security/nss/lib/freebl/ecl/ecp_jac.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /* This Source Code Form is subject to the terms of the Mozilla Public
     2  * License, v. 2.0. If a copy of the MPL was not distributed with this
     3  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     5 #include "ecp.h"
     6 #include "mplogic.h"
     7 #include <stdlib.h>
     8 #ifdef ECL_DEBUG
     9 #include <assert.h>
    10 #endif
    12 /* Converts a point P(px, py) from affine coordinates to Jacobian
    13  * projective coordinates R(rx, ry, rz). Assumes input is already
    14  * field-encoded using field_enc, and returns output that is still
    15  * field-encoded. */
    16 mp_err
    17 ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
    18 				  mp_int *ry, mp_int *rz, const ECGroup *group)
    19 {
    20 	mp_err res = MP_OKAY;
    22 	if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
    23 		MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
    24 	} else {
    25 		MP_CHECKOK(mp_copy(px, rx));
    26 		MP_CHECKOK(mp_copy(py, ry));
    27 		MP_CHECKOK(mp_set_int(rz, 1));
    28 		if (group->meth->field_enc) {
    29 			MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
    30 		}
    31 	}
    32   CLEANUP:
    33 	return res;
    34 }
    36 /* Converts a point P(px, py, pz) from Jacobian projective coordinates to
    37  * affine coordinates R(rx, ry).  P and R can share x and y coordinates.
    38  * Assumes input is already field-encoded using field_enc, and returns
    39  * output that is still field-encoded. */
    40 mp_err
    41 ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz,
    42 				  mp_int *rx, mp_int *ry, const ECGroup *group)
    43 {
    44 	mp_err res = MP_OKAY;
    45 	mp_int z1, z2, z3;
    47 	MP_DIGITS(&z1) = 0;
    48 	MP_DIGITS(&z2) = 0;
    49 	MP_DIGITS(&z3) = 0;
    50 	MP_CHECKOK(mp_init(&z1));
    51 	MP_CHECKOK(mp_init(&z2));
    52 	MP_CHECKOK(mp_init(&z3));
    54 	/* if point at infinity, then set point at infinity and exit */
    55 	if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
    56 		MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry));
    57 		goto CLEANUP;
    58 	}
    60 	/* transform (px, py, pz) into (px / pz^2, py / pz^3) */
    61 	if (mp_cmp_d(pz, 1) == 0) {
    62 		MP_CHECKOK(mp_copy(px, rx));
    63 		MP_CHECKOK(mp_copy(py, ry));
    64 	} else {
    65 		MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth));
    66 		MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth));
    67 		MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth));
    68 		MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth));
    69 		MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth));
    70 	}
    72   CLEANUP:
    73 	mp_clear(&z1);
    74 	mp_clear(&z2);
    75 	mp_clear(&z3);
    76 	return res;
    77 }
    79 /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
    80  * coordinates. */
    81 mp_err
    82 ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz)
    83 {
    84 	return mp_cmp_z(pz);
    85 }
    87 /* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
    88  * coordinates. */
    89 mp_err
    90 ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz)
    91 {
    92 	mp_zero(pz);
    93 	return MP_OKAY;
    94 }
    96 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
    97  * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
    98  * Uses mixed Jacobian-affine coordinates. Assumes input is already
    99  * field-encoded using field_enc, and returns output that is still
   100  * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
   101  * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
   102  * Fields. */
   103 mp_err
   104 ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
   105 					  const mp_int *qx, const mp_int *qy, mp_int *rx,
   106 					  mp_int *ry, mp_int *rz, const ECGroup *group)
   107 {
   108 	mp_err res = MP_OKAY;
   109 	mp_int A, B, C, D, C2, C3;
   111 	MP_DIGITS(&A) = 0;
   112 	MP_DIGITS(&B) = 0;
   113 	MP_DIGITS(&C) = 0;
   114 	MP_DIGITS(&D) = 0;
   115 	MP_DIGITS(&C2) = 0;
   116 	MP_DIGITS(&C3) = 0;
   117 	MP_CHECKOK(mp_init(&A));
   118 	MP_CHECKOK(mp_init(&B));
   119 	MP_CHECKOK(mp_init(&C));
   120 	MP_CHECKOK(mp_init(&D));
   121 	MP_CHECKOK(mp_init(&C2));
   122 	MP_CHECKOK(mp_init(&C3));
   124 	/* If either P or Q is the point at infinity, then return the other
   125 	 * point */
   126 	if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
   127 		MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
   128 		goto CLEANUP;
   129 	}
   130 	if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
   131 		MP_CHECKOK(mp_copy(px, rx));
   132 		MP_CHECKOK(mp_copy(py, ry));
   133 		MP_CHECKOK(mp_copy(pz, rz));
   134 		goto CLEANUP;
   135 	}
   137 	/* A = qx * pz^2, B = qy * pz^3 */
   138 	MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth));
   139 	MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth));
   140 	MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
   141 	MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));
   143 	/* C = A - px, D = B - py */
   144 	MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth));
   145 	MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth));
   147 	/* C2 = C^2, C3 = C^3 */
   148 	MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth));
   149 	MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth));
   151 	/* rz = pz * C */
   152 	MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth));
   154 	/* C = px * C^2 */
   155 	MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth));
   156 	/* A = D^2 */
   157 	MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth));
   159 	/* rx = D^2 - (C^3 + 2 * (px * C^2)) */
   160 	MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth));
   161 	MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth));
   162 	MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth));
   164 	/* C3 = py * C^3 */
   165 	MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth));
   167 	/* ry = D * (px * C^2 - rx) - py * C^3 */
   168 	MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth));
   169 	MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth));
   170 	MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth));
   172   CLEANUP:
   173 	mp_clear(&A);
   174 	mp_clear(&B);
   175 	mp_clear(&C);
   176 	mp_clear(&D);
   177 	mp_clear(&C2);
   178 	mp_clear(&C3);
   179 	return res;
   180 }
   182 /* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses 
   183  * Jacobian coordinates.
