intl/icu/source/i18n/nfrule.cpp

Wed, 31 Dec 2014 07:22:50 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 07:22:50 +0100
branch
TOR_BUG_3246
changeset 4
fc2d59ddac77
permissions
-rw-r--r--

Correct previous dual key logic pending first delivery installment.

     1 /*
     2 ******************************************************************************
     3 *   Copyright (C) 1997-2011, International Business Machines
     4 *   Corporation and others.  All Rights Reserved.
     5 ******************************************************************************
     6 *   file name:  nfrule.cpp
     7 *   encoding:   US-ASCII
     8 *   tab size:   8 (not used)
     9 *   indentation:4
    10 *
    11 * Modification history
    12 * Date        Name      Comments
    13 * 10/11/2001  Doug      Ported from ICU4J
    14 */
    16 #include "nfrule.h"
    18 #if U_HAVE_RBNF
    20 #include "unicode/rbnf.h"
    21 #include "unicode/tblcoll.h"
    22 #include "unicode/coleitr.h"
    23 #include "unicode/uchar.h"
    24 #include "nfrs.h"
    25 #include "nfrlist.h"
    26 #include "nfsubs.h"
    27 #include "patternprops.h"
    29 U_NAMESPACE_BEGIN
    31 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
    32   : baseValue((int32_t)0)
    33   , radix(0)
    34   , exponent(0)
    35   , ruleText()
    36   , sub1(NULL)
    37   , sub2(NULL)
    38   , formatter(_rbnf)
    39 {
    40 }
    42 NFRule::~NFRule()
    43 {
    44   delete sub1;
    45   delete sub2;
    46 }
    48 static const UChar gLeftBracket = 0x005b;
    49 static const UChar gRightBracket = 0x005d;
    50 static const UChar gColon = 0x003a;
    51 static const UChar gZero = 0x0030;
    52 static const UChar gNine = 0x0039;
    53 static const UChar gSpace = 0x0020;
    54 static const UChar gSlash = 0x002f;
    55 static const UChar gGreaterThan = 0x003e;
    56 static const UChar gLessThan = 0x003c;
    57 static const UChar gComma = 0x002c;
    58 static const UChar gDot = 0x002e;
    59 static const UChar gTick = 0x0027;
    60 //static const UChar gMinus = 0x002d;
    61 static const UChar gSemicolon = 0x003b;
    63 static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
    64 static const UChar gXDotX[] =                   {0x78, 0x2E, 0x78, 0}; /* "x.x" */
    65 static const UChar gXDotZero[] =                {0x78, 0x2E, 0x30, 0}; /* "x.0" */
    66 static const UChar gZeroDotX[] =                {0x30, 0x2E, 0x78, 0}; /* "0.x" */
    68 static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
    69 static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
    70 static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
    71 static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
    72 static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
    73 static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
    74 static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
    75 static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
    76 static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
    77 static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
    78 static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
    79 static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
    81 static const UChar * const tokenStrings[] = {
    82     gLessLess, gLessPercent, gLessHash, gLessZero,
    83     gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
    84     gEqualPercent, gEqualHash, gEqualZero, NULL
    85 };
    87 void
    88 NFRule::makeRules(UnicodeString& description,
    89                   const NFRuleSet *ruleSet,
    90                   const NFRule *predecessor,
    91                   const RuleBasedNumberFormat *rbnf,
    92                   NFRuleList& rules,
    93                   UErrorCode& status)
    94 {
    95     // we know we're making at least one rule, so go ahead and
    96     // new it up and initialize its basevalue and divisor
    97     // (this also strips the rule descriptor, if any, off the
    98     // descripton string)
    99     NFRule* rule1 = new NFRule(rbnf);
   100     /* test for NULL */
   101     if (rule1 == 0) {
   102         status = U_MEMORY_ALLOCATION_ERROR;
   103         return;
   104     }
   105     rule1->parseRuleDescriptor(description, status);
   107     // check the description to see whether there's text enclosed
   108     // in brackets
   109     int32_t brack1 = description.indexOf(gLeftBracket);
   110     int32_t brack2 = description.indexOf(gRightBracket);
   112     // if the description doesn't contain a matched pair of brackets,
   113     // or if it's of a type that doesn't recognize bracketed text,
   114     // then leave the description alone, initialize the rule's
   115     // rule text and substitutions, and return that rule
   116     if (brack1 == -1 || brack2 == -1 || brack1 > brack2
   117         || rule1->getType() == kProperFractionRule
   118         || rule1->getType() == kNegativeNumberRule) {
   119         rule1->ruleText = description;
   120         rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
   121         rules.add(rule1);
   122     } else {
   123         // if the description does contain a matched pair of brackets,
   124         // then it's really shorthand for two rules (with one exception)
   125         NFRule* rule2 = NULL;
   126         UnicodeString sbuf;
   128         // we'll actually only split the rule into two rules if its
   129         // base value is an even multiple of its divisor (or it's one
   130         // of the special rules)
   131         if ((rule1->baseValue > 0
   132             && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
   133             || rule1->getType() == kImproperFractionRule
   134             || rule1->getType() == kMasterRule) {
   136             // if it passes that test, new up the second rule.  If the
   137             // rule set both rules will belong to is a fraction rule
   138             // set, they both have the same base value; otherwise,
   139             // increment the original rule's base value ("rule1" actually
   140             // goes SECOND in the rule set's rule list)
   141             rule2 = new NFRule(rbnf);
   142             /* test for NULL */
   143             if (rule2 == 0) {
   144                 status = U_MEMORY_ALLOCATION_ERROR;
   145                 return;
   146             }
   147             if (rule1->baseValue >= 0) {
   148                 rule2->baseValue = rule1->baseValue;
   149                 if (!ruleSet->isFractionRuleSet()) {
   150                     ++rule1->baseValue;
   151                 }
   152             }
   154             // if the description began with "x.x" and contains bracketed
   155             // text, it describes both the improper fraction rule and
   156             // the proper fraction rule
   157             else if (rule1->getType() == kImproperFractionRule) {
   158                 rule2->setType(kProperFractionRule);
   159             }
   161             // if the description began with "x.0" and contains bracketed
   162             // text, it describes both the master rule and the
   163             // improper fraction rule
   164             else if (rule1->getType() == kMasterRule) {
   165                 rule2->baseValue = rule1->baseValue;
   166                 rule1->setType(kImproperFractionRule);
   167             }
   169             // both rules have the same radix and exponent (i.e., the
   170             // same divisor)
   171             rule2->radix = rule1->radix;
   172             rule2->exponent = rule1->exponent;
   174             // rule2's rule text omits the stuff in brackets: initalize
   175             // its rule text and substitutions accordingly
   176             sbuf.append(description, 0, brack1);
   177             if (brack2 + 1 < description.length()) {
   178                 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
   179             }
   180             rule2->ruleText.setTo(sbuf);
   181             rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
   182         }
   184         // rule1's text includes the text in the brackets but omits
   185         // the brackets themselves: initialize _its_ rule text and
   186         // substitutions accordingly
   187         sbuf.setTo(description, 0, brack1);
   188         sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
   189         if (brack2 + 1 < description.length()) {
   190             sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
   191         }
   192         rule1->ruleText.setTo(sbuf);
   193         rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
   195         // if we only have one rule, return it; if we have two, return
   196         // a two-element array containing them (notice that rule2 goes
   197         // BEFORE rule1 in the list: in all cases, rule2 OMITS the
   198         // material in the brackets and rule1 INCLUDES the material
   199         // in the brackets)
   200         if (rule2 != NULL) {
   201             rules.add(rule2);
   202         }
   203         rules.add(rule1);
   204     }
   205 }
   207 /**
   208  * This function parses the rule's rule descriptor (i.e., the base
   209  * value and/or other tokens that precede the rule's rule text
   210  * in the description) and sets the rule's base value, radix, and
   211  * exponent according to the descriptor.  (If the description doesn't
   212  * include a rule descriptor, then this function sets everything to
   213  * default values and the rule set sets the rule's real base value).
