Thu, 22 Jan 2015 13:21:57 +0100
Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
5 #include "ec2.h"
6 #include "mplogic.h"
7 #include "mp_gf2m.h"
8 #include <stdlib.h>
10 /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery
11 * projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J.
12 * and Dahab, R. "Fast multiplication on elliptic curves over GF(2^m)
13 * without precomputation". modified to not require precomputation of
14 * c=b^{2^{m-1}}. */
15 static mp_err
16 gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group)
17 {
18 mp_err res = MP_OKAY;
19 mp_int t1;
21 MP_DIGITS(&t1) = 0;
22 MP_CHECKOK(mp_init(&t1));
24 MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
25 MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth));
26 MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth));
27 MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
28 MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth));
29 MP_CHECKOK(group->meth->
30 field_mul(&group->curveb, &t1, &t1, group->meth));
31 MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth));
33 CLEANUP:
34 mp_clear(&t1);
35 return res;
36 }
38 /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in
39 * Montgomery projective coordinates. Uses algorithm Madd in appendix of
40 * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
41 * GF(2^m) without precomputation". */
42 static mp_err
43 gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2,
44 const ECGroup *group)
45 {
46 mp_err res = MP_OKAY;
47 mp_int t1, t2;
49 MP_DIGITS(&t1) = 0;
50 MP_DIGITS(&t2) = 0;
51 MP_CHECKOK(mp_init(&t1));
52 MP_CHECKOK(mp_init(&t2));
54 MP_CHECKOK(mp_copy(x, &t1));
55 MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth));
56 MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth));
57 MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth));
58 MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
59 MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth));
60 MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth));
61 MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth));
63 CLEANUP:
64 mp_clear(&t1);
65 mp_clear(&t2);
66 return res;
67 }
69 /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
70 * using Montgomery point multiplication algorithm Mxy() in appendix of
71 * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
72 * GF(2^m) without precomputation". Returns: 0 on error 1 if return value
73 * should be the point at infinity 2 otherwise */
74 static int
75 gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
76 mp_int *x2, mp_int *z2, const ECGroup *group)
77 {
78 mp_err res = MP_OKAY;
79 int ret = 0;
80 mp_int t3, t4, t5;
82 MP_DIGITS(&t3) = 0;
83 MP_DIGITS(&t4) = 0;
84 MP_DIGITS(&t5) = 0;
85 MP_CHECKOK(mp_init(&t3));
86 MP_CHECKOK(mp_init(&t4));
87 MP_CHECKOK(mp_init(&t5));
89 if (mp_cmp_z(z1) == 0) {
90 mp_zero(x2);
91 mp_zero(z2);
92 ret = 1;
93 goto CLEANUP;
94 }
96 if (mp_cmp_z(z2) == 0) {
97 MP_CHECKOK(mp_copy(x, x2));
98 MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth));
99 ret = 2;
100 goto CLEANUP;
101 }
103 MP_CHECKOK(mp_set_int(&t5, 1));
104 if (group->meth->field_enc) {
105 MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth));
106 }
108 MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth));
110 MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth));
111 MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
112 MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth));
113 MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth));
114 MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth));
116 MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth));
117 MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth));
118 MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth));
119 MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth));
120 MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth));
122 MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth));
123 MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth));
124 MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth));
125 MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth));
126 MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth));
128 MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth));
129 MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth));
131 ret = 2;
133 CLEANUP:
134 mp_clear(&t3);
135 mp_clear(&t4);
136 mp_clear(&t5);
137 if (res == MP_OKAY) {
138 return ret;
139 } else {
140 return 0;
141 }
142 }
144 /* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R. "Fast
145 * multiplication on elliptic curves over GF(2^m) without
146 * precomputation". Elliptic curve points P and R can be identical. Uses
147 * Montgomery projective coordinates. */
148 mp_err
149 ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py,
150 mp_int *rx, mp_int *ry, const ECGroup *group)
151 {
152 mp_err res = MP_OKAY;
153 mp_int x1, x2, z1, z2;
154 int i, j;
155 mp_digit top_bit, mask;
157 MP_DIGITS(&x1) = 0;
158 MP_DIGITS(&x2) = 0;
159 MP_DIGITS(&z1) = 0;
160 MP_DIGITS(&z2) = 0;
161 MP_CHECKOK(mp_init(&x1));
162 MP_CHECKOK(mp_init(&x2));
163 MP_CHECKOK(mp_init(&z1));
164 MP_CHECKOK(mp_init(&z2));
166 /* if result should be point at infinity */
167 if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) {
168 MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
169 goto CLEANUP;
170 }
172 MP_CHECKOK(mp_copy(px, &x1)); /* x1 = px */
173 MP_CHECKOK(mp_set_int(&z1, 1)); /* z1 = 1 */
174 MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth)); /* z2 =
175 * x1^2 =
176 * px^2 */
177 MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth));
178 MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth)); /* x2
179 * =
180 * px^4
181 * +
182 * b
183 */
185 /* find top-most bit and go one past it */
186 i = MP_USED(n) - 1;
187 j = MP_DIGIT_BIT - 1;
188 top_bit = 1;
189 top_bit <<= MP_DIGIT_BIT - 1;
190 mask = top_bit;
191 while (!(MP_DIGITS(n)[i] & mask)) {
192 mask >>= 1;
193 j--;
194 }
195 mask >>= 1;
196 j--;
198 /* if top most bit was at word break, go to next word */
199 if (!mask) {
200 i--;
201 j = MP_DIGIT_BIT - 1;
202 mask = top_bit;
203 }
205 for (; i >= 0; i--) {
206 for (; j >= 0; j--) {
207 if (MP_DIGITS(n)[i] & mask) {
208 MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group));
209 MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group));
210 } else {
211 MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group));
212 MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group));
213 }
214 mask >>= 1;
215 }
216 j = MP_DIGIT_BIT - 1;
217 mask = top_bit;
218 }
220 /* convert out of "projective" coordinates */
221 i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group);
222 if (i == 0) {
223 res = MP_BADARG;
224 goto CLEANUP;
225 } else if (i == 1) {
226 MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
227 } else {
228 MP_CHECKOK(mp_copy(&x2, rx));
229 MP_CHECKOK(mp_copy(&z2, ry));
230 }
232 CLEANUP:
233 mp_clear(&x1);
234 mp_clear(&x2);
235 mp_clear(&z1);
236 mp_clear(&z2);
237 return res;
238 }