 = s1 - s2;
697 x3 = s0 - s3;
698 t0 = (x0 + x1) * cospi_16_64;
699 t1 = (x0 - x1) * cospi_16_64;
700 t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
701 t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
702 out[0] = fdct_round_shift(t0);
703 out[4] = fdct_round_shift(t2);
704 out[8] = fdct_round_shift(t1);
705 out[12] = fdct_round_shift(t3);
707 // Stage 2
708 t0 = (s6 - s5) * cospi_16_64;
709 t1 = (s6 + s5) * cospi_16_64;
710 t2 = fdct_round_shift(t0);
711 t3 = fdct_round_shift(t1);
713 // Stage 3
714 x0 = s4 + t2;
715 x1 = s4 - t2;
716 x2 = s7 - t3;
717 x3 = s7 + t3;
719 // Stage 4
720 t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
721 t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
722 t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
723 t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
724 out[2] = fdct_round_shift(t0);
725 out[6] = fdct_round_shift(t2);
726 out[10] = fdct_round_shift(t1);
727 out[14] = fdct_round_shift(t3);
728 }
730 // step 2
731 temp1 = (step1[5] - step1[2]) * cospi_16_64;
732 temp2 = (step1[4] - step1[3]) * cospi_16_64;
733 step2[2] = fdct_round_shift(temp1);
734 step2[3] = fdct_round_shift(temp2);
735 temp1 = (step1[4] + step1[3]) * cospi_16_64;
736 temp2 = (step1[5] + step1[2]) * cospi_16_64;
737 step2[4] = fdct_round_shift(temp1);
738 step2[5] = fdct_round_shift(temp2);
740 // step 3
741 step3[0] = step1[0] + step2[3];
742 step3[1] = step1[1] + step2[2];
743 step3[2] = step1[1] - step2[2];
744 step3[3] = step1[0] - step2[3];
745 step3[4] = step1[7] - step2[4];
746 step3[5] = step1[6] - step2[5];
747 step3[6] = step1[6] + step2[5];
748 step3[7] = step1[7] + step2[4];
750 // step 4
751 temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
752 temp2 = step3[2] * -cospi_24_64 - step3[5] * cospi_8_64;
753 step2[1] = fdct_round_shift(temp1);
754 step2[2] = fdct_round_shift(temp2);
755 temp1 = step3[2] * -cospi_8_64 + step3[5] * cospi_24_64;
756 temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
757 step2[5] = fdct_round_shift(temp1);
758 step2[6] = fdct_round_shift(temp2);
760 // step 5
761 step1[0] = step3[0] + step2[1];
762 step1[1] = step3[0] - step2[1];
763 step1[2] = step3[3] - step2[2];
764 step1[3] = step3[3] + step2[2];
765 step1[4] = step3[4] + step2[5];
766 step1[5] = step3[4] - step2[5];
767 step1[6] = step3[7] - step2[6];
768 step1[7] = step3[7] + step2[6];
770 // step 6
771 temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
772 temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
773 out[1] = fdct_round_shift(temp1);
774 out[9] = fdct_round_shift(temp2);
776 temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
777 temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
778 out[5] = fdct_round_shift(temp1);
779 out[13] = fdct_round_shift(temp2);
781 temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
782 temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
783 out[3] = fdct_round_shift(temp1);
784 out[11] = fdct_round_shift(temp2);
786 temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