   214  * @param description The rule's description
   215  * @return If "description" included a rule descriptor, this is
   216  * "description" with the descriptor and any trailing whitespace
   217  * stripped off.  Otherwise; it's "descriptor" unchangd.
   218  */
   219 void
   220 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
   221 {
   222     // the description consists of a rule descriptor and a rule body,
   223     // separated by a colon.  The rule descriptor is optional.  If
   224     // it's omitted, just set the base value to 0.
   225     int32_t p = description.indexOf(gColon);
   226     if (p == -1) {
   227         setBaseValue((int32_t)0, status);
   228     } else {
   229         // copy the descriptor out into its own string and strip it,
   230         // along with any trailing whitespace, out of the original
   231         // description
   232         UnicodeString descriptor;
   233         descriptor.setTo(description, 0, p);
   235         ++p;
   236         while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
   237             ++p;
   238         }
   239         description.removeBetween(0, p);
   241         // check first to see if the rule descriptor matches the token
   242         // for one of the special rules.  If it does, set the base
   243         // value to the correct identfier value
   244         if (0 == descriptor.compare(gMinusX, 2)) {
   245             setType(kNegativeNumberRule);
   246         }
   247         else if (0 == descriptor.compare(gXDotX, 3)) {
   248             setType(kImproperFractionRule);
   249         }
   250         else if (0 == descriptor.compare(gZeroDotX, 3)) {
   251             setType(kProperFractionRule);
   252         }
   253         else if (0 == descriptor.compare(gXDotZero, 3)) {
   254             setType(kMasterRule);
   255         }
   257         // if the rule descriptor begins with a digit, it's a descriptor
   258         // for a normal rule
   259         // since we don't have Long.parseLong, and this isn't much work anyway,
   260         // just build up the value as we encounter the digits.
   261         else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
   262             int64_t val = 0;
   263             p = 0;
   264             UChar c = gSpace;
   266             // begin parsing the descriptor: copy digits
   267             // into "tempValue", skip periods, commas, and spaces,
   268             // stop on a slash or > sign (or at the end of the string),
   269             // and throw an exception on any other character
   270             int64_t ll_10 = 10;
   271             while (p < descriptor.length()) {
   272                 c = descriptor.charAt(p);
   273                 if (c >= gZero && c <= gNine) {
   274                     val = val * ll_10 + (int32_t)(c - gZero);
   275                 }
   276                 else if (c == gSlash || c == gGreaterThan) {
   277                     break;
   278                 }
   279                 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
   280                 }
   281                 else {
   282                     // throw new IllegalArgumentException("Illegal character in rule descriptor");
   283                     status = U_PARSE_ERROR;
   284                     return;
   285                 }
   286                 ++p;
   287             }
   289             // we have the base value, so set it
   290             setBaseValue(val, status);
   292             // if we stopped the previous loop on a slash, we're
   293             // now parsing the rule's radix.  Again, accumulate digits
   294             // in tempValue, skip punctuation, stop on a > mark, and
   295             // throw an exception on anything else
   296             if (c == gSlash) {
   297                 val = 0;
   298                 ++p;
   299                 int64_t ll_10 = 10;
   300                 while (p < descriptor.length()) {
   301                     c = descriptor.charAt(p);
   302                     if (c >= gZero && c <= gNine) {
   303                         val = val * ll_10 + (int32_t)(c - gZero);
   304                     }
   305                     else if (c == gGreaterThan) {
   306                         break;
   307                     }
   308                     else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
   309                     }
   310                     else {
   311                         // throw new IllegalArgumentException("Illegal character is rule descriptor");
   312                         status = U_PARSE_ERROR;
   313                         return;
   314                     }
   315                     ++p;
   316                 }
   318                 // tempValue now contain's the rule's radix.  Set it
   319                 // accordingly, and recalculate the rule's exponent
   320                 radix = (int32_t)val;
   321                 if (radix == 0) {
   322                     // throw new IllegalArgumentException("Rule can't have radix of 0");
   323                     status = U_PARSE_ERROR;
   324                 }
   326                 exponent = expectedExponent();
   327             }
   329             // if we stopped the previous loop on a > sign, then continue
   330             // for as long as we still see > signs.  For each one,
   331             // decrement the exponent (unless the exponent is already 0).
   332             // If we see another character before reaching the end of
   333             // the descriptor, that's also a syntax error.
   334             if (c == gGreaterThan) {
   335                 while (p < descriptor.length()) {
   336                     c = descriptor.charAt(p);
   337                     if (c == gGreaterThan && exponent > 0) {
   338                         --exponent;
   339                     } else {
   340                         // throw new IllegalArgumentException("Illegal character in rule descriptor");
   341                         status = U_PARSE_ERROR;
   342                         return;
   343                     }
   344                     ++p;
   345                 }
   346             }
   347         }
   348     }
   350     // finally, if the rule body begins with an apostrophe, strip it off
   351     // (this is generally used to put whitespace at the beginning of
   352     // a rule's rule text)
   353     if (description.length() > 0 && description.charAt(0) == gTick) {
   354         description.removeBetween(0, 1);
   355     }
   357     // return the description with all the stuff we've just waded through
   358     // stripped off the front.  It now contains just the rule body.
   359     // return description;
   360 }
   362 /**
   363 * Searches the rule's rule text for the substitution tokens,
   364 * creates the substitutions, and removes the substitution tokens
   365 * from the rule's rule text.
