security/nss/lib/zlib/trees.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /* trees.c -- output deflated data using Huffman coding
     2  * Copyright (C) 1995-2010 Jean-loup Gailly
     3  * detect_data_type() function provided freely by Cosmin Truta, 2006
     4  * For conditions of distribution and use, see copyright notice in zlib.h
     5  */
     7 /*
     8  *  ALGORITHM
     9  *
    10  *      The "deflation" process uses several Huffman trees. The more
    11  *      common source values are represented by shorter bit sequences.
    12  *
    13  *      Each code tree is stored in a compressed form which is itself
    14  * a Huffman encoding of the lengths of all the code strings (in
    15  * ascending order by source values).  The actual code strings are
    16  * reconstructed from the lengths in the inflate process, as described
    17  * in the deflate specification.
    18  *
    19  *  REFERENCES
    20  *
    21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
    22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
    23  *
    24  *      Storer, James A.
    25  *          Data Compression:  Methods and Theory, pp. 49-50.
    26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
    27  *
    28  *      Sedgewick, R.
    29  *          Algorithms, p290.
    30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
    31  */
    33 /* @(#) $Id$ */
    35 /* #define GEN_TREES_H */
    37 #include "deflate.h"
    39 #ifdef DEBUG
    40 #  include <ctype.h>
    41 #endif
    43 /* ===========================================================================
    44  * Constants
    45  */
    47 #define MAX_BL_BITS 7
    48 /* Bit length codes must not exceed MAX_BL_BITS bits */
    50 #define END_BLOCK 256
    51 /* end of block literal code */
    53 #define REP_3_6      16
    54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
    56 #define REPZ_3_10    17
    57 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
    59 #define REPZ_11_138  18
    60 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
    62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
    63    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
    65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
    66    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
    68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
    69    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
    71 local const uch bl_order[BL_CODES]
    72    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
    73 /* The lengths of the bit length codes are sent in order of decreasing
    74  * probability, to avoid transmitting the lengths for unused bit length codes.
    75  */
    77 #define Buf_size (8 * 2*sizeof(char))
    78 /* Number of bits used within bi_buf. (bi_buf might be implemented on
    79  * more than 16 bits on some systems.)
    80  */
    82 /* ===========================================================================
    83  * Local data. These are initialized only once.
    84  */
    86 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
    88 #if defined(GEN_TREES_H) || !defined(STDC)
    89 /* non ANSI compilers may not accept trees.h */
    91 local ct_data static_ltree[L_CODES+2];
    92 /* The static literal tree. Since the bit lengths are imposed, there is no
    93  * need for the L_CODES extra codes used during heap construction. However
    94  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
    95  * below).
    96  */
    98 local ct_data static_dtree[D_CODES];
    99 /* The static distance tree. (Actually a trivial tree since all codes use
   100  * 5 bits.)
   101  */
   103 uch _dist_code[DIST_CODE_LEN];
   104 /* Distance codes. The first 256 values correspond to the distances
   105  * 3 .. 258, the last 256 values correspond to the top 8 bits of
   106  * the 15 bit distances.
   107  */
   109 uch _length_code[MAX_MATCH-MIN_MATCH+1];
   110 /* length code for each normalized match length (0 == MIN_MATCH) */
   112 local int base_length[LENGTH_CODES];
   113 /* First normalized length for each code (0 = MIN_MATCH) */
   115 local int base_dist[D_CODES];
   116 /* First normalized distance for each code (0 = distance of 1) */
   118 #else
   119 #  include "trees.h"
   120 #endif /* GEN_TREES_H */
   122 struct static_tree_desc_s {
   123     const ct_data *static_tree;  /* static tree or NULL */
   124     const intf *extra_bits;      /* extra bits for each code or NULL */
   125     int     extra_base;          /* base index for extra_bits */
   126     int     elems;               /* max number of elements in the tree */
   127     int     max_length;          /* max bit length for the codes */
   128 };
   130 local static_tree_desc  static_l_desc =
   131 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
   133 local static_tree_desc  static_d_desc =
   134 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
   136 local static_tree_desc  static_bl_desc =
   137 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
   139 /* ===========================================================================
   140  * Local (static) routines in this file.
   141  */
   143 local void tr_static_init OF((void));
   144 local void init_block     OF((deflate_state *s));
   145 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
   146 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
   147 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
   148 local void build_tree     OF((deflate_state *s, tree_desc *desc));
   149 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
   150 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
   151 local int  build_bl_tree  OF((deflate_state *s));
   152 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
   153                               int blcodes));
   154 local void compress_block OF((deflate_state *s, ct_data *ltree,
   155                               ct_data *dtree));
   156 local int  detect_data_type OF((deflate_state *s));
   157 local unsigned bi_reverse OF((unsigned value, int length));
   158 local void bi_windup      OF((deflate_state *s));
   159 local void bi_flush       OF((deflate_state *s));
   160 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
   161                               int header));
   163 #ifdef GEN_TREES_H
   164 local void gen_trees_header OF((void));
   165 #endif
   167 #ifndef DEBUG
   168 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
   169    /* Send a code of the given tree. c and tree must not have side effects */
   171 #else /* DEBUG */
   172 #  define send_code(s, c, tree) \
   173      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
   174        send_bits(s, tree[c].Code, tree[c].Len); }
   175 #endif
   177 /* ===========================================================================
   178  * Output a short LSB first on the stream.