787 temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
788 out[7] = fdct_round_shift(temp1);
789 out[15] = fdct_round_shift(temp2);
790 }
792 static void fadst16(const int16_t *input, int16_t *output) {
793 int s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15;
795 int x0 = input[15];
796 int x1 = input[0];
797 int x2 = input[13];
798 int x3 = input[2];
799 int x4 = input[11];
800 int x5 = input[4];
801 int x6 = input[9];
802 int x7 = input[6];
803 int x8 = input[7];
804 int x9 = input[8];
805 int x10 = input[5];
806 int x11 = input[10];
807 int x12 = input[3];
808 int x13 = input[12];
809 int x14 = input[1];
810 int x15 = input[14];
812 // stage 1
813 s0 = x0 * cospi_1_64 + x1 * cospi_31_64;
814 s1 = x0 * cospi_31_64 - x1 * cospi_1_64;
815 s2 = x2 * cospi_5_64 + x3 * cospi_27_64;
816 s3 = x2 * cospi_27_64 - x3 * cospi_5_64;
817 s4 = x4 * cospi_9_64 + x5 * cospi_23_64;
818 s5 = x4 * cospi_23_64 - x5 * cospi_9_64;
819 s6 = x6 * cospi_13_64 + x7 * cospi_19_64;
820 s7 = x6 * cospi_19_64 - x7 * cospi_13_64;
821 s8 = x8 * cospi_17_64 + x9 * cospi_15_64;
822 s9 = x8 * cospi_15_64 - x9 * cospi_17_64;
823 s10 = x10 * cospi_21_64 + x11 * cospi_11_64;
824 s11 = x10 * cospi_11_64 - x11 * cospi_21_64;
825 s12 = x12 * cospi_25_64 + x13 * cospi_7_64;
826 s13 = x12 * cospi_7_64 - x13 * cospi_25_64;
827 s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
828 s15 = x14 * cospi_3_64 - x15 * cospi_29_64;
830 x0 = fdct_round_shift(s0 + s8);
831 x1 = fdct_round_shift(s1 + s9);
832 x2 = fdct_round_shift(s2 + s10);
833 x3 = fdct_round_shift(s3 + s11);
834 x4 = fdct_round_shift(s4 + s12);
835 x5 = fdct_round_shift(s5 + s13);
836 x6 = fdct_round_shift(s6 + s14);
837 x7 = fdct_round_shift(s7 + s15);
838 x8 = fdct_round_shift(s0 - s8);
839 x9 = fdct_round_shift(s1 - s9);
840 x10 = fdct_round_shift(s2 - s10);
841 x11 = fdct_round_shift(s3 - s11);
842 x12 = fdct_round_shift(s4 - s12);
843 x13 = fdct_round_shift(s5 - s13);
844 x14 = fdct_round_shift(s6 - s14);
845 x15 = fdct_round_shift(s7 - s15);
847 // stage 2
848 s0 = x0;
849 s1 = x1;
850 s2 = x2;
851 s3 = x3;
852 s4 = x4;
853 s5 = x5;
854 s6 = x6;
855 s7 = x7;
856 s8 = x8 * cospi_4_64 + x9 * cospi_28_64;
857 s9 = x8 * cospi_28_64 - x9 * cospi_4_64;
858 s10 = x10 * cospi_20_64 + x11 * cospi_12_64;
859 s11 = x10 * cospi_12_64 - x11 * cospi_20_64;
860 s12 = - x12 * cospi_28_64 + x13 * cospi_4_64;
861 s13 = x12 * cospi_4_64 + x13 * cospi_28_64;
862 s14 = - x14 * cospi_12_64 + x15 * cospi_20_64;
863 s15 = x14 * cospi_20_64 + x15 * cospi_12_64;
865 x0 = s0 + s4;
866 x1 = s1 + s5;
867 x2 = s2 + s6;
868 x3 = s3 + s7;
869 x4 = s0 - s4;
870 x5 = s1 - s5;
871 x6 = s2 - s6;
872 x7 = s3 - s7;
873 x8 = fdct_round_shift(s8 + s12);
874 x9 = fdct_round_shift(s9 + s13);
875 x10 = fdct_round_shift(s10 + s14);
876 x11 = fdct_round_shift(s11 + s15);
877 x12 = fdct_round_shift(s8 - s12);
878 x13 = fdct_round_shift(s9 - s13);
879 x14 = fdct_round_shift(s10 - s14);
880 x15 = fdct_round_shift(s11 - s15);
882 // stage 3
883 s0 = x0;
884 s1 = x1;
885 s2 = x2;
886 s3 = x3;
887 s4 = x4 * cospi_8_64 + x5 * cospi_24_64;
