security/nss/lib/freebl/ecl/ecp_fp.h

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /* This Source Code Form is subject to the terms of the Mozilla Public
     2  * License, v. 2.0. If a copy of the MPL was not distributed with this
     3  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     5 #ifndef __ecp_fp_h_
     6 #define __ecp_fp_h_
     8 #include "mpi.h"
     9 #include "ecl.h"
    10 #include "ecp.h"
    12 #include <sys/types.h>
    13 #include "mpi-priv.h"
    15 #ifdef ECL_DEBUG
    16 #include <assert.h>
    17 #endif
    19 /* Largest number of doubles to store one reduced number in floating
    20  * point. Used for memory allocation on the stack. */
    21 #define ECFP_MAXDOUBLES 10
    23 /* For debugging purposes */
    24 #ifndef ECL_DEBUG
    25 #define ECFP_ASSERT(x)
    26 #else
    27 #define ECFP_ASSERT(x) assert(x)
    28 #endif
    30 /* ECFP_Ti = 2^(i*24) Define as preprocessor constants so we can use in
    31  * multiple static constants */
    32 #define ECFP_T0 1.0
    33 #define ECFP_T1 16777216.0
    34 #define ECFP_T2 281474976710656.0
    35 #define ECFP_T3 4722366482869645213696.0
    36 #define ECFP_T4 79228162514264337593543950336.0
    37 #define ECFP_T5 1329227995784915872903807060280344576.0
    38 #define ECFP_T6 22300745198530623141535718272648361505980416.0
    39 #define ECFP_T7 374144419156711147060143317175368453031918731001856.0
    40 #define ECFP_T8 6277101735386680763835789423207666416102355444464034512896.0
    41 #define ECFP_T9 105312291668557186697918027683670432318895095400549111254310977536.0
    42 #define ECFP_T10  1766847064778384329583297500742918515827483896875618958121606201292619776.0
    43 #define ECFP_T11 29642774844752946028434172162224104410437116074403984394101141506025761187823616.0
    44 #define ECFP_T12 497323236409786642155382248146820840100456150797347717440463976893159497012533375533056.0
    45 #define ECFP_T13  8343699359066055009355553539724812947666814540455674882605631280555545803830627148527195652096.0
    46 #define ECFP_T14 139984046386112763159840142535527767382602843577165595931249318810236991948760059086304843329475444736.0
    47 #define ECFP_T15 2348542582773833227889480596789337027375682548908319870707290971532209025114608443463698998384768703031934976.0
    48 #define ECFP_T16 39402006196394479212279040100143613805079739270465446667948293404245\
    49 721771497210611414266254884915640806627990306816.0
    50 #define ECFP_T17 66105596879024859895191530803277103982840468296428121928464879527440\
    51 5791236311345825189210439715284847591212025023358304256.0
    52 #define ECFP_T18 11090678776483259438313656736572334813745748301503266300681918322458\
    53 485231222502492159897624416558312389564843845614287315896631296.0
    54 #define ECFP_T19 18607071341967536398062689481932916079453218833595342343206149099024\
    55 36577570298683715049089827234727835552055312041415509848580169253519\
    56 36.0
    58 #define ECFP_TWO160 1461501637330902918203684832716283019655932542976.0
    59 #define ECFP_TWO192 6277101735386680763835789423207666416102355444464034512896.0
    60 #define ECFP_TWO224 26959946667150639794667015087019630673637144422540572481103610249216.0
    62 /* Multiplicative constants */
    63 static const double ecfp_two32 = 4294967296.0;
    64 static const double ecfp_two64 = 18446744073709551616.0;
    65 static const double ecfp_twom16 = .0000152587890625;
    66 static const double ecfp_twom128 =