   179  * IN assertion: there is enough room in pendingBuf.
   180  */
   181 #define put_short(s, w) { \
   182     put_byte(s, (uch)((w) & 0xff)); \
   183     put_byte(s, (uch)((ush)(w) >> 8)); \
   184 }
   186 /* ===========================================================================
   187  * Send a value on a given number of bits.
   188  * IN assertion: length <= 16 and value fits in length bits.
   189  */
   190 #ifdef DEBUG
   191 local void send_bits      OF((deflate_state *s, int value, int length));
   193 local void send_bits(s, value, length)
   194     deflate_state *s;
   195     int value;  /* value to send */
   196     int length; /* number of bits */
   197 {
   198     Tracevv((stderr," l %2d v %4x ", length, value));
   199     Assert(length > 0 && length <= 15, "invalid length");
   200     s->bits_sent += (ulg)length;
   202     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
   203      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
   204      * unused bits in value.
   205      */
   206     if (s->bi_valid > (int)Buf_size - length) {
   207         s->bi_buf |= (ush)value << s->bi_valid;
   208         put_short(s, s->bi_buf);
   209         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
   210         s->bi_valid += length - Buf_size;
   211     } else {
   212         s->bi_buf |= (ush)value << s->bi_valid;
   213         s->bi_valid += length;
   214     }
   215 }
   216 #else /* !DEBUG */
   218 #define send_bits(s, value, length) \
   219 { int len = length;\
   220   if (s->bi_valid > (int)Buf_size - len) {\
   221     int val = value;\
   222     s->bi_buf |= (ush)val << s->bi_valid;\
   223     put_short(s, s->bi_buf);\
   224     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
   225     s->bi_valid += len - Buf_size;\
   226   } else {\
   227     s->bi_buf |= (ush)(value) << s->bi_valid;\
   228     s->bi_valid += len;\
   229   }\
   230 }
   231 #endif /* DEBUG */
   234 /* the arguments must not have side effects */
   236 /* ===========================================================================
   237  * Initialize the various 'constant' tables.
   238  */
   239 local void tr_static_init()
   240 {
   241 #if defined(GEN_TREES_H) || !defined(STDC)
   242     static int static_init_done = 0;
   243     int n;        /* iterates over tree elements */
   244     int bits;     /* bit counter */
   245     int length;   /* length value */
   246     int code;     /* code value */
   247     int dist;     /* distance index */
   248     ush bl_count[MAX_BITS+1];
   249     /* number of codes at each bit length for an optimal tree */
   251     if (static_init_done) return;
   253     /* For some embedded targets, global variables are not initialized: */
   254 #ifdef NO_INIT_GLOBAL_POINTERS
   255     static_l_desc.static_tree = static_ltree;
   256     static_l_desc.extra_bits = extra_lbits;
   257     static_d_desc.static_tree = static_dtree;
   258     static_d_desc.extra_bits = extra_dbits;
   259     static_bl_desc.extra_bits = extra_blbits;
   260 #endif
   262     /* Initialize the mapping length (0..255) -> length code (0..28) */
   263     length = 0;
   264     for (code = 0; code < LENGTH_CODES-1; code++) {
   265         base_length[code] = length;
   266         for (n = 0; n < (1<<extra_lbits[code]); n++) {
   267             _length_code[length++] = (uch)code;
   268         }
   269     }
   270     Assert (length == 256, "tr_static_init: length != 256");
   271     /* Note that the length 255 (match length 258) can be represented
   272      * in two different ways: code 284 + 5 bits or code 285, so we
   273      * overwrite length_code[255] to use the best encoding:
   274      */
   275     _length_code[length-1] = (uch)code;
   277     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
   278     dist = 0;
   279     for (code = 0 ; code < 16; code++) {
   280         base_dist[code] = dist;
   281         for (n = 0; n < (1<<extra_dbits[code]); n++) {
   282             _dist_code[dist++] = (uch)code;
   283         }
   284     }
   285     Assert (dist == 256, "tr_static_init: dist != 256");
   286     dist >>= 7; /* from now on, all distances are divided by 128 */
   287     for ( ; code < D_CODES; code++) {
   288         base_dist[code] = dist << 7;
   289         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
   290             _dist_code[256 + dist++] = (uch)code;
   291         }
   292     }
   293     Assert (dist == 256, "tr_static_init: 256+dist != 512");
   295     /* Construct the codes of the static literal tree */
   296     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
   297     n = 0;
   298     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
   299     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
   300     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
   301     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
   302     /* Codes 286 and 287 do not exist, but we must include them in the
   303      * tree construction to get a canonical Huffman tree (longest code
   304      * all ones)
   305      */
   306     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
   308     /* The static distance tree is trivial: */
   309     for (n = 0; n < D_CODES; n++) {
   310         static_dtree[n].Len = 5;
   311         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
   312     }
   313     static_init_done = 1;
   315 #  ifdef GEN_TREES_H
   316     gen_trees_header();
   317 #  endif
   318 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
   319 }
   321 /* ===========================================================================
   322  * Genererate the file trees.h describing the static trees.