888 s5 = x4 * cospi_24_64 - x5 * cospi_8_64;
889 s6 = - x6 * cospi_24_64 + x7 * cospi_8_64;
890 s7 = x6 * cospi_8_64 + x7 * cospi_24_64;
891 s8 = x8;
892 s9 = x9;
893 s10 = x10;
894 s11 = x11;
895 s12 = x12 * cospi_8_64 + x13 * cospi_24_64;
896 s13 = x12 * cospi_24_64 - x13 * cospi_8_64;
897 s14 = - x14 * cospi_24_64 + x15 * cospi_8_64;
898 s15 = x14 * cospi_8_64 + x15 * cospi_24_64;
900 x0 = s0 + s2;
901 x1 = s1 + s3;
902 x2 = s0 - s2;
903 x3 = s1 - s3;
904 x4 = fdct_round_shift(s4 + s6);
905 x5 = fdct_round_shift(s5 + s7);
906 x6 = fdct_round_shift(s4 - s6);
907 x7 = fdct_round_shift(s5 - s7);
908 x8 = s8 + s10;
909 x9 = s9 + s11;
910 x10 = s8 - s10;
911 x11 = s9 - s11;
912 x12 = fdct_round_shift(s12 + s14);
913 x13 = fdct_round_shift(s13 + s15);
914 x14 = fdct_round_shift(s12 - s14);
915 x15 = fdct_round_shift(s13 - s15);
917 // stage 4
918 s2 = (- cospi_16_64) * (x2 + x3);
919 s3 = cospi_16_64 * (x2 - x3);
920 s6 = cospi_16_64 * (x6 + x7);
921 s7 = cospi_16_64 * (- x6 + x7);
922 s10 = cospi_16_64 * (x10 + x11);
923 s11 = cospi_16_64 * (- x10 + x11);
924 s14 = (- cospi_16_64) * (x14 + x15);
925 s15 = cospi_16_64 * (x14 - x15);
927 x2 = fdct_round_shift(s2);
928 x3 = fdct_round_shift(s3);
929 x6 = fdct_round_shift(s6);
930 x7 = fdct_round_shift(s7);
931 x10 = fdct_round_shift(s10);
932 x11 = fdct_round_shift(s11);
933 x14 = fdct_round_shift(s14);
934 x15 = fdct_round_shift(s15);
936 output[0] = x0;
937 output[1] = - x8;
938 output[2] = x12;
939 output[3] = - x4;
940 output[4] = x6;
941 output[5] = x14;
942 output[6] = x10;
943 output[7] = x2;
944 output[8] = x3;
945 output[9] = x11;
946 output[10] = x15;
947 output[11] = x7;
948 output[12] = x5;
949 output[13] = - x13;
950 output[14] = x9;
951 output[15] = - x1;
952 }
954 static const transform_2d FHT_16[] = {
955 { fdct16, fdct16 }, // DCT_DCT = 0
956 { fadst16, fdct16 }, // ADST_DCT = 1
957 { fdct16, fadst16 }, // DCT_ADST = 2
958 { fadst16, fadst16 } // ADST_ADST = 3
959 };
961 void vp9_short_fht16x16_c(const int16_t *input, int16_t *output,
962 int stride, int tx_type) {
963 int16_t out[256];
964 int16_t *outptr = &out[0];
965 int i, j;
966 int16_t temp_in[16], temp_out[16];
967 const transform_2d ht = FHT_16[tx_type];
969 // Columns
970 for (i = 0; i < 16; ++i) {
971 for (j = 0; j < 16; ++j)
972 temp_in[j] = input[j * stride + i] * 4;
973 ht.cols(temp_in, temp_out);
974 for (j = 0; j < 16; ++j)
975 outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
976 // outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
977 }
979 // Rows
980 for (i = 0; i < 16; ++i) {
981 for (j = 0; j < 16; ++j)
982 temp_in[j] = out[j + i * 16];
983 ht.rows(temp_in, temp_out);
984 for (j = 0; j < 16; ++j)
985 output[j + i * 16] = temp_out[j];
986 }
987 }
989 static INLINE int dct_32_round(int input) {
990 int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
991 assert(-131072 <= rv && rv <= 131071);
992 return rv;
993 }
995 static INLINE int half_round_shift(int input) {
996 int rv = (input + 1 + (input < 0)) >> 2;
997 return rv;
998 }
1000 static void dct32_1d(const int *input, int *output, int round) {