    67 	.00000000000000000000000000000000000000293873587705571876992184134305561419454666389193021880377187926569604314863681793212890625;
    68 static const double ecfp_twom129 =
    69 	.000000000000000000000000000000000000001469367938527859384960920671527807097273331945965109401885939632848021574318408966064453125;
    70 static const double ecfp_twom160 =
    71 	.0000000000000000000000000000000000000000000000006842277657836020854119773355907793609766904013068924666782559979930620520927053718196475529111921787261962890625;
    72 static const double ecfp_twom192 =
    73 	.000000000000000000000000000000000000000000000000000000000159309191113245227702888039776771180559110455519261878607388585338616290151305816094308987472018268594098344692611135542392730712890625;
    74 static const double ecfp_twom224 =
    75 	.00000000000000000000000000000000000000000000000000000000000000000003709206150687421385731735261547639513367564778757791002453039058917581340095629358997312082723208437536338919136001159027049567384892725385725498199462890625;
    77 /* ecfp_exp[i] = 2^(i*ECFP_DSIZE) */
    78 static const double ecfp_exp[2 * ECFP_MAXDOUBLES] = {
    79 	ECFP_T0, ECFP_T1, ECFP_T2, ECFP_T3, ECFP_T4, ECFP_T5,
    80 	ECFP_T6, ECFP_T7, ECFP_T8, ECFP_T9, ECFP_T10, ECFP_T11,
    81 	ECFP_T12, ECFP_T13, ECFP_T14, ECFP_T15, ECFP_T16, ECFP_T17, ECFP_T18,
    82 	ECFP_T19
    83 };
    85 /* 1.1 * 2^52 Uses 2^52 to truncate, the .1 is an extra 2^51 to protect
    86  * the 2^52 bit, so that adding alphas to a negative number won't borrow
    87  * and empty the important 2^52 bit */
    88 #define ECFP_ALPHABASE_53 6755399441055744.0
    89 /* Special case: On some platforms, notably x86 Linux, there is an
    90  * extended-precision floating point representation with 64-bits of
    91  * precision in the mantissa.  These extra bits of precision require a
    92  * larger value of alpha to truncate, i.e. 1.1 * 2^63. */
    93 #define ECFP_ALPHABASE_64 13835058055282163712.0
    95 /* 
    96  * ecfp_alpha[i] = 1.5 * 2^(52 + i*ECFP_DSIZE) we add and subtract alpha
    97  * to truncate floating point numbers to a certain number of bits for
    98  * tidying */
    99 static const double ecfp_alpha_53[2 * ECFP_MAXDOUBLES] = {
   100 	ECFP_ALPHABASE_53 * ECFP_T0,
   101 	ECFP_ALPHABASE_53 * ECFP_T1,
   102 	ECFP_ALPHABASE_53 * ECFP_T2,
   103 	ECFP_ALPHABASE_53 * ECFP_T3,
   104 	ECFP_ALPHABASE_53 * ECFP_T4,
   105 	ECFP_ALPHABASE_53 * ECFP_T5,
   106 	ECFP_ALPHABASE_53 * ECFP_T6,
   107 	ECFP_ALPHABASE_53 * ECFP_T7,
   108 	ECFP_ALPHABASE_53 * ECFP_T8,
   109 	ECFP_ALPHABASE_53 * ECFP_T9,
   110 	ECFP_ALPHABASE_53 * ECFP_T10,
   111 	ECFP_ALPHABASE_53 * ECFP_T11,
   112 	ECFP_ALPHABASE_53 * ECFP_T12,
   113 	ECFP_ALPHABASE_53 * ECFP_T13,
   114 	ECFP_ALPHABASE_53 * ECFP_T14,
   115 	ECFP_ALPHABASE_53 * ECFP_T15,
   116 	ECFP_ALPHABASE_53 * ECFP_T16,
   117 	ECFP_ALPHABASE_53 * ECFP_T17,
   118 	ECFP_ALPHABASE_53 * ECFP_T18,
   119 	ECFP_ALPHABASE_53 * ECFP_T19
   120 };
   122 /* 
   123  * ecfp_alpha[i] = 1.5 * 2^(63 + i*ECFP_DSIZE) we add and subtract alpha
   124  * to truncate floating point numbers to a certain number of bits for
   125  * tidying */
   126 static const double ecfp_alpha_64[2 * ECFP_MAXDOUBLES] = {
   127 	ECFP_ALPHABASE_64 * ECFP_T0,
   128 	ECFP_ALPHABASE_64 * ECFP_T1,
   129 	ECFP_ALPHABASE_64 * ECFP_T2,
   130 	ECFP_ALPHABASE_64 * ECFP_T3,
   131 	ECFP_ALPHABASE_64 * ECFP_T4,
   132 	ECFP_ALPHABASE_64 * ECFP_T5,
   133 	ECFP_ALPHABASE_64 * ECFP_T6,
   134 	ECFP_ALPHABASE_64 * ECFP_T7,
