Thu, 22 Jan 2015 13:21:57 +0100
Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6
1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
17 #ifndef ANDROID_VECTOR_H
18 #define ANDROID_VECTOR_H
20 #include <new>
21 #include <stdint.h>
22 #include <sys/types.h>
24 #include <cutils/log.h>
26 #include <utils/VectorImpl.h>
27 #include <utils/TypeHelpers.h>
29 // ---------------------------------------------------------------------------
31 namespace android {
33 template <typename TYPE>
34 class SortedVector;
36 /*!
37 * The main templated vector class ensuring type safety
38 * while making use of VectorImpl.
39 * This is the class users want to use.
40 */
42 template <class TYPE>
43 class Vector : private VectorImpl
44 {
45 public:
46 typedef TYPE value_type;
48 /*!
49 * Constructors and destructors
50 */
52 Vector();
53 Vector(const Vector<TYPE>& rhs);
54 explicit Vector(const SortedVector<TYPE>& rhs);
55 virtual ~Vector();
57 /*! copy operator */
58 const Vector<TYPE>& operator = (const Vector<TYPE>& rhs) const;
59 Vector<TYPE>& operator = (const Vector<TYPE>& rhs);
61 const Vector<TYPE>& operator = (const SortedVector<TYPE>& rhs) const;
62 Vector<TYPE>& operator = (const SortedVector<TYPE>& rhs);
64 /*
65 * empty the vector
66 */
68 inline void clear() { VectorImpl::clear(); }
70 /*!
71 * vector stats
72 */
74 //! returns number of items in the vector
75 inline size_t size() const { return VectorImpl::size(); }
76 //! returns whether or not the vector is empty
77 inline bool isEmpty() const { return VectorImpl::isEmpty(); }
78 //! returns how many items can be stored without reallocating the backing store
79 inline size_t capacity() const { return VectorImpl::capacity(); }
80 //! sets the capacity. capacity can never be reduced less than size()
81 inline ssize_t setCapacity(size_t size) { return VectorImpl::setCapacity(size); }
83 /*!
84 * set the size of the vector. items are appended with the default
85 * constructor, or removed from the end as needed.
86 */
87 inline ssize_t resize(size_t size) { return VectorImpl::resize(size); }
89 /*!
90 * C-style array access
91 */
93 //! read-only C-style access
94 inline const TYPE* array() const;
95 //! read-write C-style access
96 TYPE* editArray();
98 /*!
99 * accessors
100 */
102 //! read-only access to an item at a given index
103 inline const TYPE& operator [] (size_t index) const;
104 //! alternate name for operator []
105 inline const TYPE& itemAt(size_t index) const;
106 //! stack-usage of the vector. returns the top of the stack (last element)
107 const TYPE& top() const;
109 /*!
110 * modifying the array
111 */
113 //! copy-on write support, grants write access to an item
114 TYPE& editItemAt(size_t index);
115 //! grants right access to the top of the stack (last element)
116 TYPE& editTop();
118 /*!
119 * append/insert another vector
120 */
122 //! insert another vector at a given index
123 ssize_t insertVectorAt(const Vector<TYPE>& vector, size_t index);
125 //! append another vector at the end of this one
126 ssize_t appendVector(const Vector<TYPE>& vector);
129 //! insert an array at a given index
130 ssize_t insertArrayAt(const TYPE* array, size_t index, size_t length);
132 //! append an array at the end of this vector
133 ssize_t appendArray(const TYPE* array, size_t length);
135 /*!
136 * add/insert/replace items
137 */
139 //! insert one or several items initialized with their default constructor
140 inline ssize_t insertAt(size_t index, size_t numItems = 1);
141 //! insert one or several items initialized from a prototype item
142 ssize_t insertAt(const TYPE& prototype_item, size_t index, size_t numItems = 1);
143 //! pop the top of the stack (removes the last element). No-op if the stack's empty
144 inline void pop();
145 //! pushes an item initialized with its default constructor
146 inline void push();
147 //! pushes an item on the top of the stack
148 void push(const TYPE& item);
149 //! same as push() but returns the index the item was added at (or an error)
150 inline ssize_t add();
151 //! same as push() but returns the index the item was added at (or an error)
152 ssize_t add(const TYPE& item);
153 //! replace an item with a new one initialized with its default constructor
154 inline ssize_t replaceAt(size_t index);
155 //! replace an item with a new one
156 ssize_t replaceAt(const TYPE& item, size_t index);
158 /*!