1001 int step[32];
1002 // Stage 1
1003 step[0] = input[0] + input[(32 - 1)];
1004 step[1] = input[1] + input[(32 - 2)];
1005 step[2] = input[2] + input[(32 - 3)];
1006 step[3] = input[3] + input[(32 - 4)];
1007 step[4] = input[4] + input[(32 - 5)];
1008 step[5] = input[5] + input[(32 - 6)];
1009 step[6] = input[6] + input[(32 - 7)];
1010 step[7] = input[7] + input[(32 - 8)];
1011 step[8] = input[8] + input[(32 - 9)];
1012 step[9] = input[9] + input[(32 - 10)];
1013 step[10] = input[10] + input[(32 - 11)];
1014 step[11] = input[11] + input[(32 - 12)];
1015 step[12] = input[12] + input[(32 - 13)];
1016 step[13] = input[13] + input[(32 - 14)];
1017 step[14] = input[14] + input[(32 - 15)];
1018 step[15] = input[15] + input[(32 - 16)];
1019 step[16] = -input[16] + input[(32 - 17)];
1020 step[17] = -input[17] + input[(32 - 18)];
1021 step[18] = -input[18] + input[(32 - 19)];
1022 step[19] = -input[19] + input[(32 - 20)];
1023 step[20] = -input[20] + input[(32 - 21)];
1024 step[21] = -input[21] + input[(32 - 22)];
1025 step[22] = -input[22] + input[(32 - 23)];
1026 step[23] = -input[23] + input[(32 - 24)];
1027 step[24] = -input[24] + input[(32 - 25)];
1028 step[25] = -input[25] + input[(32 - 26)];
1029 step[26] = -input[26] + input[(32 - 27)];
1030 step[27] = -input[27] + input[(32 - 28)];
1031 step[28] = -input[28] + input[(32 - 29)];
1032 step[29] = -input[29] + input[(32 - 30)];
1033 step[30] = -input[30] + input[(32 - 31)];
1034 step[31] = -input[31] + input[(32 - 32)];
1036 // Stage 2
1037 output[0] = step[0] + step[16 - 1];
1038 output[1] = step[1] + step[16 - 2];
1039 output[2] = step[2] + step[16 - 3];
1040 output[3] = step[3] + step[16 - 4];
1041 output[4] = step[4] + step[16 - 5];
1042 output[5] = step[5] + step[16 - 6];
1043 output[6] = step[6] + step[16 - 7];
1044 output[7] = step[7] + step[16 - 8];
1045 output[8] = -step[8] + step[16 - 9];
1046 output[9] = -step[9] + step[16 - 10];
1047 output[10] = -step[10] + step[16 - 11];
1048 output[11] = -step[11] + step[16 - 12];
1049 output[12] = -step[12] + step[16 - 13];
1050 output[13] = -step[13] + step[16 - 14];
1051 output[14] = -step[14] + step[16 - 15];
1052 output[15] = -step[15] + step[16 - 16];
1054 output[16] = step[16];
1055 output[17] = step[17];
1056 output[18] = step[18];
1057 output[19] = step[19];
1059 output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64);
1060 output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64);
1061 output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64);
1062 output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64);
1064 output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64);
1065 output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64);
1066 output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64);
1067 output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64);
1069 output[28] = step[28];
1070 output[29] = step[29];
1071 output[30] = step[30];
1072 output[31] = step[31];
1074 // dump the magnitude by 4, hence the intermediate values are within
1075 // the range of 16 bits.