   184  *
   185  * Assumes input is already field-encoded using field_enc, and returns 
   186  * output that is still field-encoded.
   187  *
   188  * This routine implements Point Doubling in the Jacobian Projective 
   189  * space as described in the paper "Efficient elliptic curve exponentiation 
   190  * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
   191  */
   192 mp_err
   193 ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz,
   194 				  mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group)
   195 {
   196 	mp_err res = MP_OKAY;
   197 	mp_int t0, t1, M, S;
   199 	MP_DIGITS(&t0) = 0;
   200 	MP_DIGITS(&t1) = 0;
   201 	MP_DIGITS(&M) = 0;
   202 	MP_DIGITS(&S) = 0;
   203 	MP_CHECKOK(mp_init(&t0));
   204 	MP_CHECKOK(mp_init(&t1));
   205 	MP_CHECKOK(mp_init(&M));
   206 	MP_CHECKOK(mp_init(&S));
   208 	if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
   209 		MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
   210 		goto CLEANUP;
   211 	}
   213 	if (mp_cmp_d(pz, 1) == 0) {
   214 		/* M = 3 * px^2 + a */
   215 		MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
   216 		MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
   217 		MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
   218 		MP_CHECKOK(group->meth->
   219 				   field_add(&t0, &group->curvea, &M, group->meth));
   220 	} else if (mp_cmp_int(&group->curvea, -3) == 0) {
   221 		/* M = 3 * (px + pz^2) * (px - pz^2) */
   222 		MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
   223 		MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth));
   224 		MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth));
   225 		MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth));
   226 		MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth));
   227 		MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth));
   228 	} else {
   229 		/* M = 3 * (px^2) + a * (pz^4) */
   230 		MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
   231 		MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
   232 		MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
   233 		MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
   234 		MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth));
   235 		MP_CHECKOK(group->meth->
   236 				   field_mul(&M, &group->curvea, &M, group->meth));
   237 		MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth));
   238 	}
   240 	/* rz = 2 * py * pz */
   241 	/* t0 = 4 * py^2 */
   242 	if (mp_cmp_d(pz, 1) == 0) {
   243 		MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth));
   244 		MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth));
   245 	} else {
   246 		MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth));
   247 		MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth));
   248 		MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth));
   249 	}
   251 	/* S = 4 * px * py^2 = px * (2 * py)^2 */
   252 	MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth));
   254 	/* rx = M^2 - 2 * S */
   255 	MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth));
   256 	MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth));
   257 	MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth));
   259 	/* ry = M * (S - rx) - 8 * py^4 */
   260 	MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth));
   261 	if (mp_isodd(&t1)) {
   262 		MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1));
   263 	}
   264 	MP_CHECKOK(mp_div_2(&t1, &t1));
   265 	MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth));
   266 	MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth));
   267 	MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth));
   269   CLEANUP:
   270 	mp_clear(&t0);
   271 	mp_clear(&t1);
   272 	mp_clear(&M);
   273 	mp_clear(&S);
   274 	return res;
   275 }
   277 /* by default, this routine is unused and thus doesn't need to be compiled */
   278 #ifdef ECL_ENABLE_GFP_PT_MUL_JAC
   279 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
   280  * a, b and p are the elliptic curve coefficients and the prime that
   281  * determines the field GFp.  Elliptic curve points P and R can be