   135 	ECFP_ALPHABASE_64 * ECFP_T8,
   136 	ECFP_ALPHABASE_64 * ECFP_T9,
   137 	ECFP_ALPHABASE_64 * ECFP_T10,
   138 	ECFP_ALPHABASE_64 * ECFP_T11,
   139 	ECFP_ALPHABASE_64 * ECFP_T12,
   140 	ECFP_ALPHABASE_64 * ECFP_T13,
   141 	ECFP_ALPHABASE_64 * ECFP_T14,
   142 	ECFP_ALPHABASE_64 * ECFP_T15,
   143 	ECFP_ALPHABASE_64 * ECFP_T16,
   144 	ECFP_ALPHABASE_64 * ECFP_T17,
   145 	ECFP_ALPHABASE_64 * ECFP_T18,
   146 	ECFP_ALPHABASE_64 * ECFP_T19
   147 };
   149 /* 0.011111111111111111111111 (binary) = 0.5 - 2^25 (24 ones) */
   150 #define ECFP_BETABASE 0.4999999701976776123046875
   152 /* 
   153  * We subtract beta prior to using alpha to simulate rounding down. We
   154  * make this close to 0.5 to round almost everything down, but exactly 0.5 
   155  * would cause some incorrect rounding. */
   156 static const double ecfp_beta[2 * ECFP_MAXDOUBLES] = {
   157 	ECFP_BETABASE * ECFP_T0,
   158 	ECFP_BETABASE * ECFP_T1,
   159 	ECFP_BETABASE * ECFP_T2,
   160 	ECFP_BETABASE * ECFP_T3,
   161 	ECFP_BETABASE * ECFP_T4,
   162 	ECFP_BETABASE * ECFP_T5,
   163 	ECFP_BETABASE * ECFP_T6,
   164 	ECFP_BETABASE * ECFP_T7,
   165 	ECFP_BETABASE * ECFP_T8,
   166 	ECFP_BETABASE * ECFP_T9,
   167 	ECFP_BETABASE * ECFP_T10,
   168 	ECFP_BETABASE * ECFP_T11,
   169 	ECFP_BETABASE * ECFP_T12,
   170 	ECFP_BETABASE * ECFP_T13,
   171 	ECFP_BETABASE * ECFP_T14,
   172 	ECFP_BETABASE * ECFP_T15,
   173 	ECFP_BETABASE * ECFP_T16,
   174 	ECFP_BETABASE * ECFP_T17,
   175 	ECFP_BETABASE * ECFP_T18,
   176 	ECFP_BETABASE * ECFP_T19
   177 };
   179 static const double ecfp_beta_160 = ECFP_BETABASE * ECFP_TWO160;
   180 static const double ecfp_beta_192 = ECFP_BETABASE * ECFP_TWO192;
   181 static const double ecfp_beta_224 = ECFP_BETABASE * ECFP_TWO224;
   183 /* Affine EC Point. This is the basic representation (x, y) of an elliptic 
   184  * curve point. */
   185 typedef struct {
   186 	double x[ECFP_MAXDOUBLES];
   187 	double y[ECFP_MAXDOUBLES];
   188 } ecfp_aff_pt;
   190 /* Jacobian EC Point. This coordinate system uses X = x/z^2, Y = y/z^3,
   191  * which enables calculations with fewer inversions than affine
   192  * coordinates. */
   193 typedef struct {
   194 	double x[ECFP_MAXDOUBLES];
   195 	double y[ECFP_MAXDOUBLES];
   196 	double z[ECFP_MAXDOUBLES];
   197 } ecfp_jac_pt;
   199 /* Chudnovsky Jacobian EC Point. This coordinate system is the same as
   200  * Jacobian, except it keeps z^2, z^3 for faster additions. */
   201 typedef struct {
   202 	double x[ECFP_MAXDOUBLES];
   203 	double y[ECFP_MAXDOUBLES];
   204 	double z[ECFP_MAXDOUBLES];
   205 	double z2[ECFP_MAXDOUBLES];
   206 	double z3[ECFP_MAXDOUBLES];
   207 } ecfp_chud_pt;
   209 /* Modified Jacobian EC Point. This coordinate system is the same as
   210  * Jacobian, except it keeps a*z^4 for faster doublings. */
   211 typedef struct {
   212 	double x[ECFP_MAXDOUBLES];
   213 	double y[ECFP_MAXDOUBLES];
   214 	double z[ECFP_MAXDOUBLES];
   215 	double az4[ECFP_MAXDOUBLES];
   216 } ecfp_jm_pt;
   218 struct EC_group_fp_str;
   220 typedef struct EC_group_fp_str EC_group_fp;
   221 struct EC_group_fp_str {
   222 	int fpPrecision;			/* Set to number of bits in mantissa, 53
   223 								 * or 64 */
   224 	int numDoubles;
   225 	int primeBitSize;
   226 	int orderBitSize;
   227 	int doubleBitSize;
   228 	int numInts;
   229 	int aIsM3;					/* True if curvea == -3 (mod p), then we
   230 								 * can optimize doubling */
   231 	double curvea[ECFP_MAXDOUBLES];