   323  */
   324 #ifdef GEN_TREES_H
   325 #  ifndef DEBUG
   326 #    include <stdio.h>
   327 #  endif
   329 #  define SEPARATOR(i, last, width) \
   330       ((i) == (last)? "\n};\n\n" :    \
   331        ((i) % (width) == (width)-1 ? ",\n" : ", "))
   333 void gen_trees_header()
   334 {
   335     FILE *header = fopen("trees.h", "w");
   336     int i;
   338     Assert (header != NULL, "Can't open trees.h");
   339     fprintf(header,
   340             "/* header created automatically with -DGEN_TREES_H */\n\n");
   342     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
   343     for (i = 0; i < L_CODES+2; i++) {
   344         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
   345                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
   346     }
   348     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
   349     for (i = 0; i < D_CODES; i++) {
   350         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
   351                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
   352     }
   354     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
   355     for (i = 0; i < DIST_CODE_LEN; i++) {
   356         fprintf(header, "%2u%s", _dist_code[i],
   357                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
   358     }
   360     fprintf(header,
   361         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
   362     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
   363         fprintf(header, "%2u%s", _length_code[i],
   364                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
   365     }
   367     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
   368     for (i = 0; i < LENGTH_CODES; i++) {
   369         fprintf(header, "%1u%s", base_length[i],
   370                 SEPARATOR(i, LENGTH_CODES-1, 20));
   371     }
   373     fprintf(header, "local const int base_dist[D_CODES] = {\n");
   374     for (i = 0; i < D_CODES; i++) {
   375         fprintf(header, "%5u%s", base_dist[i],
   376                 SEPARATOR(i, D_CODES-1, 10));
   377     }
   379     fclose(header);
   380 }
   381 #endif /* GEN_TREES_H */
   383 /* ===========================================================================
   384  * Initialize the tree data structures for a new zlib stream.
   385  */
   386 void ZLIB_INTERNAL _tr_init(s)
   387     deflate_state *s;
   388 {
   389     tr_static_init();
   391     s->l_desc.dyn_tree = s->dyn_ltree;
   392     s->l_desc.stat_desc = &static_l_desc;
   394     s->d_desc.dyn_tree = s->dyn_dtree;
   395     s->d_desc.stat_desc = &static_d_desc;
   397     s->bl_desc.dyn_tree = s->bl_tree;
   398     s->bl_desc.stat_desc = &static_bl_desc;
   400     s->bi_buf = 0;
   401     s->bi_valid = 0;
   402     s->last_eob_len = 8; /* enough lookahead for inflate */
   403 #ifdef DEBUG
   404     s->compressed_len = 0L;
   405     s->bits_sent = 0L;
   406 #endif
   408     /* Initialize the first block of the first file: */
   409     init_block(s);
   410 }
   412 /* ===========================================================================
   413  * Initialize a new block.
   414  */
   415 local void init_block(s)
   416     deflate_state *s;
   417 {
   418     int n; /* iterates over tree elements */
   420     /* Initialize the trees. */
   421     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
   422     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
   423     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
   425     s->dyn_ltree[END_BLOCK].Freq = 1;
   426     s->opt_len = s->static_len = 0L;
   427     s->last_lit = s->matches = 0;
   428 }
   430 #define SMALLEST 1
   431 /* Index within the heap array of least frequent node in the Huffman tree */
   434 /* ===========================================================================
   435  * Remove the smallest element from the heap and recreate the heap with
   436  * one less element. Updates heap and heap_len.
   437  */
   438 #define pqremove(s, tree, top) \
   439 {\
   440     top = s->heap[SMALLEST]; \
   441     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
   442     pqdownheap(s, tree, SMALLEST); \
   443 }
   445 /* ===========================================================================
   446  * Compares to subtrees, using the tree depth as tie breaker when
   447  * the subtrees have equal frequency. This minimizes the worst case length.
   448  */
   449 #define smaller(tree, n, m, depth) \
   450    (tree[n].Freq < tree[m].Freq || \
   451    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
   453 /* ===========================================================================
   454  * Restore the heap property by moving down the tree starting at node k,
   455  * exchanging a node with the smallest of its two sons if necessary, stopping
   456  * when the heap property is re-established (each father smaller than its
   457  * two sons).
   458  */
   459 local void pqdownheap(s, tree, k)
   460     deflate_state *s;
   461     ct_data *tree;  /* the tree to restore */
   462     int k;               /* node to move down */
   463 {
   464     int v = s->heap[k];
   465     int j = k << 1;  /* left son of k */
   466     while (j <= s->heap_len) {
   467         /* Set j to the smallest of the two sons: */
   468         if (j < s->heap_len &&
   469             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
   470             j++;
   471         }
   472         /* Exit if v is smaller than both sons */
   473         if (smaller(tree, v, s->heap[j], s->depth)) break;
   475         /* Exchange v with the smallest son */
   476         s->heap[k] = s->heap[j];  k = j;
   478         /* And continue down the tree, setting j to the left son of k */
   479         j <<= 1;
   480     }
   481     s->heap[k] = v;
   482 }
   484 /* ===========================================================================
   485  * Compute the optimal bit lengths for a tree and update the total bit length
   486  * for the current block.
   487  * IN assertion: the fields freq and dad are set, heap[heap_max] and
   488  *    above are the tree nodes sorted by increasing frequency.
   489  * OUT assertions: the field len is set to the optimal bit length, the
   490  *     array bl_count contains the frequencies for each bit length.
