Thu, 22 Jan 2015 13:21:57 +0100
Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6
1 /*
2 * sieve.c
3 *
4 * Finds prime numbers using the Sieve of Eratosthenes
5 *
6 * This implementation uses a bitmap to represent all odd integers in a
7 * given range. We iterate over this bitmap, crossing off the
8 * multiples of each prime we find. At the end, all the remaining set
9 * bits correspond to prime integers.
10 *
11 * Here, we make two passes -- once we have generated a sieve-ful of
12 * primes, we copy them out, reset the sieve using the highest
13 * generated prime from the first pass as a base. Then we cross out
14 * all the multiples of all the primes we found the first time through,
15 * and re-sieve. In this way, we get double use of the memory we
16 * allocated for the sieve the first time though. Since we also
17 * implicitly ignore multiples of 2, this amounts to 4 times the
18 * values.
19 *
20 * This could (and probably will) be generalized to re-use the sieve a
21 * few more times.
22 *
23 * This Source Code Form is subject to the terms of the Mozilla Public
24 * License, v. 2.0. If a copy of the MPL was not distributed with this
25 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
27 #include <stdio.h>
28 #include <stdlib.h>
29 #include <limits.h>
31 typedef unsigned char byte;
33 typedef struct {
34 int size;
35 byte *bits;
36 long base;
37 int next;
38 int nbits;
39 } sieve;
41 void sieve_init(sieve *sp, long base, int nbits);
42 void sieve_grow(sieve *sp, int nbits);
43 long sieve_next(sieve *sp);
44 void sieve_reset(sieve *sp, long base);
45 void sieve_cross(sieve *sp, long val);
46 void sieve_clear(sieve *sp);
48 #define S_ISSET(S, B) (((S)->bits[(B)/CHAR_BIT]>>((B)%CHAR_BIT))&1)
49 #define S_SET(S, B) ((S)->bits[(B)/CHAR_BIT]|=(1<<((B)%CHAR_BIT)))
50 #define S_CLR(S, B) ((S)->bits[(B)/CHAR_BIT]&=~(1<<((B)%CHAR_BIT)))
51 #define S_VAL(S, B) ((S)->base+(2*(B)))
52 #define S_BIT(S, V) (((V)-((S)->base))/2)
54 int main(int argc, char *argv[])
55 {
56 sieve s;
57 long pr, *p;
58 int c, ix, cur = 0;
60 if(argc < 2) {
61 fprintf(stderr, "Usage: %s <width>\n", argv[0]);
62 return 1;
63 }
65 c = atoi(argv[1]);
66 if(c < 0) c = -c;
68 fprintf(stderr, "%s: sieving to %d positions\n", argv[0], c);
70 sieve_init(&s, 3, c);
72 c = 0;
73 while((pr = sieve_next(&s)) > 0) {
74 ++c;
75 }
77 p = calloc(c, sizeof(long));
78 if(!p) {
79 fprintf(stderr, "%s: out of memory after first half\n", argv[0]);
80 sieve_clear(&s);
81 exit(1);
82 }
84 fprintf(stderr, "%s: half done ... \n", argv[0]);
86 for(ix = 0; ix < s.nbits; ix++) {
87 if(S_ISSET(&s, ix)) {
88 p[cur] = S_VAL(&s, ix);
89 printf("%ld\n", p[cur]);
90 ++cur;
91 }
92 }
94 sieve_reset(&s, p[cur - 1]);
95 fprintf(stderr, "%s: crossing off %d found primes ... \n", argv[0], cur);
96 for(ix = 0; ix < cur; ix++) {
97 sieve_cross(&s, p[ix]);
98 if(!(ix % 1000))
99 fputc('.', stderr);
100 }
101 fputc('\n', stderr);
103 free(p);
105 fprintf(stderr, "%s: sieving again from %ld ... \n", argv[0], p[cur - 1]);
106 c = 0;
107 while((pr = sieve_next(&s)) > 0) {
108 ++c;
109 }
111 fprintf(stderr, "%s: done!\n", argv[0]);
112 for(ix = 0; ix < s.nbits; ix++) {
113 if(S_ISSET(&s, ix)) {
114 printf("%ld\n", S_VAL(&s, ix));
115 }
116 }
118 sieve_clear(&s);
120 return 0;
121 }
123 void sieve_init(sieve *sp, long base, int nbits)
124 {
125 sp->size = (nbits / CHAR_BIT);
127 if(nbits % CHAR_BIT)
128 ++sp->size;
130 sp->bits = calloc(sp->size, sizeof(byte));
131 memset(sp->bits, UCHAR_MAX, sp->size);
132 if(!(base & 1))
133 ++base;
134 sp->base = base;
136 sp->next = 0;
137 sp->nbits = sp->size * CHAR_BIT;
138 }
140 void sieve_grow(sieve *sp, int nbits)
141 {
142 int ns = (nbits / CHAR_BIT);
144 if(nbits % CHAR_BIT)
145 ++ns;
147 if(ns > sp->size) {
148 byte *tmp;
149 int ix;
151 tmp = calloc(ns, sizeof(byte));
152 if(tmp == NULL) {
153 fprintf(stderr, "Error: out of memory in sieve_grow\n");
154 return;
155 }
157 memcpy(tmp, sp->bits, sp->size);
158 for(ix = sp->size; ix < ns; ix++) {
159 tmp[ix] = UCHAR_MAX;
160 }
162 free(sp->bits);
163 sp->bits = tmp;
164 sp->size = ns;
166 sp->nbits = sp->size * CHAR_BIT;
167 }
168 }
170 long sieve_next(sieve *sp)
171 {
172 long out;
173 int ix = 0;
174 long val;
176 if(sp->next > sp->nbits)
177 return -1;
179 out = S_VAL(sp, sp->next);
180 #ifdef DEBUG
181 fprintf(stderr, "Sieving %ld\n", out);
182 #endif
184 /* Sieve out all multiples of the current prime */
185 val = out;
186 while(ix < sp->nbits) {
187 val += out;
188 ix = S_BIT(sp, val);
189 if((val & 1) && ix < sp->nbits) { /* && S_ISSET(sp, ix)) { */
190 S_CLR(sp, ix);
191 #ifdef DEBUG
192 fprintf(stderr, "Crossing out %ld (bit %d)\n", val, ix);
193 #endif
194 }
195 }
197 /* Scan ahead to the next prime */
198 ++sp->next;
199 while(sp->next < sp->nbits && !S_ISSET(sp, sp->next))
200 ++sp->next;
202 return out;
203 }
205 void sieve_cross(sieve *sp, long val)
206 {
207 int ix = 0;
208 long cur = val;
210 while(cur < sp->base)
211 cur += val;
213 ix = S_BIT(sp, cur);
214 while(ix < sp->nbits) {
215 if(cur & 1)
216 S_CLR(sp, ix);
217 cur += val;
218 ix = S_BIT(sp, cur);
219 }
220 }
222 void sieve_reset(sieve *sp, long base)
223 {
224 memset(sp->bits, UCHAR_MAX, sp->size);
225 sp->base = base;
226 sp->next = 0;
227 }
229 void sieve_clear(sieve *sp)
230 {
231 if(sp->bits)
232 free(sp->bits);
234 sp->bits = NULL;
235 }