1076 if (round) {
1077 output[0] = half_round_shift(output[0]);
1078 output[1] = half_round_shift(output[1]);
1079 output[2] = half_round_shift(output[2]);
1080 output[3] = half_round_shift(output[3]);
1081 output[4] = half_round_shift(output[4]);
1082 output[5] = half_round_shift(output[5]);
1083 output[6] = half_round_shift(output[6]);
1084 output[7] = half_round_shift(output[7]);
1085 output[8] = half_round_shift(output[8]);
1086 output[9] = half_round_shift(output[9]);
1087 output[10] = half_round_shift(output[10]);
1088 output[11] = half_round_shift(output[11]);
1089 output[12] = half_round_shift(output[12]);
1090 output[13] = half_round_shift(output[13]);
1091 output[14] = half_round_shift(output[14]);
1092 output[15] = half_round_shift(output[15]);
1094 output[16] = half_round_shift(output[16]);
1095 output[17] = half_round_shift(output[17]);
1096 output[18] = half_round_shift(output[18]);
1097 output[19] = half_round_shift(output[19]);
1098 output[20] = half_round_shift(output[20]);
1099 output[21] = half_round_shift(output[21]);
1100 output[22] = half_round_shift(output[22]);
1101 output[23] = half_round_shift(output[23]);
1102 output[24] = half_round_shift(output[24]);
1103 output[25] = half_round_shift(output[25]);
1104 output[26] = half_round_shift(output[26]);
1105 output[27] = half_round_shift(output[27]);
1106 output[28] = half_round_shift(output[28]);
1107 output[29] = half_round_shift(output[29]);
1108 output[30] = half_round_shift(output[30]);
1109 output[31] = half_round_shift(output[31]);
1110 }
1112 // Stage 3
1113 step[0] = output[0] + output[(8 - 1)];
1114 step[1] = output[1] + output[(8 - 2)];
1115 step[2] = output[2] + output[(8 - 3)];
1116 step[3] = output[3] + output[(8 - 4)];
1117 step[4] = -output[4] + output[(8 - 5)];
1118 step[5] = -output[5] + output[(8 - 6)];
1119 step[6] = -output[6] + output[(8 - 7)];
1120 step[7] = -output[7] + output[(8 - 8)];
1121 step[8] = output[8];
1122 step[9] = output[9];
1123 step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64);
1124 step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64);
1125 step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64);
1126 step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64);
1127 step[14] = output[14];
1128 step[15] = output[15];
1130 step[16] = output[16] + output[23];
1131 step[17] = output[17] + output[22];
1132 step[18] = output[18] + output[21];
1133 step[19] = output[19] + output[20];
1134 step[20] = -output[20] + output[19];
1135 step[21] = -output[21] + output[18];
1136 step[22] = -output[22] + output[17];
1137 step[23] = -output[23] + output[16];
1138 step[24] = -output[24] + output[31];
1139 step[25] = -output[25] + output[30];
1140 step[26] = -output[26] + output[29];
1141 step[27] = -output[27] + output[28];
1142 step[28] = output[28] + output[27];
1143 step[29] = output[29] + output[26];
1144 step[30] = output[30] + output[25];
1145 step[31] = output[31] + output[24];
1147 // Stage 4
1148 output[0] = step[0] + step[3];
1149 output[1] = step[1] + step[2];
1150 output[2] = -step[2] + step[1];
1151 output[3] = -step[3] + step[0];
1152 output[4] = step[4];
1153 output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64);
1154 output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64);
1155 output[7] = step[7];
1156 output[8] = step[8] + step[11];
1157 output[9] = step[9] + step[10];
1158 output[10] = -step[10] + step[9];
1159 output[11] = -step[11] + step[8];
1160 output[12] = -step[12] + step[15];
1161 output[13] = -step[13] + step[14];
1162 output[14] = step[14] + step[13];
1163 output[15] = step[15] + step[12];
1165 output[16] = step[16];
1166 output[17] = step[17];
1167 output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64);
1168 output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64);
1169 output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64);
1170 output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64);
1171 output[22] = step[22];
1172 output[23] = step[23];
1173 output[24] = step[24];
1174 output[25] = step[25];
1175 output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64);
1176 output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64);
1177 output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64);
1178 output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64);
1179 output[30] = step[30];
1180 output[31] = step[31];
1182 // Stage 5