   366 * @param owner The rule set containing this rule
   367 * @param predecessor The rule preseding this one in "owners" rule list
   368 * @param ownersOwner The RuleBasedFormat that owns this rule
   369 */
   370 void
   371 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
   372                              const NFRule* predecessor,
   373                              const RuleBasedNumberFormat* rbnf,
   374                              UErrorCode& status)
   375 {
   376     if (U_SUCCESS(status)) {
   377         sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
   378         sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
   379     }
   380 }
   382 /**
   383 * Searches the rule's rule text for the first substitution token,
   384 * creates a substitution based on it, and removes the token from
   385 * the rule's rule text.
   386 * @param owner The rule set containing this rule
   387 * @param predecessor The rule preceding this one in the rule set's
   388 * rule list
   389 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
   390 * @return The newly-created substitution.  This is never null; if
   391 * the rule text doesn't contain any substitution tokens, this will
   392 * be a NullSubstitution.
   393 */
   394 NFSubstitution *
   395 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
   396                             const NFRule* predecessor,
   397                             const RuleBasedNumberFormat* rbnf,
   398                             UErrorCode& status)
   399 {
   400     NFSubstitution* result = NULL;
   402     // search the rule's rule text for the first two characters of
   403     // a substitution token
   404     int32_t subStart = indexOfAny(tokenStrings);
   405     int32_t subEnd = subStart;
   407     // if we didn't find one, create a null substitution positioned
   408     // at the end of the rule text
   409     if (subStart == -1) {
   410         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
   411             ruleSet, rbnf, UnicodeString(), status);
   412     }
   414     // special-case the ">>>" token, since searching for the > at the
   415     // end will actually find the > in the middle
   416     if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
   417         subEnd = subStart + 2;
   419         // otherwise the substitution token ends with the same character
   420         // it began with
   421     } else {
   422         UChar c = ruleText.charAt(subStart);
   423         subEnd = ruleText.indexOf(c, subStart + 1);
   424         // special case for '<%foo<<'
   425         if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
   426             // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
   427             // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
   428             // to get around this.  Having the duplicate at the front would cause problems with
   429             // rules like "<<%" to format, say, percents...
   430             ++subEnd;
   431         }
   432    }
   434     // if we don't find the end of the token (i.e., if we're on a single,
   435     // unmatched token character), create a null substitution positioned
   436     // at the end of the rule
   437     if (subEnd == -1) {
   438         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
   439             ruleSet, rbnf, UnicodeString(), status);
   440     }
   442     // if we get here, we have a real substitution token (or at least
   443     // some text bounded by substitution token characters).  Use
   444     // makeSubstitution() to create the right kind of substitution
   445     UnicodeString subToken;
   446     subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
   447     result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
   448         rbnf, subToken, status);
   450     // remove the substitution from the rule text
   451     ruleText.removeBetween(subStart, subEnd+1);
   453     return result;
   454 }
   456 /**
   457  * Sets the rule's base value, and causes the radix and exponent
   458  * to be recalculated.  This is used during construction when we
   459  * don't know the rule's base value until after it's been
   460  * constructed.  It should be used at any other time.
   461  * @param The new base value for the rule.
   462  */
   463 void
   464 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
   465 {
   466     // set the base value
   467     baseValue = newBaseValue;
   469     // if this isn't a special rule, recalculate the radix and exponent
   470     // (the radix always defaults to 10; if it's supposed to be something
   471     // else, it's cleaned up by the caller and the exponent is
   472     // recalculated again-- the only function that does this is
   473     // NFRule.parseRuleDescriptor() )
   474     if (baseValue >= 1) {
   475         radix = 10;
   476         exponent = expectedExponent();
   478         // this function gets called on a fully-constructed rule whose
   479         // description didn't specify a base value.  This means it
   480         // has substitutions, and some substitutions hold on to copies
   481         // of the rule's divisor.  Fix their copies of the divisor.
   482         if (sub1 != NULL) {
   483             sub1->setDivisor(radix, exponent, status);
   484         }
   485         if (sub2 != NULL) {
   486             sub2->setDivisor(radix, exponent, status);
   487         }
   489         // if this is a special rule, its radix and exponent are basically
   490         // ignored.  Set them to "safe" default values
   491     } else {
   492         radix = 10;
   493         exponent = 0;
   494     }
   495 }
   497 /**
   498 * This calculates the rule's exponent based on its radix and base
   499 * value.  This will be the highest power the radix can be raised to
   500 * and still produce a result less than or equal to the base value.
   501 */
   502 int16_t
   503 NFRule::expectedExponent() const
   504 {
   505     // since the log of 0, or the log base 0 of something, causes an
   506     // error, declare the exponent in these cases to be 0 (we also
   507     // deal with the special-rule identifiers here)
   508     if (radix == 0 || baseValue < 1) {
   509         return 0;
   510     }
   512     // we get rounding error in some cases-- for example, log 1000 / log 10
   513     // gives us 1.9999999996 instead of 2.  The extra logic here is to take
   514     // that into account
   515     int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
   516     int64_t temp = util64_pow(radix, tempResult + 1);
   517     if (temp <= baseValue) {
   518         tempResult += 1;
   519     }
   520     return tempResult;
   521 }
   523 /**
   524  * Searches the rule's rule text for any of the specified strings.
   525  * @param strings An array of strings to search the rule's rule
   526  * text for
   527  * @return The index of the first match in the rule's rule text
   528  * (i.e., the first substring in the rule's rule text that matches
   529  * _any_ of the strings in "strings").  If none of the strings in
   530  * "strings" is found in the rule's rule text, returns -1.
   531  */
   532 int32_t
   533 NFRule::indexOfAny(const UChar* const strings[]) const
   534 {
   535     int result = -1;
   536     for (int i = 0; strings[i]; i++) {
   537         int32_t pos = ruleText.indexOf(*strings[i]);
   538         if (pos != -1 && (result == -1 || pos < result)) {
   539             result = pos;
   540         }
   541     }
   542     return result;
   543 }
   545 //-----------------------------------------------------------------------
   546 // boilerplate
   547 //-----------------------------------------------------------------------
   549 /**
   550 * Tests two rules for equality.
   551 * @param that The rule to compare this one against
   552 * @return True is the two rules are functionally equivalent
   553 */
   554 UBool
   555 NFRule::operator==(const NFRule& rhs) const
   556 {
   557     return baseValue == rhs.baseValue
   558         && radix == rhs.radix
   559         && exponent == rhs.exponent
   560         && ruleText == rhs.ruleText
   561         && *sub1 == *rhs.sub1
   562         && *sub2 == *rhs.sub2;
   563 }
   565 /**
   566 * Returns a textual representation of the rule.  This won't
   567 * necessarily be the same as the description that this rule
   568 * was created with, but it will produce the same result.