   491  *     The length opt_len is updated; static_len is also updated if stree is
   492  *     not null.
   493  */
   494 local void gen_bitlen(s, desc)
   495     deflate_state *s;
   496     tree_desc *desc;    /* the tree descriptor */
   497 {
   498     ct_data *tree        = desc->dyn_tree;
   499     int max_code         = desc->max_code;
   500     const ct_data *stree = desc->stat_desc->static_tree;
   501     const intf *extra    = desc->stat_desc->extra_bits;
   502     int base             = desc->stat_desc->extra_base;
   503     int max_length       = desc->stat_desc->max_length;
   504     int h;              /* heap index */
   505     int n, m;           /* iterate over the tree elements */
   506     int bits;           /* bit length */
   507     int xbits;          /* extra bits */
   508     ush f;              /* frequency */
   509     int overflow = 0;   /* number of elements with bit length too large */
   511     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
   513     /* In a first pass, compute the optimal bit lengths (which may
   514      * overflow in the case of the bit length tree).
   515      */
   516     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
   518     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
   519         n = s->heap[h];
   520         bits = tree[tree[n].Dad].Len + 1;
   521         if (bits > max_length) bits = max_length, overflow++;
   522         tree[n].Len = (ush)bits;
   523         /* We overwrite tree[n].Dad which is no longer needed */
   525         if (n > max_code) continue; /* not a leaf node */
   527         s->bl_count[bits]++;
   528         xbits = 0;
   529         if (n >= base) xbits = extra[n-base];
   530         f = tree[n].Freq;
   531         s->opt_len += (ulg)f * (bits + xbits);
   532         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
   533     }
   534     if (overflow == 0) return;
   536     Trace((stderr,"\nbit length overflow\n"));
   537     /* This happens for example on obj2 and pic of the Calgary corpus */
   539     /* Find the first bit length which could increase: */
   540     do {
   541         bits = max_length-1;
   542         while (s->bl_count[bits] == 0) bits--;
   543         s->bl_count[bits]--;      /* move one leaf down the tree */
   544         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
   545         s->bl_count[max_length]--;
   546         /* The brother of the overflow item also moves one step up,
   547          * but this does not affect bl_count[max_length]
   548          */
   549         overflow -= 2;
   550     } while (overflow > 0);
   552     /* Now recompute all bit lengths, scanning in increasing frequency.
   553      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
   554      * lengths instead of fixing only the wrong ones. This idea is taken
   555      * from 'ar' written by Haruhiko Okumura.)
   556      */
   557     for (bits = max_length; bits != 0; bits--) {
   558         n = s->bl_count[bits];
   559         while (n != 0) {
   560             m = s->heap[--h];
   561             if (m > max_code) continue;
   562             if ((unsigned) tree[m].Len != (unsigned) bits) {
   563                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
   564                 s->opt_len += ((long)bits - (long)tree[m].Len)
   565                               *(long)tree[m].Freq;
   566                 tree[m].Len = (ush)bits;
   567             }
   568             n--;
   569         }
   570     }
   571 }
   573 /* ===========================================================================
   574  * Generate the codes for a given tree and bit counts (which need not be
   575  * optimal).
   576  * IN assertion: the array bl_count contains the bit length statistics for
   577  * the given tree and the field len is set for all tree elements.
   578  * OUT assertion: the field code is set for all tree elements of non
   579  *     zero code length.
   580  */
   581 local void gen_codes (tree, max_code, bl_count)
   582     ct_data *tree;             /* the tree to decorate */
   583     int max_code;              /* largest code with non zero frequency */
   584     ushf *bl_count;            /* number of codes at each bit length */
   585 {
   586     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
   587     ush code = 0;              /* running code value */
   588     int bits;                  /* bit index */
   589     int n;                     /* code index */
   591     /* The distribution counts are first used to generate the code values
   592      * without bit reversal.
   593      */
   594     for (bits = 1; bits <= MAX_BITS; bits++) {
   595         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
   596     }
   597     /* Check that the bit counts in bl_count are consistent. The last code
   598      * must be all ones.
   599      */
   600     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
   601             "inconsistent bit counts");
   602     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
   604     for (n = 0;  n <= max_code; n++) {
   605         int len = tree[n].Len;
   606         if (len == 0) continue;
   607         /* Now reverse the bits */
   608         tree[n].Code = bi_reverse(next_code[len]++, len);
   610         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
   611              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
   612     }
   613 }
   615 /* ===========================================================================
   616  * Construct one Huffman tree and assigns the code bit strings and lengths.
   617  * Update the total bit length for the current block.
   618  * IN assertion: the field freq is set for all tree elements.
   619  * OUT assertions: the fields len and code are set to the optimal bit length
   620  *     and corresponding code. The length opt_len is updated; static_len is
   621  *     also updated if stree is not null. The field max_code is set.
   622  */
   623 local void build_tree(s, desc)
   624     deflate_state *s;
   625     tree_desc *desc; /* the tree descriptor */
   626 {
   627     ct_data *tree         = desc->dyn_tree;
   628     const ct_data *stree  = desc->stat_desc->static_tree;
   629     int elems             = desc->stat_desc->elems;
   630     int n, m;          /* iterate over heap elements */
   631     int max_code = -1; /* largest code with non zero frequency */
   632     int node;          /* new node being created */
   634     /* Construct the initial heap, with least frequent element in
   635      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
   636      * heap[0] is not used.