1183 step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64);
1184 step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64);
1185 step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64);
1186 step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64);
1187 step[4] = output[4] + output[5];
1188 step[5] = -output[5] + output[4];
1189 step[6] = -output[6] + output[7];
1190 step[7] = output[7] + output[6];
1191 step[8] = output[8];
1192 step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64);
1193 step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64);
1194 step[11] = output[11];
1195 step[12] = output[12];
1196 step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64);
1197 step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64);
1198 step[15] = output[15];
1200 step[16] = output[16] + output[19];
1201 step[17] = output[17] + output[18];
1202 step[18] = -output[18] + output[17];
1203 step[19] = -output[19] + output[16];
1204 step[20] = -output[20] + output[23];
1205 step[21] = -output[21] + output[22];
1206 step[22] = output[22] + output[21];
1207 step[23] = output[23] + output[20];
1208 step[24] = output[24] + output[27];
1209 step[25] = output[25] + output[26];
1210 step[26] = -output[26] + output[25];
1211 step[27] = -output[27] + output[24];
1212 step[28] = -output[28] + output[31];
1213 step[29] = -output[29] + output[30];
1214 step[30] = output[30] + output[29];
1215 step[31] = output[31] + output[28];
1217 // Stage 6
1218 output[0] = step[0];
1219 output[1] = step[1];
1220 output[2] = step[2];
1221 output[3] = step[3];
1222 output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64);
1223 output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64);
1224 output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64);
1225 output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64);
1226 output[8] = step[8] + step[9];
1227 output[9] = -step[9] + step[8];
1228 output[10] = -step[10] + step[11];
1229 output[11] = step[11] + step[10];
1230 output[12] = step[12] + step[13];
1231 output[13] = -step[13] + step[12];
1232 output[14] = -step[14] + step[15];
1233 output[15] = step[15] + step[14];
1235 output[16] = step[16];
1236 output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64);
1237 output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64);
1238 output[19] = step[19];
1239 output[20] = step[20];
1240 output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64);
1241 output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64);
1242 output[23] = step[23];
1243 output[24] = step[24];
1244 output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64);
1245 output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64);
1246 output[27] = step[27];
1247 output[28] = step[28];
1248 output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64);
1249 output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64);
1250 output[31] = step[31];
1252 // Stage 7
1253 step[0] = output[0];
1254 step[1] = output[1];
1255 step[2] = output[2];
1256 step[3] = output[3];
1257 step[4] = output[4];
1258 step[5] = output[5];
1259 step[6] = output[6];
1260 step[7] = output[7];
1261 step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64);
1262 step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64);
1263 step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64);
1264 step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64);
1265 step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64);
1266 step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64);
1267 step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64);
1268 step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64);
1270 step[16] = output[16] + output[17];
1271 step[17] = -output[17] + output[16];
1272 step[18] = -output[18] + output[19];
1273 step[19] = output[19] + output[18];
1274 step[20] = output[20] + output[21];
1275 step[21] = -output[21] + output[20];
1276 step[22] = -output[22] + output[23];
1277 step[23] = output[23] + output[22];
1278 step[24] = output[24] + output[25];
1279 step[25] = -output[25] + output[24];
1280 step[26] = -output[26] + output[27];
1281 step[27] = output[27] + output[26];
1282 step[28] = output[28] + output[29];
1283 step[29] = -output[29] + output[28];
1284 step[30] = -output[30] + output[31];
1285 step[31] = output[31] + output[30];
1287 // Final stage --- outputs indices are bit-reversed.