   569 * @return A textual description of the rule
   570 */
   571 static void util_append64(UnicodeString& result, int64_t n)
   572 {
   573     UChar buffer[256];
   574     int32_t len = util64_tou(n, buffer, sizeof(buffer));
   575     UnicodeString temp(buffer, len);
   576     result.append(temp);
   577 }
   579 void
   580 NFRule::_appendRuleText(UnicodeString& result) const
   581 {
   582     switch (getType()) {
   583     case kNegativeNumberRule: result.append(gMinusX, 2); break;
   584     case kImproperFractionRule: result.append(gXDotX, 3); break;
   585     case kProperFractionRule: result.append(gZeroDotX, 3); break;
   586     case kMasterRule: result.append(gXDotZero, 3); break;
   587     default:
   588         // for a normal rule, write out its base value, and if the radix is
   589         // something other than 10, write out the radix (with the preceding
   590         // slash, of course).  Then calculate the expected exponent and if
   591         // if isn't the same as the actual exponent, write an appropriate
   592         // number of > signs.  Finally, terminate the whole thing with
   593         // a colon.
   594         util_append64(result, baseValue);
   595         if (radix != 10) {
   596             result.append(gSlash);
   597             util_append64(result, radix);
   598         }
   599         int numCarets = expectedExponent() - exponent;
   600         for (int i = 0; i < numCarets; i++) {
   601             result.append(gGreaterThan);
   602         }
   603         break;
   604     }
   605     result.append(gColon);
   606     result.append(gSpace);
   608     // if the rule text begins with a space, write an apostrophe
   609     // (whitespace after the rule descriptor is ignored; the
   610     // apostrophe is used to make the whitespace significant)
   611     if (ruleText.charAt(0) == gSpace && sub1->getPos() != 0) {
   612         result.append(gTick);
   613     }
   615     // now, write the rule's rule text, inserting appropriate
   616     // substitution tokens in the appropriate places
   617     UnicodeString ruleTextCopy;
   618     ruleTextCopy.setTo(ruleText);
   620     UnicodeString temp;
   621     sub2->toString(temp);
   622     ruleTextCopy.insert(sub2->getPos(), temp);
   623     sub1->toString(temp);
   624     ruleTextCopy.insert(sub1->getPos(), temp);
   626     result.append(ruleTextCopy);
   628     // and finally, top the whole thing off with a semicolon and
   629     // return the result
   630     result.append(gSemicolon);
   631 }
   633 //-----------------------------------------------------------------------
   634 // formatting
   635 //-----------------------------------------------------------------------
   637 /**
   638 * Formats the number, and inserts the resulting text into
   639 * toInsertInto.
   640 * @param number The number being formatted
   641 * @param toInsertInto The string where the resultant text should
   642 * be inserted
   643 * @param pos The position in toInsertInto where the resultant text
   644 * should be inserted
   645 */
   646 void
   647 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
   648 {
   649     // first, insert the rule's rule text into toInsertInto at the
   650     // specified position, then insert the results of the substitutions
   651     // into the right places in toInsertInto (notice we do the
   652     // substitutions in reverse order so that the offsets don't get
   653     // messed up)
   654     toInsertInto.insert(pos, ruleText);
   655     sub2->doSubstitution(number, toInsertInto, pos);
   656     sub1->doSubstitution(number, toInsertInto, pos);
   657 }
   659 /**
   660 * Formats the number, and inserts the resulting text into
   661 * toInsertInto.
   662 * @param number The number being formatted
   663 * @param toInsertInto The string where the resultant text should
   664 * be inserted
   665 * @param pos The position in toInsertInto where the resultant text
   666 * should be inserted
   667 */
   668 void
   669 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
   670 {
   671     // first, insert the rule's rule text into toInsertInto at the
   672     // specified position, then insert the results of the substitutions
   673     // into the right places in toInsertInto
   674     // [again, we have two copies of this routine that do the same thing
   675     // so that we don't sacrifice precision in a long by casting it
   676     // to a double]
   677     toInsertInto.insert(pos, ruleText);
   678     sub2->doSubstitution(number, toInsertInto, pos);
   679     sub1->doSubstitution(number, toInsertInto, pos);
   680 }
   682 /**
   683 * Used by the owning rule set to determine whether to invoke the
   684 * rollback rule (i.e., whether this rule or the one that precedes
   685 * it in the rule set's list should be used to format the number)
   686 * @param The number being formatted
   687 * @return True if the rule set should use the rule that precedes
   688 * this one in its list; false if it should use this rule
   689 */
   690 UBool
   691 NFRule::shouldRollBack(double number) const
   692 {
   693     // we roll back if the rule contains a modulus substitution,
   694     // the number being formatted is an even multiple of the rule's
   695     // divisor, and the rule's base value is NOT an even multiple
   696     // of its divisor
   697     // In other words, if the original description had
   698     //    100: << hundred[ >>];
   699     // that expands into
   700     //    100: << hundred;
   701     //    101: << hundred >>;
   702     // internally.  But when we're formatting 200, if we use the rule
   703     // at 101, which would normally apply, we get "two hundred zero".
   704     // To prevent this, we roll back and use the rule at 100 instead.
   705     // This is the logic that makes this happen: the rule at 101 has
   706     // a modulus substitution, its base value isn't an even multiple
   707     // of 100, and the value we're trying to format _is_ an even
   708     // multiple of 100.  This is called the "rollback rule."
   709     if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
   710         int64_t re = util64_pow(radix, exponent);
   711         return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
   712     }
   713     return FALSE;
   714 }
   716 //-----------------------------------------------------------------------
   717 // parsing
   718 //-----------------------------------------------------------------------
   720 /**
   721 * Attempts to parse the string with this rule.
   722 * @param text The string being parsed
   723 * @param parsePosition On entry, the value is ignored and assumed to
   724 * be 0. On exit, this has been updated with the position of the first
   725 * character not consumed by matching the text against this rule
   726 * (if this rule doesn't match the text at all, the parse position
   727 * if left unchanged (presumably at 0) and the function returns
   728 * new Long(0)).
   729 * @param isFractionRule True if this rule is contained within a
   730 * fraction rule set.  This is only used if the rule has no
   731 * substitutions.
   732 * @return If this rule matched the text, this is the rule's base value
   733 * combined appropriately with the results of parsing the substitutions.
   734 * If nothing matched, this is new Long(0) and the parse position is
   735 * left unchanged.  The result will be an instance of Long if the
   736 * result is an integer and Double otherwise.  The result is never null.