   232 	/* Used to truncate a double to the number of bits in the curve */
   233 	double bitSize_alpha;
   234 	/* Pointer to either ecfp_alpha_53 or ecfp_alpha_64 */
   235 	const double *alpha;
   237 	void (*ecfp_singleReduce) (double *r, const EC_group_fp * group);
   238 	void (*ecfp_reduce) (double *r, double *x, const EC_group_fp * group);
   239 	/* Performs a "tidy" operation, which performs carrying, moving excess 
   240 	 * bits from one double to the next double, so that the precision of
   241 	 * the doubles is reduced to the regular precision ECFP_DSIZE. This
   242 	 * might result in some float digits being negative. */
   243 	void (*ecfp_tidy) (double *t, const double *alpha,
   244 					   const EC_group_fp * group);
   245 	/* Perform a point addition using coordinate system Jacobian + Affine
   246 	 * -> Jacobian. Input and output should be multi-precision floating
   247 	 * point integers. */
   248 	void (*pt_add_jac_aff) (const ecfp_jac_pt * p, const ecfp_aff_pt * q,
   249 							ecfp_jac_pt * r, const EC_group_fp * group);
   250 	/* Perform a point doubling in Jacobian coordinates. Input and output
   251 	 * should be multi-precision floating point integers. */
   252 	void (*pt_dbl_jac) (const ecfp_jac_pt * dp, ecfp_jac_pt * dr,
   253 						const EC_group_fp * group);
   254 	/* Perform a point addition using Jacobian coordinate system. Input
   255 	 * and output should be multi-precision floating point integers. */
   256 	void (*pt_add_jac) (const ecfp_jac_pt * p, const ecfp_jac_pt * q,
   257 						ecfp_jac_pt * r, const EC_group_fp * group);
   258 	/* Perform a point doubling in Modified Jacobian coordinates. Input
   259 	 * and output should be multi-precision floating point integers. */
   260 	void (*pt_dbl_jm) (const ecfp_jm_pt * p, ecfp_jm_pt * r,
   261 					   const EC_group_fp * group);
   262 	/* Perform a point doubling using coordinates Affine -> Chudnovsky
   263 	 * Jacobian. Input and output should be multi-precision floating point 
   264 	 * integers. */
   265 	void (*pt_dbl_aff2chud) (const ecfp_aff_pt * p, ecfp_chud_pt * r,
   266 							 const EC_group_fp * group);
   267 	/* Perform a point addition using coordinates: Modified Jacobian +
   268 	 * Chudnovsky Jacobian -> Modified Jacobian. Input and output should
   269 	 * be multi-precision floating point integers. */
   270 	void (*pt_add_jm_chud) (ecfp_jm_pt * p, ecfp_chud_pt * q,
   271 							ecfp_jm_pt * r, const EC_group_fp * group);
   272 	/* Perform a point addition using Chudnovsky Jacobian coordinates.
   273 	 * Input and output should be multi-precision floating point integers. 
   274 	 */
   275 	void (*pt_add_chud) (const ecfp_chud_pt * p, const ecfp_chud_pt * q,
   276 						 ecfp_chud_pt * r, const EC_group_fp * group);
   277 	/* Expects out to be an array of size 16 of Chudnovsky Jacobian
   278 	 * points. Fills in Chudnovsky Jacobian form (x, y, z, z^2, z^3), for
   279 	 * -15P, -13P, -11P, -9P, -7P, -5P, -3P, -P, P, 3P, 5P, 7P, 9P, 11P,
   280 	 * 13P, 15P */
   281 	void (*precompute_chud) (ecfp_chud_pt * out, const ecfp_aff_pt * p,
   282 							 const EC_group_fp * group);
   283 	/* Expects out to be an array of size 16 of Jacobian points. Fills in
   284 	 * Chudnovsky Jacobian form (x, y, z), for O, P, 2P, ... 15P */
   285 	void (*precompute_jac) (ecfp_jac_pt * out, const ecfp_aff_pt * p,
   286 							const EC_group_fp * group);
   288 };
   290 /* Computes r = x*y.
   291  * r must be different (point to different memory) than x and y.