1288 output[0] = step[0];
1289 output[16] = step[1];
1290 output[8] = step[2];
1291 output[24] = step[3];
1292 output[4] = step[4];
1293 output[20] = step[5];
1294 output[12] = step[6];
1295 output[28] = step[7];
1296 output[2] = step[8];
1297 output[18] = step[9];
1298 output[10] = step[10];
1299 output[26] = step[11];
1300 output[6] = step[12];
1301 output[22] = step[13];
1302 output[14] = step[14];
1303 output[30] = step[15];
1305 output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64);
1306 output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64);
1307 output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64);
1308 output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64);
1309 output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64);
1310 output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64);
1311 output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64);
1312 output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64);
1313 output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64);
1314 output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64);
1315 output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64);
1316 output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64);
1317 output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64);
1318 output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64);
1319 output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64);
1320 output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
1321 }
1323 void vp9_fdct32x32_c(const int16_t *input, int16_t *out, int stride) {
1324 int i, j;
1325 int output[32 * 32];
1327 // Columns
1328 for (i = 0; i < 32; ++i) {
1329 int temp_in[32], temp_out[32];
1330 for (j = 0; j < 32; ++j)
1331 temp_in[j] = input[j * stride + i] * 4;
1332 dct32_1d(temp_in, temp_out, 0);
1333 for (j = 0; j < 32; ++j)
1334 output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
1335 }
1337 // Rows
1338 for (i = 0; i < 32; ++i) {
1339 int temp_in[32], temp_out[32];
1340 for (j = 0; j < 32; ++j)
1341 temp_in[j] = output[j + i * 32];
1342 dct32_1d(temp_in, temp_out, 0);
1343 for (j = 0; j < 32; ++j)
1344 out[j + i * 32] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
1345 }
1346 }
1348 // Note that although we use dct_32_round in dct32_1d computation flow,
1349 // this 2d fdct32x32 for rate-distortion optimization loop is operating
1350 // within 16 bits precision.
1351 void vp9_fdct32x32_rd_c(const int16_t *input, int16_t *out, int stride) {
1352 int i, j;
1353 int output[32 * 32];
1355 // Columns
1356 for (i = 0; i < 32; ++i) {
1357 int temp_in[32], temp_out[32];
1358 for (j = 0; j < 32; ++j)
1359 temp_in[j] = input[j * stride + i] * 4;
1360 dct32_1d(temp_in, temp_out, 0);
1361 for (j = 0; j < 32; ++j)
1362 // TODO(cd): see quality impact of only doing
1363 // output[j * 32 + i] = (temp_out[j] + 1) >> 2;
1364 // PS: also change code in vp9/encoder/x86/vp9_dct_sse2.c
1365 output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
1366 }
1368 // Rows
1369 for (i = 0; i < 32; ++i) {
1370 int temp_in[32], temp_out[32];
1371 for (j = 0; j < 32; ++j)
1372 temp_in[j] = output[j + i * 32];
1373 dct32_1d(temp_in, temp_out, 1);
1374 for (j = 0; j < 32; ++j)
1375 out[j + i * 32] = temp_out[j];
1376 }
1377 }
1379 void vp9_fht4x4(TX_TYPE tx_type, const int16_t *input, int16_t *output,
1380 int stride) {
1381 if (tx_type == DCT_DCT)
1382 vp9_fdct4x4(input, output, stride);
1383 else
1384 vp9_short_fht4x4(input, output, stride, tx_type);
1385 }
1387 void vp9_fht8x8(TX_TYPE tx_type, const int16_t *input, int16_t *output,
1388 int stride) {
1389 if (tx_type == DCT_DCT)
1390 vp9_fdct8x8(input, output, stride);
1391 else
1392 vp9_short_fht8x8(input, output, stride, tx_type);
1393 }
1395 void vp9_fht16x16(TX_TYPE tx_type, const int16_t *input, int16_t *output,
1396 int stride) {
1397 if (tx_type == DCT_DCT)
1398 vp9_fdct16x16(input, output, stride);
1399 else
1400 vp9_short_fht16x16(input, output, stride, tx_type);
1401 }