   737 */
   738 #ifdef RBNF_DEBUG
   739 #include <stdio.h>
   741 static void dumpUS(FILE* f, const UnicodeString& us) {
   742   int len = us.length();
   743   char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
   744   if (buf != NULL) {
   745 	  us.extract(0, len, buf);
   746 	  buf[len] = 0;
   747 	  fprintf(f, "%s", buf);
   748 	  uprv_free(buf); //delete[] buf;
   749   }
   750 }
   751 #endif
   753 UBool
   754 NFRule::doParse(const UnicodeString& text,
   755                 ParsePosition& parsePosition,
   756                 UBool isFractionRule,
   757                 double upperBound,
   758                 Formattable& resVal) const
   759 {
   760     // internally we operate on a copy of the string being parsed
   761     // (because we're going to change it) and use our own ParsePosition
   762     ParsePosition pp;
   763     UnicodeString workText(text);
   765     // check to see whether the text before the first substitution
   766     // matches the text at the beginning of the string being
   767     // parsed.  If it does, strip that off the front of workText;
   768     // otherwise, dump out with a mismatch
   769     UnicodeString prefix;
   770     prefix.setTo(ruleText, 0, sub1->getPos());
   772 #ifdef RBNF_DEBUG
   773     fprintf(stderr, "doParse %x ", this);
   774     {
   775         UnicodeString rt;
   776         _appendRuleText(rt);
   777         dumpUS(stderr, rt);
   778     }
   780     fprintf(stderr, " text: '", this);
   781     dumpUS(stderr, text);
   782     fprintf(stderr, "' prefix: '");
   783     dumpUS(stderr, prefix);
   784 #endif
   785     stripPrefix(workText, prefix, pp);
   786     int32_t prefixLength = text.length() - workText.length();
   788 #ifdef RBNF_DEBUG
   789     fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
   790 #endif
   792     if (pp.getIndex() == 0 && sub1->getPos() != 0) {
   793         // commented out because ParsePosition doesn't have error index in 1.1.x
   794         // restored for ICU4C port
   795         parsePosition.setErrorIndex(pp.getErrorIndex());
   796         resVal.setLong(0);
   797         return TRUE;
   798     }
   800     // this is the fun part.  The basic guts of the rule-matching
   801     // logic is matchToDelimiter(), which is called twice.  The first
   802     // time it searches the input string for the rule text BETWEEN
   803     // the substitutions and tries to match the intervening text
   804     // in the input string with the first substitution.  If that
   805     // succeeds, it then calls it again, this time to look for the
   806     // rule text after the second substitution and to match the
   807     // intervening input text against the second substitution.
   808     //
   809     // For example, say we have a rule that looks like this:
   810     //    first << middle >> last;
   811     // and input text that looks like this:
   812     //    first one middle two last
   813     // First we use stripPrefix() to match "first " in both places and
   814     // strip it off the front, leaving
   815     //    one middle two last
   816     // Then we use matchToDelimiter() to match " middle " and try to
   817     // match "one" against a substitution.  If it's successful, we now
   818     // have
   819     //    two last
   820     // We use matchToDelimiter() a second time to match " last" and
   821     // try to match "two" against a substitution.  If "two" matches
   822     // the substitution, we have a successful parse.
   823     //
   824     // Since it's possible in many cases to find multiple instances
   825     // of each of these pieces of rule text in the input string,
   826     // we need to try all the possible combinations of these
   827     // locations.  This prevents us from prematurely declaring a mismatch,
   828     // and makes sure we match as much input text as we can.
   829     int highWaterMark = 0;
   830     double result = 0;
   831     int start = 0;
   832     double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
   834     UnicodeString temp;
   835     do {
   836         // our partial parse result starts out as this rule's base
   837         // value.  If it finds a successful match, matchToDelimiter()
   838         // will compose this in some way with what it gets back from
   839         // the substitution, giving us a new partial parse result
   840         pp.setIndex(0);
   842         temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
   843         double partialResult = matchToDelimiter(workText, start, tempBaseValue,
   844             temp, pp, sub1,
   845             upperBound);
   847         // if we got a successful match (or were trying to match a
   848         // null substitution), pp is now pointing at the first unmatched
   849         // character.  Take note of that, and try matchToDelimiter()
   850         // on the input text again
   851         if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
   852             start = pp.getIndex();
   854             UnicodeString workText2;
   855             workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
   856             ParsePosition pp2;
   858             // the second matchToDelimiter() will compose our previous
   859             // partial result with whatever it gets back from its
   860             // substitution if there's a successful match, giving us
   861             // a real result
   862             temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
   863             partialResult = matchToDelimiter(workText2, 0, partialResult,
   864                 temp, pp2, sub2,
   865                 upperBound);
   867             // if we got a successful match on this second
   868             // matchToDelimiter() call, update the high-water mark
   869             // and result (if necessary)
   870             if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
   871                 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
   872                     highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
   873                     result = partialResult;
   874                 }
   875             }
   876             // commented out because ParsePosition doesn't have error index in 1.1.x
   877             // restored for ICU4C port
   878             else {
   879                 int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
   880                 if (temp> parsePosition.getErrorIndex()) {
   881                     parsePosition.setErrorIndex(temp);
   882                 }
   883             }
   884         }
   885         // commented out because ParsePosition doesn't have error index in 1.1.x
   886         // restored for ICU4C port
   887         else {
   888             int32_t temp = sub1->getPos() + pp.getErrorIndex();
   889             if (temp > parsePosition.getErrorIndex()) {
   890                 parsePosition.setErrorIndex(temp);
   891             }
   892         }
   893         // keep trying to match things until the outer matchToDelimiter()
   894         // call fails to make a match (each time, it picks up where it
   895         // left off the previous time)
   896     } while (sub1->getPos() != sub2->getPos()
   897         && pp.getIndex() > 0
   898         && pp.getIndex() < workText.length()
   899         && pp.getIndex() != start);
   901     // update the caller's ParsePosition with our high-water mark
   902     // (i.e., it now points at the first character this function
   903     // didn't match-- the ParsePosition is therefore unchanged if
   904     // we didn't match anything)
   905     parsePosition.setIndex(highWaterMark);
   906     // commented out because ParsePosition doesn't have error index in 1.1.x
   907     // restored for ICU4C port
   908     if (highWaterMark > 0) {
   909         parsePosition.setErrorIndex(0);
   910     }
   912     // this is a hack for one unusual condition: Normally, whether this
   913     // rule belong to a fraction rule set or not is handled by its
   914     // substitutions.  But if that rule HAS NO substitutions, then
   915     // we have to account for it here.  By definition, if the matching
   916     // rule in a fraction rule set has no substitutions, its numerator
   917     // is 1, and so the result is the reciprocal of its base value.
   918     if (isFractionRule &&
   919         highWaterMark > 0 &&
   920         sub1->isNullSubstitution()) {
   921         result = 1 / result;
   922     }
   924     resVal.setDouble(result);
   925     return TRUE; // ??? do we need to worry if it is a long or a double?
   926 }
   928 /**
   929 * This function is used by parse() to match the text being parsed
   930 * against a possible prefix string.  This function
   931 * matches characters from the beginning of the string being parsed
   932 * to characters from the prospective prefix.  If they match, pp is
   933 * updated to the first character not matched, and the result is
   934 * the unparsed part of the string.  If they don't match, the whole
   935 * string is returned, and pp is left unchanged.