   637      */
   638     s->heap_len = 0, s->heap_max = HEAP_SIZE;
   640     for (n = 0; n < elems; n++) {
   641         if (tree[n].Freq != 0) {
   642             s->heap[++(s->heap_len)] = max_code = n;
   643             s->depth[n] = 0;
   644         } else {
   645             tree[n].Len = 0;
   646         }
   647     }
   649     /* The pkzip format requires that at least one distance code exists,
   650      * and that at least one bit should be sent even if there is only one
   651      * possible code. So to avoid special checks later on we force at least
   652      * two codes of non zero frequency.
   653      */
   654     while (s->heap_len < 2) {
   655         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
   656         tree[node].Freq = 1;
   657         s->depth[node] = 0;
   658         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
   659         /* node is 0 or 1 so it does not have extra bits */
   660     }
   661     desc->max_code = max_code;
   663     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
   664      * establish sub-heaps of increasing lengths:
   665      */
   666     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
   668     /* Construct the Huffman tree by repeatedly combining the least two
   669      * frequent nodes.
   670      */
   671     node = elems;              /* next internal node of the tree */
   672     do {
   673         pqremove(s, tree, n);  /* n = node of least frequency */
   674         m = s->heap[SMALLEST]; /* m = node of next least frequency */
   676         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
   677         s->heap[--(s->heap_max)] = m;
   679         /* Create a new node father of n and m */
   680         tree[node].Freq = tree[n].Freq + tree[m].Freq;
   681         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
   682                                 s->depth[n] : s->depth[m]) + 1);
   683         tree[n].Dad = tree[m].Dad = (ush)node;
   684 #ifdef DUMP_BL_TREE
   685         if (tree == s->bl_tree) {
   686             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
   687                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
   688         }
   689 #endif
   690         /* and insert the new node in the heap */
   691         s->heap[SMALLEST] = node++;
   692         pqdownheap(s, tree, SMALLEST);
   694     } while (s->heap_len >= 2);
   696     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
   698     /* At this point, the fields freq and dad are set. We can now
   699      * generate the bit lengths.
   700      */
   701     gen_bitlen(s, (tree_desc *)desc);
   703     /* The field len is now set, we can generate the bit codes */
   704     gen_codes ((ct_data *)tree, max_code, s->bl_count);
   705 }
   707 /* ===========================================================================
   708  * Scan a literal or distance tree to determine the frequencies of the codes
   709  * in the bit length tree.
   710  */
   711 local void scan_tree (s, tree, max_code)
   712     deflate_state *s;
   713     ct_data *tree;   /* the tree to be scanned */
   714     int max_code;    /* and its largest code of non zero frequency */
   715 {
   716     int n;                     /* iterates over all tree elements */
   717     int prevlen = -1;          /* last emitted length */
   718     int curlen;                /* length of current code */
   719     int nextlen = tree[0].Len; /* length of next code */
   720     int count = 0;             /* repeat count of the current code */
   721     int max_count = 7;         /* max repeat count */
   722     int min_count = 4;         /* min repeat count */
   724     if (nextlen == 0) max_count = 138, min_count = 3;
   725     tree[max_code+1].Len = (ush)0xffff; /* guard */
   727     for (n = 0; n <= max_code; n++) {
   728         curlen = nextlen; nextlen = tree[n+1].Len;
   729         if (++count < max_count && curlen == nextlen) {
   730             continue;
   731         } else if (count < min_count) {
   732             s->bl_tree[curlen].Freq += count;
   733         } else if (curlen != 0) {
   734             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
   735             s->bl_tree[REP_3_6].Freq++;
   736         } else if (count <= 10) {
   737             s->bl_tree[REPZ_3_10].Freq++;
   738         } else {
   739             s->bl_tree[REPZ_11_138].Freq++;
   740         }
   741         count = 0; prevlen = curlen;
   742         if (nextlen == 0) {
   743             max_count = 138, min_count = 3;
   744         } else if (curlen == nextlen) {
   745             max_count = 6, min_count = 3;
   746         } else {
   747             max_count = 7, min_count = 4;
   748         }
   749     }
   750 }
   752 /* ===========================================================================
   753  * Send a literal or distance tree in compressed form, using the codes in
   754  * bl_tree.
   755  */
   756 local void send_tree (s, tree, max_code)
   757     deflate_state *s;
   758     ct_data *tree; /* the tree to be scanned */
   759     int max_code;       /* and its largest code of non zero frequency */
   760 {
   761     int n;                     /* iterates over all tree elements */
   762     int prevlen = -1;          /* last emitted length */
   763     int curlen;                /* length of current code */
   764     int nextlen = tree[0].Len; /* length of next code */
   765     int count = 0;             /* repeat count of the current code */
   766     int max_count = 7;         /* max repeat count */
   767     int min_count = 4;         /* min repeat count */
   769     /* tree[max_code+1].Len = -1; */  /* guard already set */
   770     if (nextlen == 0) max_count = 138, min_count = 3;
   772     for (n = 0; n <= max_code; n++) {
   773         curlen = nextlen; nextlen = tree[n+1].Len;
   774         if (++count < max_count && curlen == nextlen) {
   775             continue;
   776         } else if (count < min_count) {
   777             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
   779         } else if (curlen != 0) {
   780             if (curlen != prevlen) {
   781                 send_code(s, curlen, s->bl_tree); count--;
   782             }
   783             Assert(count >= 3 && count <= 6, " 3_6?");
   784             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
   786         } else if (count <= 10) {
   787             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
   789         } else {
   790             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
   791         }
   792         count = 0; prevlen = curlen;
   793         if (nextlen == 0) {
   794             max_count = 138, min_count = 3;
   795         } else if (curlen == nextlen) {
   796             max_count = 6, min_count = 3;
   797         } else {
   798             max_count = 7, min_count = 4;
   799         }
   800     }
   801 }
   803 /* ===========================================================================
   804  * Construct the Huffman tree for the bit lengths and return the index in
   805  * bl_order of the last bit length code to send.