   282  * identical.  Uses mixed Jacobian-affine coordinates. Assumes input is
   283  * already field-encoded using field_enc, and returns output that is still 
   284  * field-encoded. Uses 4-bit window method. */
   285 mp_err
   286 ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
   287 				  mp_int *rx, mp_int *ry, const ECGroup *group)
   288 {
   289 	mp_err res = MP_OKAY;
   290 	mp_int precomp[16][2], rz;
   291 	int i, ni, d;
   293 	MP_DIGITS(&rz) = 0;
   294 	for (i = 0; i < 16; i++) {
   295 		MP_DIGITS(&precomp[i][0]) = 0;
   296 		MP_DIGITS(&precomp[i][1]) = 0;
   297 	}
   299 	ARGCHK(group != NULL, MP_BADARG);
   300 	ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
   302 	/* initialize precomputation table */
   303 	for (i = 0; i < 16; i++) {
   304 		MP_CHECKOK(mp_init(&precomp[i][0]));
   305 		MP_CHECKOK(mp_init(&precomp[i][1]));
   306 	}
   308 	/* fill precomputation table */
   309 	mp_zero(&precomp[0][0]);
   310 	mp_zero(&precomp[0][1]);
   311 	MP_CHECKOK(mp_copy(px, &precomp[1][0]));
   312 	MP_CHECKOK(mp_copy(py, &precomp[1][1]));
   313 	for (i = 2; i < 16; i++) {
   314 		MP_CHECKOK(group->
   315 				   point_add(&precomp[1][0], &precomp[1][1],
   316 							 &precomp[i - 1][0], &precomp[i - 1][1],
   317 							 &precomp[i][0], &precomp[i][1], group));
   318 	}
   320 	d = (mpl_significant_bits(n) + 3) / 4;
   322 	/* R = inf */
   323 	MP_CHECKOK(mp_init(&rz));
   324 	MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
   326 	for (i = d - 1; i >= 0; i--) {
   327 		/* compute window ni */
   328 		ni = MP_GET_BIT(n, 4 * i + 3);
   329 		ni <<= 1;
   330 		ni |= MP_GET_BIT(n, 4 * i + 2);
   331 		ni <<= 1;
   332 		ni |= MP_GET_BIT(n, 4 * i + 1);
   333 		ni <<= 1;
   334 		ni |= MP_GET_BIT(n, 4 * i);
   335 		/* R = 2^4 * R */
   336 		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
   337 		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
   338 		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
   339 		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
   340 		/* R = R + (ni * P) */
   341 		MP_CHECKOK(ec_GFp_pt_add_jac_aff
   342 				   (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
   343 					&rz, group));
   344 	}
   346 	/* convert result S to affine coordinates */
   347 	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
   349   CLEANUP:
   350 	mp_clear(&rz);
   351 	for (i = 0; i < 16; i++) {
   352 		mp_clear(&precomp[i][0]);
   353 		mp_clear(&precomp[i][1]);
   354 	}
   355 	return res;
   356 }
   357 #endif
   359 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
   360  * k2 * P(x, y), where G is the generator (base point) of the group of
   361  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
   362  * Uses mixed Jacobian-affine coordinates. Input and output values are
   363  * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
   364  * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
   365  * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
   366 mp_err
   367 ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
   368 				   const mp_int *py, mp_int *rx, mp_int *ry,
   369 				   const ECGroup *group)
   370 {
   371 	mp_err res = MP_OKAY;
   372 	mp_int precomp[4][4][2];
   373 	mp_int rz;
   374 	const mp_int *a, *b;
   375 	int i, j;
   376 	int ai, bi, d;
   378 	for (i = 0; i < 4; i++) {
   379 		for (j = 0; j < 4; j++) {
   380 			MP_DIGITS(&precomp[i][j][0]) = 0;
   381 			MP_DIGITS(&precomp[i][j][1]) = 0;
   382 		}
   383 	}
   384 	MP_DIGITS(&rz) = 0;
   386 	ARGCHK(group != NULL, MP_BADARG);
   387 	ARGCHK(!((k1 == NULL)
   388 			 && ((k2 == NULL) || (px == NULL)
   389 				 || (py == NULL))), MP_BADARG);
   391 	/* if some arguments are not defined used ECPoint_mul */
   392 	if (k1 == NULL) {
   393 		return ECPoint_mul(group, k2, px, py, rx, ry);
   394 	} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
   395 		return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
   396 	}
   398 	/* initialize precomputation table */
   399 	for (i = 0; i < 4; i++) {
   400 		for (j = 0; j < 4; j++) {
   401 			MP_CHECKOK(mp_init(&precomp[i][j][0]));
   402 			MP_CHECKOK(mp_init(&precomp[i][j][1]));
   403 		}