   936 * @param text The string being parsed
   937 * @param prefix The text to match against
   938 * @param pp On entry, ignored and assumed to be 0.  On exit, points
   939 * to the first unmatched character (assuming the whole prefix matched),
   940 * or is unchanged (if the whole prefix didn't match).
   941 * @return If things match, this is the unparsed part of "text";
   942 * if they didn't match, this is "text".
   943 */
   944 void
   945 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
   946 {
   947     // if the prefix text is empty, dump out without doing anything
   948     if (prefix.length() != 0) {
   949     	UErrorCode status = U_ZERO_ERROR;
   950         // use prefixLength() to match the beginning of
   951         // "text" against "prefix".  This function returns the
   952         // number of characters from "text" that matched (or 0 if
   953         // we didn't match the whole prefix)
   954         int32_t pfl = prefixLength(text, prefix, status);
   955         if (U_FAILURE(status)) { // Memory allocation error.
   956         	return;
   957         }
   958         if (pfl != 0) {
   959             // if we got a successful match, update the parse position
   960             // and strip the prefix off of "text"
   961             pp.setIndex(pp.getIndex() + pfl);
   962             text.remove(0, pfl);
   963         }
   964     }
   965 }
   967 /**
   968 * Used by parse() to match a substitution and any following text.
   969 * "text" is searched for instances of "delimiter".  For each instance
   970 * of delimiter, the intervening text is tested to see whether it
   971 * matches the substitution.  The longest match wins.
   972 * @param text The string being parsed
   973 * @param startPos The position in "text" where we should start looking
   974 * for "delimiter".
   975 * @param baseValue A partial parse result (often the rule's base value),
   976 * which is combined with the result from matching the substitution
   977 * @param delimiter The string to search "text" for.
   978 * @param pp Ignored and presumed to be 0 on entry.  If there's a match,
   979 * on exit this will point to the first unmatched character.
   980 * @param sub If we find "delimiter" in "text", this substitution is used
   981 * to match the text between the beginning of the string and the
   982 * position of "delimiter."  (If "delimiter" is the empty string, then
   983 * this function just matches against this substitution and updates
   984 * everything accordingly.)
   985 * @param upperBound When matching the substitution, it will only
   986 * consider rules with base values lower than this value.
   987 * @return If there's a match, this is the result of composing
   988 * baseValue with the result of matching the substitution.  Otherwise,
   989 * this is new Long(0).  It's never null.  If the result is an integer,
   990 * this will be an instance of Long; otherwise, it's an instance of
   991 * Double.
   992 *
   993 * !!! note {dlf} in point of fact, in the java code the caller always converts
   994 * the result to a double, so we might as well return one.
   995 */
   996 double
   997 NFRule::matchToDelimiter(const UnicodeString& text,
   998                          int32_t startPos,
   999                          double _baseValue,
  1000                          const UnicodeString& delimiter,
  1001                          ParsePosition& pp,
  1002                          const NFSubstitution* sub,
  1003                          double upperBound) const
  1005 	UErrorCode status = U_ZERO_ERROR;
  1006     // if "delimiter" contains real (i.e., non-ignorable) text, search
  1007     // it for "delimiter" beginning at "start".  If that succeeds, then
  1008     // use "sub"'s doParse() method to match the text before the
  1009     // instance of "delimiter" we just found.
  1010     if (!allIgnorable(delimiter, status)) {
  1011     	if (U_FAILURE(status)) { //Memory allocation error.
  1012     		return 0;
  1014         ParsePosition tempPP;
  1015         Formattable result;
  1017         // use findText() to search for "delimiter".  It returns a two-
  1018         // element array: element 0 is the position of the match, and
  1019         // element 1 is the number of characters that matched
  1020         // "delimiter".
  1021         int32_t dLen;
  1022         int32_t dPos = findText(text, delimiter, startPos, &dLen);
  1024         // if findText() succeeded, isolate the text preceding the
  1025         // match, and use "sub" to match that text
  1026         while (dPos >= 0) {
  1027             UnicodeString subText;
  1028             subText.setTo(text, 0, dPos);
  1029             if (subText.length() > 0) {
  1030                 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
  1031 #if UCONFIG_NO_COLLATION
  1032                     FALSE,
  1033 #else
  1034                     formatter->isLenient(),
  1035 #endif
  1036                     result);
  1038                 // if the substitution could match all the text up to
  1039                 // where we found "delimiter", then this function has
  1040                 // a successful match.  Bump the caller's parse position
  1041                 // to point to the first character after the text
  1042                 // that matches "delimiter", and return the result
  1043                 // we got from parsing the substitution.
  1044                 if (success && tempPP.getIndex() == dPos) {
  1045                     pp.setIndex(dPos + dLen);
  1046                     return result.getDouble();
  1048                 // commented out because ParsePosition doesn't have error index in 1.1.x
  1049                 // restored for ICU4C port
  1050                 else {
  1051                     if (tempPP.getErrorIndex() > 0) {
  1052                         pp.setErrorIndex(tempPP.getErrorIndex());
  1053                     } else {
  1054                         pp.setErrorIndex(tempPP.getIndex());
  1059             // if we didn't match the substitution, search for another
  1060             // copy of "delimiter" in "text" and repeat the loop if
  1061             // we find it
  1062             tempPP.setIndex(0);
  1063             dPos = findText(text, delimiter, dPos + dLen, &dLen);
  1065         // if we make it here, this was an unsuccessful match, and we
  1066         // leave pp unchanged and return 0
  1067         pp.setIndex(0);
  1068         return 0;
  1070         // if "delimiter" is empty, or consists only of ignorable characters
  1071         // (i.e., is semantically empty), thwe we obviously can't search
  1072         // for "delimiter".  Instead, just use "sub" to parse as much of
  1073         // "text" as possible.
  1074     } else {
  1075         ParsePosition tempPP;
  1076         Formattable result;
  1078         // try to match the whole string against the substitution
  1079         UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
  1080 #if UCONFIG_NO_COLLATION
  1081             FALSE,
  1082 #else
  1083             formatter->isLenient(),
  1084 #endif
  1085             result);
  1086         if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
  1087             // if there's a successful match (or it's a null
  1088             // substitution), update pp to point to the first
  1089             // character we didn't match, and pass the result from
  1090             // sub.doParse() on through to the caller
  1091             pp.setIndex(tempPP.getIndex());
  1092             return result.getDouble();
  1094         // commented out because ParsePosition doesn't have error index in 1.1.x
  1095         // restored for ICU4C port
  1096         else {
  1097             pp.setErrorIndex(tempPP.getErrorIndex());
  1100         // and if we get to here, then nothing matched, so we return
  1101         // 0 and leave pp alone
  1102         return 0;
  1106 /**
  1107 * Used by stripPrefix() to match characters.  If lenient parse mode
  1108 * is off, this just calls startsWith().  If lenient parse mode is on,
  1109 * this function uses CollationElementIterators to match characters in
  1110 * the strings (only primary-order differences are significant in
  1111 * determining whether there's a match).
