security/nss/lib/freebl/ecl/ec2_mont.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /* This Source Code Form is subject to the terms of the Mozilla Public
     2  * License, v. 2.0. If a copy of the MPL was not distributed with this
     3  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     5 #include "ec2.h"
     6 #include "mplogic.h"
     7 #include "mp_gf2m.h"
     8 #include <stdlib.h>
    10 /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery
    11  * projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J. 
    12  * and Dahab, R.  "Fast multiplication on elliptic curves over GF(2^m)
    13  * without precomputation". modified to not require precomputation of
    14  * c=b^{2^{m-1}}. */
    15 static mp_err
    16 gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group)
    17 {
    18 	mp_err res = MP_OKAY;
    19 	mp_int t1;
    21 	MP_DIGITS(&t1) = 0;
    22 	MP_CHECKOK(mp_init(&t1));
    24 	MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
    25 	MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth));
    26 	MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth));
    27 	MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
    28 	MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth));
    29 	MP_CHECKOK(group->meth->
    30 			   field_mul(&group->curveb, &t1, &t1, group->meth));
    31 	MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth));
    33   CLEANUP:
    34 	mp_clear(&t1);
    35 	return res;
    36 }
    38 /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in
    39  * Montgomery projective coordinates. Uses algorithm Madd in appendix of
    40  * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
    41  * GF(2^m) without precomputation". */
    42 static mp_err
    43 gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2,
    44 		  const ECGroup *group)
    45 {
    46 	mp_err res = MP_OKAY;
    47 	mp_int t1, t2;
    49 	MP_DIGITS(&t1) = 0;
    50 	MP_DIGITS(&t2) = 0;
    51 	MP_CHECKOK(mp_init(&t1));
    52 	MP_CHECKOK(mp_init(&t2));
    54 	MP_CHECKOK(mp_copy(x, &t1));
    55 	MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth));
    56 	MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth));
    57 	MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth));
    58 	MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
    59 	MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth));
    60 	MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth));
    61 	MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth));
    63   CLEANUP:
    64 	mp_clear(&t1);
    65 	mp_clear(&t2);
    66 	return res;
    67 }
    69 /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
    70  * using Montgomery point multiplication algorithm Mxy() in appendix of
    71  * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
    72  * GF(2^m) without precomputation". Returns: 0 on error 1 if return value
    73  * should be the point at infinity 2 otherwise */
    74 static int
    75 gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
    76 		 mp_int *x2, mp_int *z2, const ECGroup *group)
    77 {
    78 	mp_err res = MP_OKAY;
    79 	int ret = 0;
    80 	mp_int t3, t4, t5;
    82 	MP_DIGITS(&t3) = 0;
    83 	MP_DIGITS(&t4) = 0;
    84 	MP_DIGITS(&t5) = 0;
    85 	MP_CHECKOK(mp_init(&t3));
    86 	MP_CHECKOK(mp_init(&t4));
    87 	MP_CHECKOK(mp_init(&t5));
    89 	if (mp_cmp_z(z1) == 0) {
    90 		mp_zero(x2);
    91 		mp_zero(z2);
    92 		ret = 1;
    93 		goto CLEANUP;
    94 	}
    96 	if (mp_cmp_z(z2) == 0) {
    97 		MP_CHECKOK(mp_copy(x, x2));
    98 		MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth));
    99 		ret = 2;
   100 		goto CLEANUP;
   101 	}
   103 	MP_CHECKOK(mp_set_int(&t5, 1));
   104 	if (group->meth->field_enc) {
   105 		MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth));
   106 	}
   108 	MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth));
   110 	MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth));
   111 	MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
   112 	MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth));
   113 	MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth));
   114 	MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth));
   116 	MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth));
   117 	MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth));
   118 	MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth));
   119 	MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth));
   120 	MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth));
   122 	MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth));
   123 	MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth));
   124 	MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth));
   125 	MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth));
   126 	MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth));
   128 	MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth));
   129 	MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth));
   131 	ret = 2;
   133   CLEANUP:
   134 	mp_clear(&t3);
   135 	mp_clear(&t4);
   136 	mp_clear(&t5);
   137 	if (res == MP_OKAY) {
   138 		return ret;
   139 	} else {
   140 		return 0;
   141 	}
   142 }
   144 /* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R.  "Fast 
   145  * multiplication on elliptic curves over GF(2^m) without
   146  * precomputation". Elliptic curve points P and R can be identical. Uses
   147  * Montgomery projective coordinates. */
   148 mp_err
   149 ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py,
   150 					mp_int *rx, mp_int *ry, const ECGroup *group)
   151 {
   152 	mp_err res = MP_OKAY;
   153 	mp_int x1, x2, z1, z2;
   154 	int i, j;
   155 	mp_digit top_bit, mask;
   157 	MP_DIGITS(&x1) = 0;
   158 	MP_DIGITS(&x2) = 0;
   159 	MP_DIGITS(&z1) = 0;
   160 	MP_DIGITS(&z2) = 0;
   161 	MP_CHECKOK(mp_init(&x1));
   162 	MP_CHECKOK(mp_init(&x2));
   163 	MP_CHECKOK(mp_init(&z1));
   164 	MP_CHECKOK(mp_init(&z2));
   166 	/* if result should be point at infinity */
   167 	if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) {
   168 		MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
   169 		goto CLEANUP;
   170 	}
   172 	MP_CHECKOK(mp_copy(px, &x1));	/* x1 = px */
   173 	MP_CHECKOK(mp_set_int(&z1, 1));	/* z1 = 1 */
   174 	MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth));	/* z2 =
   175 																 * x1^2 =
   176 																 * px^2 */
   177 	MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth));
   178 	MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth));	/* x2 
   179 																				 * = 
   180 																				 * px^4 
   181 																				 * + 
   182 																				 * b 
   183 																				 */
   185 	/* find top-most bit and go one past it */
   186 	i = MP_USED(n) - 1;
   187 	j = MP_DIGIT_BIT - 1;
   188 	top_bit = 1;
   189 	top_bit <<= MP_DIGIT_BIT - 1;
   190 	mask = top_bit;
   191 	while (!(MP_DIGITS(n)[i] & mask)) {
   192 		mask >>= 1;
   193 		j--;
   194 	}
   195 	mask >>= 1;
   196 	j--;
   198 	/* if top most bit was at word break, go to next word */
   199 	if (!mask) {
   200 		i--;
   201 		j = MP_DIGIT_BIT - 1;
   202 		mask = top_bit;
   203 	}
   205 	for (; i >= 0; i--) {
   206 		for (; j >= 0; j--) {
   207 			if (MP_DIGITS(n)[i] & mask) {
   208 				MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group));
   209 				MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group));
   210 			} else {
   211 				MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group));
   212 				MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group));
   213 			}
   214 			mask >>= 1;
   215 		}
   216 		j = MP_DIGIT_BIT - 1;
   217 		mask = top_bit;
   218 	}
   220 	/* convert out of "projective" coordinates */
   221 	i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group);
   222 	if (i == 0) {
   223 		res = MP_BADARG;
   224 		goto CLEANUP;
   225 	} else if (i == 1) {
   226 		MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
   227 	} else {
   228 		MP_CHECKOK(mp_copy(&x2, rx));
   229 		MP_CHECKOK(mp_copy(&z2, ry));
   230 	}
   232   CLEANUP:
   233 	mp_clear(&x1);
   234 	mp_clear(&x2);
   235 	mp_clear(&z1);
   236 	mp_clear(&z2);
   237 	return res;
   238 }

mercurial