159 * remove items
160 */
162 //! remove several items
163 inline ssize_t removeItemsAt(size_t index, size_t count = 1);
164 //! remove one item
165 inline ssize_t removeAt(size_t index) { return removeItemsAt(index); }
167 /*!
168 * sort (stable) the array
169 */
171 typedef int (*compar_t)(const TYPE* lhs, const TYPE* rhs);
172 typedef int (*compar_r_t)(const TYPE* lhs, const TYPE* rhs, void* state);
174 inline status_t sort(compar_t cmp);
175 inline status_t sort(compar_r_t cmp, void* state);
177 // for debugging only
178 inline size_t getItemSize() const { return itemSize(); }
181 /*
182 * these inlines add some level of compatibility with STL. eventually
183 * we should probably turn things around.
184 */
185 typedef TYPE* iterator;
186 typedef TYPE const* const_iterator;
188 inline iterator begin() { return editArray(); }
189 inline iterator end() { return editArray() + size(); }
190 inline const_iterator begin() const { return array(); }
191 inline const_iterator end() const { return array() + size(); }
192 inline void reserve(size_t n) { setCapacity(n); }
193 inline bool empty() const{ return isEmpty(); }
194 inline void push_back(const TYPE& item) { insertAt(item, size(), 1); }
195 inline void push_front(const TYPE& item) { insertAt(item, 0, 1); }
196 inline iterator erase(iterator pos) {
197 ssize_t index = removeItemsAt(pos-array());
198 return begin() + index;
199 }
201 protected:
202 virtual void do_construct(void* storage, size_t num) const;
203 virtual void do_destroy(void* storage, size_t num) const;
204 virtual void do_copy(void* dest, const void* from, size_t num) const;
205 virtual void do_splat(void* dest, const void* item, size_t num) const;
206 virtual void do_move_forward(void* dest, const void* from, size_t num) const;
207 virtual void do_move_backward(void* dest, const void* from, size_t num) const;
208 };
210 // Vector<T> can be trivially moved using memcpy() because moving does not
211 // require any change to the underlying SharedBuffer contents or reference count.
212 template<typename T> struct trait_trivial_move<Vector<T> > { enum { value = true }; };
214 // ---------------------------------------------------------------------------
215 // No user serviceable parts from here...
216 // ---------------------------------------------------------------------------
218 template<class TYPE> inline
219 Vector<TYPE>::Vector()
220 : VectorImpl(sizeof(TYPE),
221 ((traits<TYPE>::has_trivial_ctor ? HAS_TRIVIAL_CTOR : 0)
222 |(traits<TYPE>::has_trivial_dtor ? HAS_TRIVIAL_DTOR : 0)
223 |(traits<TYPE>::has_trivial_copy ? HAS_TRIVIAL_COPY : 0))
224 )
225 {
226 }
228 template<class TYPE> inline
229 Vector<TYPE>::Vector(const Vector<TYPE>& rhs)
230 : VectorImpl(rhs) {
231 }
233 template<class TYPE> inline
234 Vector<TYPE>::Vector(const SortedVector<TYPE>& rhs)
235 : VectorImpl(static_cast<const VectorImpl&>(rhs)) {
236 }
238 template<class TYPE> inline
239 Vector<TYPE>::~Vector() {
240 finish_vector();
241 }
243 template<class TYPE> inline
244 Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) {
245 VectorImpl::operator = (rhs);
246 return *this;
247 }
249 template<class TYPE> inline
250 const Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) const {
251 VectorImpl::operator = (static_cast<const VectorImpl&>(rhs));
252 return *this;
253 }
255 template<class TYPE> inline
256 Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
257 VectorImpl::operator = (static_cast<const VectorImpl&>(rhs));
258 return *this;
259 }
261 template<class TYPE> inline
262 const Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
263 VectorImpl::operator = (rhs);
264 return *this;
265 }
267 template<class TYPE> inline
268 const TYPE* Vector<TYPE>::array() const {
269 return static_cast<const TYPE *>(arrayImpl());
270 }
272 template<class TYPE> inline
273 TYPE* Vector<TYPE>::editArray() {
274 return static_cast<TYPE *>(editArrayImpl());
275 }
278 template<class TYPE> inline
279 const TYPE& Vector<TYPE>::operator[](size_t index) const {
280 LOG_FATAL_IF(index>=size(),
281 "%s: index=%u out of range (%u)", __PRETTY_FUNCTION__,
282 int(index), int(size()));
283 return *(array() + index);