  1112 * @param str The string being tested
  1113 * @param prefix The text we're hoping to see at the beginning
  1114 * of "str"
  1115 * @return If "prefix" is found at the beginning of "str", this
  1116 * is the number of characters in "str" that were matched (this
  1117 * isn't necessarily the same as the length of "prefix" when matching
  1118 * text with a collator).  If there's no match, this is 0.
  1119 */
  1120 int32_t
  1121 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
  1123     // if we're looking for an empty prefix, it obviously matches
  1124     // zero characters.  Just go ahead and return 0.
  1125     if (prefix.length() == 0) {
  1126         return 0;
  1129 #if !UCONFIG_NO_COLLATION
  1130     // go through all this grief if we're in lenient-parse mode
  1131     if (formatter->isLenient()) {
  1132         // get the formatter's collator and use it to create two
  1133         // collation element iterators, one over the target string
  1134         // and another over the prefix (right now, we'll throw an
  1135         // exception if the collator we get back from the formatter
  1136         // isn't a RuleBasedCollator, because RuleBasedCollator defines
  1137         // the CollationElementIterator protocol.  Hopefully, this
  1138         // will change someday.)
  1139         RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
  1140         CollationElementIterator* strIter = collator->createCollationElementIterator(str);
  1141         CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
  1142         // Check for memory allocation error.
  1143         if (collator == NULL || strIter == NULL || prefixIter == NULL) {
  1144         	delete collator;
  1145         	delete strIter;
  1146         	delete prefixIter;
  1147         	status = U_MEMORY_ALLOCATION_ERROR;
  1148         	return 0;
  1151         UErrorCode err = U_ZERO_ERROR;
  1153         // The original code was problematic.  Consider this match:
  1154         // prefix = "fifty-"
  1155         // string = " fifty-7"
  1156         // The intent is to match string up to the '7', by matching 'fifty-' at position 1
  1157         // in the string.  Unfortunately, we were getting a match, and then computing where
  1158         // the match terminated by rematching the string.  The rematch code was using as an
  1159         // initial guess the substring of string between 0 and prefix.length.  Because of
  1160         // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
  1161         // the position before the hyphen in the string.  Recursing down, we then parsed the
  1162         // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
  1163         // This was not pretty, especially since the string "fifty-7" parsed just fine.
  1164         //
  1165         // We have newer APIs now, so we can use calls on the iterator to determine what we
  1166         // matched up to.  If we terminate because we hit the last element in the string,
  1167         // our match terminates at this length.  If we terminate because we hit the last element
  1168         // in the target, our match terminates at one before the element iterator position.
  1170         // match collation elements between the strings
  1171         int32_t oStr = strIter->next(err);
  1172         int32_t oPrefix = prefixIter->next(err);
  1174         while (oPrefix != CollationElementIterator::NULLORDER) {
  1175             // skip over ignorable characters in the target string
  1176             while (CollationElementIterator::primaryOrder(oStr) == 0
  1177                 && oStr != CollationElementIterator::NULLORDER) {
  1178                 oStr = strIter->next(err);
  1181             // skip over ignorable characters in the prefix
  1182             while (CollationElementIterator::primaryOrder(oPrefix) == 0
  1183                 && oPrefix != CollationElementIterator::NULLORDER) {
  1184                 oPrefix = prefixIter->next(err);
  1187             // dlf: move this above following test, if we consume the
  1188             // entire target, aren't we ok even if the source was also
  1189             // entirely consumed?
  1191             // if skipping over ignorables brought to the end of
  1192             // the prefix, we DID match: drop out of the loop
  1193             if (oPrefix == CollationElementIterator::NULLORDER) {
  1194                 break;
  1197             // if skipping over ignorables brought us to the end
  1198             // of the target string, we didn't match and return 0
  1199             if (oStr == CollationElementIterator::NULLORDER) {
  1200                 delete prefixIter;
  1201                 delete strIter;
  1202                 return 0;
  1205             // match collation elements from the two strings
  1206             // (considering only primary differences).  If we
  1207             // get a mismatch, dump out and return 0
  1208             if (CollationElementIterator::primaryOrder(oStr)
  1209                 != CollationElementIterator::primaryOrder(oPrefix)) {
  1210                 delete prefixIter;
  1211                 delete strIter;
  1212                 return 0;
  1214                 // otherwise, advance to the next character in each string
  1215                 // and loop (we drop out of the loop when we exhaust
  1216                 // collation elements in the prefix)
  1217             } else {
  1218                 oStr = strIter->next(err);
  1219                 oPrefix = prefixIter->next(err);
  1223         int32_t result = strIter->getOffset();
  1224         if (oStr != CollationElementIterator::NULLORDER) {
  1225             --result; // back over character that we don't want to consume;
  1228 #ifdef RBNF_DEBUG
  1229         fprintf(stderr, "prefix length: %d\n", result);
  1230 #endif
  1231         delete prefixIter;
  1232         delete strIter;
  1234         return result;
  1235 #if 0
  1236         //----------------------------------------------------------------
  1237         // JDK 1.2-specific API call
  1238         // return strIter.getOffset();
  1239         //----------------------------------------------------------------
  1240         // JDK 1.1 HACK (take out for 1.2-specific code)
  1242         // if we make it to here, we have a successful match.  Now we
  1243         // have to find out HOW MANY characters from the target string
  1244         // matched the prefix (there isn't necessarily a one-to-one
  1245         // mapping between collation elements and characters).
  1246         // In JDK 1.2, there's a simple getOffset() call we can use.
  1247         // In JDK 1.1, on the other hand, we have to go through some
  1248         // ugly contortions.  First, use the collator to compare the
  1249         // same number of characters from the prefix and target string.
  1250         // If they're equal, we're done.
  1251         collator->setStrength(Collator::PRIMARY);
  1252         if (str.length() >= prefix.length()) {
  1253             UnicodeString temp;
  1254             temp.setTo(str, 0, prefix.length());
  1255             if (collator->equals(temp, prefix)) {
  1256 #ifdef RBNF_DEBUG
  1257                 fprintf(stderr, "returning: %d\n", prefix.length());
  1258 #endif
  1259                 return prefix.length();
  1263         // if they're not equal, then we have to compare successively
  1264         // larger and larger substrings of the target string until we
  1265         // get to one that matches the prefix.  At that point, we know
  1266         // how many characters matched the prefix, and we can return.
  1267         int32_t p = 1;
  1268         while (p <= str.length()) {
  1269             UnicodeString temp;
  1270             temp.setTo(str, 0, p);
  1271             if (collator->equals(temp, prefix)) {
  1272                 return p;
  1273             } else {
  1274                 ++p;
  1278         // SHOULD NEVER GET HERE!!!
  1279         return 0;
  1280         //----------------------------------------------------------------
  1281 #endif
  1283         // If lenient parsing is turned off, forget all that crap above.