   806  */
   807 local int build_bl_tree(s)
   808     deflate_state *s;
   809 {
   810     int max_blindex;  /* index of last bit length code of non zero freq */
   812     /* Determine the bit length frequencies for literal and distance trees */
   813     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
   814     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
   816     /* Build the bit length tree: */
   817     build_tree(s, (tree_desc *)(&(s->bl_desc)));
   818     /* opt_len now includes the length of the tree representations, except
   819      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
   820      */
   822     /* Determine the number of bit length codes to send. The pkzip format
   823      * requires that at least 4 bit length codes be sent. (appnote.txt says
   824      * 3 but the actual value used is 4.)
   825      */
   826     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
   827         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
   828     }
   829     /* Update opt_len to include the bit length tree and counts */
   830     s->opt_len += 3*(max_blindex+1) + 5+5+4;
   831     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
   832             s->opt_len, s->static_len));
   834     return max_blindex;
   835 }
   837 /* ===========================================================================
   838  * Send the header for a block using dynamic Huffman trees: the counts, the
   839  * lengths of the bit length codes, the literal tree and the distance tree.
   840  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
   841  */
   842 local void send_all_trees(s, lcodes, dcodes, blcodes)
   843     deflate_state *s;
   844     int lcodes, dcodes, blcodes; /* number of codes for each tree */
   845 {
   846     int rank;                    /* index in bl_order */
   848     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
   849     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
   850             "too many codes");
   851     Tracev((stderr, "\nbl counts: "));
   852     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
   853     send_bits(s, dcodes-1,   5);
   854     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
   855     for (rank = 0; rank < blcodes; rank++) {
   856         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
   857         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
   858     }
   859     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
   861     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
   862     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
   864     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
   865     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
   866 }
   868 /* ===========================================================================
   869  * Send a stored block
   870  */
   871 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
   872     deflate_state *s;
   873     charf *buf;       /* input block */
   874     ulg stored_len;   /* length of input block */
   875     int last;         /* one if this is the last block for a file */
   876 {
   877     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
   878 #ifdef DEBUG
   879     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
   880     s->compressed_len += (stored_len + 4) << 3;
   881 #endif
   882     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
   883 }
   885 /* ===========================================================================
   886  * Send one empty static block to give enough lookahead for inflate.
   887  * This takes 10 bits, of which 7 may remain in the bit buffer.
   888  * The current inflate code requires 9 bits of lookahead. If the
   889  * last two codes for the previous block (real code plus EOB) were coded
   890  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
   891  * the last real code. In this case we send two empty static blocks instead
   892  * of one. (There are no problems if the previous block is stored or fixed.)
   893  * To simplify the code, we assume the worst case of last real code encoded
   894  * on one bit only.
   895  */
   896 void ZLIB_INTERNAL _tr_align(s)
   897     deflate_state *s;
   898 {
   899     send_bits(s, STATIC_TREES<<1, 3);
   900     send_code(s, END_BLOCK, static_ltree);
   901 #ifdef DEBUG
   902     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
   903 #endif
   904     bi_flush(s);
   905     /* Of the 10 bits for the empty block, we have already sent
   906      * (10 - bi_valid) bits. The lookahead for the last real code (before
   907      * the EOB of the previous block) was thus at least one plus the length
   908      * of the EOB plus what we have just sent of the empty static block.
   909      */
   910     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
   911         send_bits(s, STATIC_TREES<<1, 3);
   912         send_code(s, END_BLOCK, static_ltree);
   913 #ifdef DEBUG
   914         s->compressed_len += 10L;
   915 #endif
   916         bi_flush(s);
   917     }
   918     s->last_eob_len = 7;
   919 }
   921 /* ===========================================================================
   922  * Determine the best encoding for the current block: dynamic trees, static
   923  * trees or store, and output the encoded block to the zip file.
   924  */
   925 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
   926     deflate_state *s;
   927     charf *buf;       /* input block, or NULL if too old */
   928     ulg stored_len;   /* length of input block */
   929     int last;         /* one if this is the last block for a file */
   930 {
   931     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
   932     int max_blindex = 0;  /* index of last bit length code of non zero freq */
   934     /* Build the Huffman trees unless a stored block is forced */
   935     if (s->level > 0) {
   937         /* Check if the file is binary or text */
   938         if (s->strm->data_type == Z_UNKNOWN)
   939             s->strm->data_type = detect_data_type(s);
   941         /* Construct the literal and distance trees */
   942         build_tree(s, (tree_desc *)(&(s->l_desc)));
   943         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
   944                 s->static_len));
   946         build_tree(s, (tree_desc *)(&(s->d_desc)));
   947         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
   948                 s->static_len));
   949         /* At this point, opt_len and static_len are the total bit lengths of
   950          * the compressed block data, excluding the tree representations.