   292  * Does not tidy or reduce. */
   293 void ecfp_multiply(double *r, const double *x, const double *y);
   295 /* Performs a "tidy" operation, which performs carrying, moving excess
   296  * bits from one double to the next double, so that the precision of the
   297  * doubles is reduced to the regular precision group->doubleBitSize. This
   298  * might result in some float digits being negative. */
   299 void ecfp_tidy(double *t, const double *alpha, const EC_group_fp * group);
   301 /* Performs tidying on only the upper float digits of a multi-precision
   302  * floating point integer, i.e. the digits beyond the regular length which 
   303  * are removed in the reduction step. */
   304 void ecfp_tidyUpper(double *t, const EC_group_fp * group);
   306 /* Performs tidying on a short multi-precision floating point integer (the 
   307  * lower group->numDoubles floats). */
   308 void ecfp_tidyShort(double *t, const EC_group_fp * group);
   310 /* Performs a more mathematically precise "tidying" so that each term is
   311  * positive.  This is slower than the regular tidying, and is used for
   312  * conversion from floating point to integer. */
   313 void ecfp_positiveTidy(double *t, const EC_group_fp * group);
   315 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
   316  * a, b and p are the elliptic curve coefficients and the prime that
   317  * determines the field GFp.  Elliptic curve points P and R can be
   318  * identical.  Uses mixed Jacobian-affine coordinates. Uses 4-bit window
   319  * method. */
   320 mp_err
   321  ec_GFp_point_mul_jac_4w_fp(const mp_int *n, const mp_int *px,
   322 							const mp_int *py, mp_int *rx, mp_int *ry,
   323 							const ECGroup *ecgroup);
   325 /* Computes R = nP where R is (rx, ry) and P is the base point. The
   326  * parameters a, b and p are the elliptic curve coefficients and the prime 
   327  * that determines the field GFp.  Elliptic curve points P and R can be
   328  * identical.  Uses mixed Jacobian-affine coordinates (Jacobian
   329  * coordinates for doubles and affine coordinates for additions; based on
   330  * recommendation from Brown et al.). Uses window NAF method (algorithm
   331  * 11) for scalar-point multiplication from Brown, Hankerson, Lopez,
   332  * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
   333  * Fields. */
   334 mp_err ec_GFp_point_mul_wNAF_fp(const mp_int *n, const mp_int *px,
   335 								const mp_int *py, mp_int *rx, mp_int *ry,
   336 								const ECGroup *ecgroup);
   338 /* Uses mixed Jacobian-affine coordinates to perform a point
   339  * multiplication: R = n * P, n scalar. Uses mixed Jacobian-affine
   340  * coordinates (Jacobian coordinates for doubles and affine coordinates
   341  * for additions; based on recommendation from Brown et al.). Not very
   342  * time efficient but quite space efficient, no precomputation needed.
   343  * group contains the elliptic curve coefficients and the prime that
   344  * determines the field GFp.  Elliptic curve points P and R can be
   345  * identical. Performs calculations in floating point number format, since 
   346  * this is faster than the integer operations on the ULTRASPARC III.
   347  * Uses left-to-right binary method (double & add) (algorithm 9) for
   348  * scalar-point multiplication from Brown, Hankerson, Lopez, Menezes.
   349  * Software Implementation of the NIST Elliptic Curves Over Prime Fields. */
   350 mp_err
   351  ec_GFp_pt_mul_jac_fp(const mp_int *n, const mp_int *px, const mp_int *py,
   352 					  mp_int *rx, mp_int *ry, const ECGroup *ecgroup);
   354 /* Cleans up extra memory allocated in ECGroup for this implementation. */
   355 void ec_GFp_extra_free_fp(ECGroup *group);
   357 /* Converts from a floating point representation into an mp_int. Expects
   358  * that d is already reduced. */
   359 void
   360  ecfp_fp2i(mp_int *mpout, double *d, const ECGroup *ecgroup);
   362 /* Converts from an mpint into a floating point representation. */
   363 void
   364  ecfp_i2fp(double *out, const mp_int *x, const ECGroup *ecgroup);
   366 /* Tests what precision floating point arithmetic is set to. This should
   367  * be either a 53-bit mantissa (IEEE standard) or a 64-bit mantissa
   368  * (extended precision on x86) and sets it into the EC_group_fp. Returns
   369  * either 53 or 64 accordingly. */
   370 int ec_set_fp_precision(EC_group_fp * group);
   372 #endif

mercurial