  1284         // Just use String.startsWith() and be done with it.
  1285   } else
  1286 #endif
  1288       if (str.startsWith(prefix)) {
  1289           return prefix.length();
  1290       } else {
  1291           return 0;
  1296 /**
  1297 * Searches a string for another string.  If lenient parsing is off,
  1298 * this just calls indexOf().  If lenient parsing is on, this function
  1299 * uses CollationElementIterator to match characters, and only
  1300 * primary-order differences are significant in determining whether
  1301 * there's a match.
  1302 * @param str The string to search
  1303 * @param key The string to search "str" for
  1304 * @param startingAt The index into "str" where the search is to
  1305 * begin
  1306 * @return A two-element array of ints.  Element 0 is the position
  1307 * of the match, or -1 if there was no match.  Element 1 is the
  1308 * number of characters in "str" that matched (which isn't necessarily
  1309 * the same as the length of "key")
  1310 */
  1311 int32_t
  1312 NFRule::findText(const UnicodeString& str,
  1313                  const UnicodeString& key,
  1314                  int32_t startingAt,
  1315                  int32_t* length) const
  1317 #if !UCONFIG_NO_COLLATION
  1318     // if lenient parsing is turned off, this is easy: just call
  1319     // String.indexOf() and we're done
  1320     if (!formatter->isLenient()) {
  1321         *length = key.length();
  1322         return str.indexOf(key, startingAt);
  1324         // but if lenient parsing is turned ON, we've got some work
  1325         // ahead of us
  1326     } else
  1327 #endif
  1329         //----------------------------------------------------------------
  1330         // JDK 1.1 HACK (take out of 1.2-specific code)
  1332         // in JDK 1.2, CollationElementIterator provides us with an
  1333         // API to map between character offsets and collation elements
  1334         // and we can do this by marching through the string comparing
  1335         // collation elements.  We can't do that in JDK 1.1.  Insted,
  1336         // we have to go through this horrible slow mess:
  1337         int32_t p = startingAt;
  1338         int32_t keyLen = 0;
  1340         // basically just isolate smaller and smaller substrings of
  1341         // the target string (each running to the end of the string,
  1342         // and with the first one running from startingAt to the end)
  1343         // and then use prefixLength() to see if the search key is at
  1344         // the beginning of each substring.  This is excruciatingly
  1345         // slow, but it will locate the key and tell use how long the
  1346         // matching text was.
  1347         UnicodeString temp;
  1348         UErrorCode status = U_ZERO_ERROR;
  1349         while (p < str.length() && keyLen == 0) {
  1350             temp.setTo(str, p, str.length() - p);
  1351             keyLen = prefixLength(temp, key, status);
  1352             if (U_FAILURE(status)) {
  1353             	break;
  1355             if (keyLen != 0) {
  1356                 *length = keyLen;
  1357                 return p;
  1359             ++p;
  1361         // if we make it to here, we didn't find it.  Return -1 for the
  1362         // location.  The length should be ignored, but set it to 0,
  1363         // which should be "safe"
  1364         *length = 0;
  1365         return -1;
  1367         //----------------------------------------------------------------
  1368         // JDK 1.2 version of this routine
  1369         //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
  1370         //
  1371         //CollationElementIterator strIter = collator.getCollationElementIterator(str);
  1372         //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
  1373         //
  1374         //int keyStart = -1;
  1375         //
  1376         //str.setOffset(startingAt);
  1377         //
  1378         //int oStr = strIter.next();
  1379         //int oKey = keyIter.next();
  1380         //while (oKey != CollationElementIterator.NULLORDER) {
  1381         //    while (oStr != CollationElementIterator.NULLORDER &&
  1382         //                CollationElementIterator.primaryOrder(oStr) == 0)
  1383         //        oStr = strIter.next();
  1384         //
  1385         //    while (oKey != CollationElementIterator.NULLORDER &&
  1386         //                CollationElementIterator.primaryOrder(oKey) == 0)
  1387         //        oKey = keyIter.next();
  1388         //
  1389         //    if (oStr == CollationElementIterator.NULLORDER) {
  1390         //        return new int[] { -1, 0 };
  1391         //    }
  1392         //
  1393         //    if (oKey == CollationElementIterator.NULLORDER) {
  1394         //        break;
  1395         //    }
  1396         //
  1397         //    if (CollationElementIterator.primaryOrder(oStr) ==
  1398         //            CollationElementIterator.primaryOrder(oKey)) {
  1399         //        keyStart = strIter.getOffset();
  1400         //        oStr = strIter.next();
  1401         //        oKey = keyIter.next();
  1402         //    } else {
  1403         //        if (keyStart != -1) {
  1404         //            keyStart = -1;
  1405         //            keyIter.reset();
  1406         //        } else {
  1407         //            oStr = strIter.next();
  1408         //        }
  1409         //    }
  1410         //}
  1411         //
  1412         //if (oKey == CollationElementIterator.NULLORDER) {
  1413         //    return new int[] { keyStart, strIter.getOffset() - keyStart };
  1414         //} else {
  1415         //    return new int[] { -1, 0 };
  1416         //}
  1420 /**
  1421 * Checks to see whether a string consists entirely of ignorable
  1422 * characters.
  1423 * @param str The string to test.
  1424 * @return true if the string is empty of consists entirely of
  1425 * characters that the number formatter's collator says are
  1426 * ignorable at the primary-order level.  false otherwise.
  1427 */
  1428 UBool
  1429 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
  1431     // if the string is empty, we can just return true
  1432     if (str.length() == 0) {
  1433         return TRUE;
  1436 #if !UCONFIG_NO_COLLATION
  1437     // if lenient parsing is turned on, walk through the string with
  1438     // a collation element iterator and make sure each collation
  1439     // element is 0 (ignorable) at the primary level
  1440     if (formatter->isLenient()) {
  1441         RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
  1442         CollationElementIterator* iter = collator->createCollationElementIterator(str);
  1444         // Memory allocation error check.
  1445         if (collator == NULL || iter == NULL) {
  1446         	delete collator;
  1447         	delete iter;
  1448         	status = U_MEMORY_ALLOCATION_ERROR;
  1449         	return FALSE;
  1452         UErrorCode err = U_ZERO_ERROR;
  1453         int32_t o = iter->next(err);
  1454         while (o != CollationElementIterator::NULLORDER
  1455             && CollationElementIterator::primaryOrder(o) == 0) {
  1456             o = iter->next(err);
  1459         delete iter;
  1460         return o == CollationElementIterator::NULLORDER;
  1462 #endif
  1464     // if lenient parsing is turned off, there is no such thing as
  1465     // an ignorable character: return true only if the string is empty
  1466     return FALSE;
  1469 U_NAMESPACE_END
  1471 /* U_HAVE_RBNF */
  1472 #endif

mercurial