   404 	}
   406 	/* fill precomputation table */
   407 	/* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
   408 	if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
   409 		a = k2;
   410 		b = k1;
   411 		if (group->meth->field_enc) {
   412 			MP_CHECKOK(group->meth->
   413 					   field_enc(px, &precomp[1][0][0], group->meth));
   414 			MP_CHECKOK(group->meth->
   415 					   field_enc(py, &precomp[1][0][1], group->meth));
   416 		} else {
   417 			MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
   418 			MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
   419 		}
   420 		MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
   421 		MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
   422 	} else {
   423 		a = k1;
   424 		b = k2;
   425 		MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
   426 		MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
   427 		if (group->meth->field_enc) {
   428 			MP_CHECKOK(group->meth->
   429 					   field_enc(px, &precomp[0][1][0], group->meth));
   430 			MP_CHECKOK(group->meth->
   431 					   field_enc(py, &precomp[0][1][1], group->meth));
   432 		} else {
   433 			MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
   434 			MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
   435 		}
   436 	}
   437 	/* precompute [*][0][*] */
   438 	mp_zero(&precomp[0][0][0]);
   439 	mp_zero(&precomp[0][0][1]);
   440 	MP_CHECKOK(group->
   441 			   point_dbl(&precomp[1][0][0], &precomp[1][0][1],
   442 						 &precomp[2][0][0], &precomp[2][0][1], group));
   443 	MP_CHECKOK(group->
   444 			   point_add(&precomp[1][0][0], &precomp[1][0][1],
   445 						 &precomp[2][0][0], &precomp[2][0][1],
   446 						 &precomp[3][0][0], &precomp[3][0][1], group));
   447 	/* precompute [*][1][*] */
   448 	for (i = 1; i < 4; i++) {
   449 		MP_CHECKOK(group->
   450 				   point_add(&precomp[0][1][0], &precomp[0][1][1],
   451 							 &precomp[i][0][0], &precomp[i][0][1],
   452 							 &precomp[i][1][0], &precomp[i][1][1], group));
   453 	}
   454 	/* precompute [*][2][*] */
   455 	MP_CHECKOK(group->
   456 			   point_dbl(&precomp[0][1][0], &precomp[0][1][1],
   457 						 &precomp[0][2][0], &precomp[0][2][1], group));
   458 	for (i = 1; i < 4; i++) {
   459 		MP_CHECKOK(group->
   460 				   point_add(&precomp[0][2][0], &precomp[0][2][1],
   461 							 &precomp[i][0][0], &precomp[i][0][1],
   462 							 &precomp[i][2][0], &precomp[i][2][1], group));
   463 	}
   464 	/* precompute [*][3][*] */
   465 	MP_CHECKOK(group->
   466 			   point_add(&precomp[0][1][0], &precomp[0][1][1],
   467 						 &precomp[0][2][0], &precomp[0][2][1],
   468 						 &precomp[0][3][0], &precomp[0][3][1], group));
   469 	for (i = 1; i < 4; i++) {
   470 		MP_CHECKOK(group->
   471 				   point_add(&precomp[0][3][0], &precomp[0][3][1],
   472 							 &precomp[i][0][0], &precomp[i][0][1],
   473 							 &precomp[i][3][0], &precomp[i][3][1], group));
   474 	}
   476 	d = (mpl_significant_bits(a) + 1) / 2;
   478 	/* R = inf */
   479 	MP_CHECKOK(mp_init(&rz));
   480 	MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
   482 	for (i = d - 1; i >= 0; i--) {
   483 		ai = MP_GET_BIT(a, 2 * i + 1);
   484 		ai <<= 1;
   485 		ai |= MP_GET_BIT(a, 2 * i);
   486 		bi = MP_GET_BIT(b, 2 * i + 1);
   487 		bi <<= 1;
   488 		bi |= MP_GET_BIT(b, 2 * i);
   489 		/* R = 2^2 * R */
   490 		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
   491 		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
   492 		/* R = R + (ai * A + bi * B) */
   493 		MP_CHECKOK(ec_GFp_pt_add_jac_aff
   494 				   (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
   495 					rx, ry, &rz, group));
   496 	}
   498 	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
   500 	if (group->meth->field_dec) {
   501 		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
   502 		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
   503 	}
   505   CLEANUP:
   506 	mp_clear(&rz);
   507 	for (i = 0; i < 4; i++) {
   508 		for (j = 0; j < 4; j++) {
   509 			mp_clear(&precomp[i][j][0]);
   510 			mp_clear(&precomp[i][j][1]);
   511 		}
   512 	}
   513 	return res;
   514 }

mercurial