284 }
286 template<class TYPE> inline
287 const TYPE& Vector<TYPE>::itemAt(size_t index) const {
288 return operator[](index);
289 }
291 template<class TYPE> inline
292 const TYPE& Vector<TYPE>::top() const {
293 return *(array() + size() - 1);
294 }
296 template<class TYPE> inline
297 TYPE& Vector<TYPE>::editItemAt(size_t index) {
298 return *( static_cast<TYPE *>(editItemLocation(index)) );
299 }
301 template<class TYPE> inline
302 TYPE& Vector<TYPE>::editTop() {
303 return *( static_cast<TYPE *>(editItemLocation(size()-1)) );
304 }
306 template<class TYPE> inline
307 ssize_t Vector<TYPE>::insertVectorAt(const Vector<TYPE>& vector, size_t index) {
308 return VectorImpl::insertVectorAt(reinterpret_cast<const VectorImpl&>(vector), index);
309 }
311 template<class TYPE> inline
312 ssize_t Vector<TYPE>::appendVector(const Vector<TYPE>& vector) {
313 return VectorImpl::appendVector(reinterpret_cast<const VectorImpl&>(vector));
314 }
316 template<class TYPE> inline
317 ssize_t Vector<TYPE>::insertArrayAt(const TYPE* array, size_t index, size_t length) {
318 return VectorImpl::insertArrayAt(array, index, length);
319 }
321 template<class TYPE> inline
322 ssize_t Vector<TYPE>::appendArray(const TYPE* array, size_t length) {
323 return VectorImpl::appendArray(array, length);
324 }
326 template<class TYPE> inline
327 ssize_t Vector<TYPE>::insertAt(const TYPE& item, size_t index, size_t numItems) {
328 return VectorImpl::insertAt(&item, index, numItems);
329 }
331 template<class TYPE> inline
332 void Vector<TYPE>::push(const TYPE& item) {
333 return VectorImpl::push(&item);
334 }
336 template<class TYPE> inline
337 ssize_t Vector<TYPE>::add(const TYPE& item) {
338 return VectorImpl::add(&item);
339 }
341 template<class TYPE> inline
342 ssize_t Vector<TYPE>::replaceAt(const TYPE& item, size_t index) {
343 return VectorImpl::replaceAt(&item, index);
344 }
346 template<class TYPE> inline
347 ssize_t Vector<TYPE>::insertAt(size_t index, size_t numItems) {
348 return VectorImpl::insertAt(index, numItems);
349 }
351 template<class TYPE> inline
352 void Vector<TYPE>::pop() {
353 VectorImpl::pop();
354 }
356 template<class TYPE> inline
357 void Vector<TYPE>::push() {
358 VectorImpl::push();
359 }
361 template<class TYPE> inline
362 ssize_t Vector<TYPE>::add() {
363 return VectorImpl::add();
364 }
366 template<class TYPE> inline
367 ssize_t Vector<TYPE>::replaceAt(size_t index) {
368 return VectorImpl::replaceAt(index);
369 }
371 template<class TYPE> inline
372 ssize_t Vector<TYPE>::removeItemsAt(size_t index, size_t count) {
373 return VectorImpl::removeItemsAt(index, count);
374 }
376 template<class TYPE> inline
377 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_t cmp) {
378 return VectorImpl::sort((VectorImpl::compar_t)cmp);
379 }
381 template<class TYPE> inline
382 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_r_t cmp, void* state) {
383 return VectorImpl::sort((VectorImpl::compar_r_t)cmp, state);
384 }
386 // ---------------------------------------------------------------------------
388 template<class TYPE>
389 void Vector<TYPE>::do_construct(void* storage, size_t num) const {
390 construct_type( reinterpret_cast<TYPE*>(storage), num );
391 }
393 template<class TYPE>
394 void Vector<TYPE>::do_destroy(void* storage, size_t num) const {
395 destroy_type( reinterpret_cast<TYPE*>(storage), num );
396 }
398 template<class TYPE>
399 void Vector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
400 copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
401 }
403 template<class TYPE>
404 void Vector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
405 splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
406 }
408 template<class TYPE>
409 void Vector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
410 move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
411 }
413 template<class TYPE>
414 void Vector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
415 move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
416 }
418 }; // namespace android
421 // ---------------------------------------------------------------------------
423 #endif // ANDROID_VECTOR_H