   951          */
   953         /* Build the bit length tree for the above two trees, and get the index
   954          * in bl_order of the last bit length code to send.
   955          */
   956         max_blindex = build_bl_tree(s);
   958         /* Determine the best encoding. Compute the block lengths in bytes. */
   959         opt_lenb = (s->opt_len+3+7)>>3;
   960         static_lenb = (s->static_len+3+7)>>3;
   962         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
   963                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
   964                 s->last_lit));
   966         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
   968     } else {
   969         Assert(buf != (char*)0, "lost buf");
   970         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
   971     }
   973 #ifdef FORCE_STORED
   974     if (buf != (char*)0) { /* force stored block */
   975 #else
   976     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
   977                        /* 4: two words for the lengths */
   978 #endif
   979         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
   980          * Otherwise we can't have processed more than WSIZE input bytes since
   981          * the last block flush, because compression would have been
   982          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
   983          * transform a block into a stored block.
   984          */
   985         _tr_stored_block(s, buf, stored_len, last);
   987 #ifdef FORCE_STATIC
   988     } else if (static_lenb >= 0) { /* force static trees */
   989 #else
   990     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
   991 #endif
   992         send_bits(s, (STATIC_TREES<<1)+last, 3);
   993         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
   994 #ifdef DEBUG
   995         s->compressed_len += 3 + s->static_len;
   996 #endif
   997     } else {
   998         send_bits(s, (DYN_TREES<<1)+last, 3);
   999         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
  1000                        max_blindex+1);
  1001         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
  1002 #ifdef DEBUG
  1003         s->compressed_len += 3 + s->opt_len;
  1004 #endif
  1006     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
  1007     /* The above check is made mod 2^32, for files larger than 512 MB
  1008      * and uLong implemented on 32 bits.
  1009      */
  1010     init_block(s);
  1012     if (last) {
  1013         bi_windup(s);
  1014 #ifdef DEBUG
  1015         s->compressed_len += 7;  /* align on byte boundary */
  1016 #endif
  1018     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
  1019            s->compressed_len-7*last));
  1022 /* ===========================================================================
  1023  * Save the match info and tally the frequency counts. Return true if
  1024  * the current block must be flushed.
  1025  */
  1026 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
  1027     deflate_state *s;
  1028     unsigned dist;  /* distance of matched string */
  1029     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
  1031     s->d_buf[s->last_lit] = (ush)dist;
  1032     s->l_buf[s->last_lit++] = (uch)lc;
  1033     if (dist == 0) {
  1034         /* lc is the unmatched char */
  1035         s->dyn_ltree[lc].Freq++;
  1036     } else {
  1037         s->matches++;
  1038         /* Here, lc is the match length - MIN_MATCH */
  1039         dist--;             /* dist = match distance - 1 */
  1040         Assert((ush)dist < (ush)MAX_DIST(s) &&
  1041                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
  1042                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
  1044         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
  1045         s->dyn_dtree[d_code(dist)].Freq++;
  1048 #ifdef TRUNCATE_BLOCK
  1049     /* Try to guess if it is profitable to stop the current block here */
  1050     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
  1051         /* Compute an upper bound for the compressed length */
  1052         ulg out_length = (ulg)s->last_lit*8L;
  1053         ulg in_length = (ulg)((long)s->strstart - s->block_start);
  1054         int dcode;
  1055         for (dcode = 0; dcode < D_CODES; dcode++) {
  1056             out_length += (ulg)s->dyn_dtree[dcode].Freq *
  1057                 (5L+extra_dbits[dcode]);
  1059         out_length >>= 3;
  1060         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
  1061                s->last_lit, in_length, out_length,
  1062                100L - out_length*100L/in_length));
  1063         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
  1065 #endif
  1066     return (s->last_lit == s->lit_bufsize-1);
  1067     /* We avoid equality with lit_bufsize because of wraparound at 64K
  1068      * on 16 bit machines and because stored blocks are restricted to
  1069      * 64K-1 bytes.
  1070      */
  1073 /* ===========================================================================
  1074  * Send the block data compressed using the given Huffman trees
  1075  */
  1076 local void compress_block(s, ltree, dtree)
  1077     deflate_state *s;
  1078     ct_data *ltree; /* literal tree */
  1079     ct_data *dtree; /* distance tree */
  1081     unsigned dist;      /* distance of matched string */
  1082     int lc;             /* match length or unmatched char (if dist == 0) */
  1083     unsigned lx = 0;    /* running index in l_buf */
  1084     unsigned code;      /* the code to send */
  1085     int extra;          /* number of extra bits to send */
  1087     if (s->last_lit != 0) do {
  1088         dist = s->d_buf[lx];
  1089         lc = s->l_buf[lx++];
  1090         if (dist == 0) {
  1091             send_code(s, lc, ltree); /* send a literal byte */
  1092             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
  1093         } else {
  1094             /* Here, lc is the match length - MIN_MATCH */
  1095             code = _length_code[lc];
  1096             send_code(s, code+LITERALS+1, ltree); /* send the length code */
  1097             extra = extra_lbits[code];
  1098             if (extra != 0) {
  1099                 lc -= base_length[code];
  1100                 send_bits(s, lc, extra);       /* send the extra length bits */
  1102             dist--; /* dist is now the match distance - 1 */
  1103             code = d_code(dist);
  1104             Assert (code < D_CODES, "bad d_code");
  1106             send_code(s, code, dtree);       /* send the distance code */
  1107             extra = extra_dbits[code];
  1108             if (extra != 0) {
  1109                 dist -= base_dist[code];
  1110                 send_bits(s, dist, extra);   /* send the extra distance bits */
  1112         } /* literal or match pair ? */
  1114         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
  1115         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
  1116                "pendingBuf overflow");
  1118     } while (lx < s->last_lit);
  1120     send_code(s, END_BLOCK, ltree);
  1121     s->last_eob_len = ltree[END_BLOCK].Len;
  1124 /* ===========================================================================
  1125  * Check if the data type is TEXT or BINARY, using the following algorithm:
  1126  * - TEXT if the two conditions below are satisfied:
  1127  *    a) There are no non-portable control characters belonging to the
  1128  *       "black list" (0..6, 14..25, 28..31).
  1129  *    b) There is at least one printable character belonging to the
  1130  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
  1131  * - BINARY otherwise.
  1132  * - The following partially-portable control characters form a
  1133  *   "gray list" that is ignored in this detection algorithm:
  1134  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
  1135  * IN assertion: the fields Freq of dyn_ltree are set.
  1136  */
  1137 local int detect_data_type(s)
  1138     deflate_state *s;
  1140     /* black_mask is the bit mask of black-listed bytes
  1141      * set bits 0..6, 14..25, and 28..31
  1142      * 0xf3ffc07f = binary 11110011111111111100000001111111
  1143      */
  1144     unsigned long black_mask = 0xf3ffc07fUL;
  1145     int n;
  1147     /* Check for non-textual ("black-listed") bytes. */
  1148     for (n = 0; n <= 31; n++, black_mask >>= 1)
  1149         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
  1150             return Z_BINARY;
  1152     /* Check for textual ("white-listed") bytes. */
  1153     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
  1154             || s->dyn_ltree[13].Freq != 0)
  1155         return Z_TEXT;
  1156     for (n = 32; n < LITERALS; n++)
  1157         if (s->dyn_ltree[n].Freq != 0)
  1158             return Z_TEXT;
  1160     /* There are no "black-listed" or "white-listed" bytes:
  1161      * this stream either is empty or has tolerated ("gray-listed") bytes only.
  1162      */
  1163     return Z_BINARY;
  1166 /* ===========================================================================
  1167  * Reverse the first len bits of a code, using straightforward code (a faster
  1168  * method would use a table)
  1169  * IN assertion: 1 <= len <= 15
  1170  */
  1171 local unsigned bi_reverse(code, len)
  1172     unsigned code; /* the value to invert */
  1173     int len;       /* its bit length */
  1175     register unsigned res = 0;
  1176     do {
  1177         res |= code & 1;
  1178         code >>= 1, res <<= 1;
  1179     } while (--len > 0);
  1180     return res >> 1;
  1183 /* ===========================================================================
  1184  * Flush the bit buffer, keeping at most 7 bits in it.
  1185  */
  1186 local void bi_flush(s)
  1187     deflate_state *s;
  1189     if (s->bi_valid == 16) {
  1190         put_short(s, s->bi_buf);
  1191         s->bi_buf = 0;
  1192         s->bi_valid = 0;
  1193     } else if (s->bi_valid >= 8) {
  1194         put_byte(s, (Byte)s->bi_buf);
  1195         s->bi_buf >>= 8;
  1196         s->bi_valid -= 8;
  1200 /* ===========================================================================
  1201  * Flush the bit buffer and align the output on a byte boundary
  1202  */
  1203 local void bi_windup(s)
  1204     deflate_state *s;
  1206     if (s->bi_valid > 8) {
  1207         put_short(s, s->bi_buf);
  1208     } else if (s->bi_valid > 0) {
  1209         put_byte(s, (Byte)s->bi_buf);
  1211     s->bi_buf = 0;
  1212     s->bi_valid = 0;
  1213 #ifdef DEBUG
  1214     s->bits_sent = (s->bits_sent+7) & ~7;
  1215 #endif
  1218 /* ===========================================================================
  1219  * Copy a stored block, storing first the length and its
  1220  * one's complement if requested.
  1221  */
  1222 local void copy_block(s, buf, len, header)
  1223     deflate_state *s;
  1224     charf    *buf;    /* the input data */
  1225     unsigned len;     /* its length */
  1226     int      header;  /* true if block header must be written */
  1228     bi_windup(s);        /* align on byte boundary */
  1229     s->last_eob_len = 8; /* enough lookahead for inflate */
  1231     if (header) {
  1232         put_short(s, (ush)len);
  1233         put_short(s, (ush)~len);
  1234 #ifdef DEBUG
  1235         s->bits_sent += 2*16;
  1236 #endif
  1238 #ifdef DEBUG
  1239     s->bits_sent += (ulg)len<<3;
  1240 #endif
  1241     while (len--) {
  1242         put_byte(s, *buf++);

mercurial