widget/gonk/libui/EventHub.cpp

Wed, 31 Dec 2014 07:22:50 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 07:22:50 +0100
branch
TOR_BUG_3246
changeset 4
fc2d59ddac77
permissions
-rw-r--r--

Correct previous dual key logic pending first delivery installment.

     1 /*
     2  * Copyright (C) 2005 The Android Open Source Project
     3  *
     4  * Licensed under the Apache License, Version 2.0 (the "License");
     5  * you may not use this file except in compliance with the License.
     6  * You may obtain a copy of the License at
     7  *
     8  *      http://www.apache.org/licenses/LICENSE-2.0
     9  *
    10  * Unless required by applicable law or agreed to in writing, software
    11  * distributed under the License is distributed on an "AS IS" BASIS,
    12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    13  * See the License for the specific language governing permissions and
    14  * limitations under the License.
    15  */
    17 #define LOG_TAG "EventHub"
    19 // #define LOG_NDEBUG 0
    20 #include "cutils_log.h"
    22 #include "EventHub.h"
    24 #include <hardware_legacy/power.h>
    26 #include <cutils/properties.h>
    27 #include "cutils_log.h"
    28 #include <utils/Timers.h>
    29 #include <utils/threads.h>
    30 #include <utils/Errors.h>
    32 #include <stdlib.h>
    33 #include <stdio.h>
    34 #include <unistd.h>
    35 #include <fcntl.h>
    36 #include <memory.h>
    37 #include <errno.h>
    38 #include <assert.h>
    40 #include "KeyLayoutMap.h"
    41 #include "KeyCharacterMap.h"
    42 #include "VirtualKeyMap.h"
    44 #include <string.h>
    45 #include <stdint.h>
    46 #include <dirent.h>
    48 #include <sys/inotify.h>
    49 #include <sys/epoll.h>
    50 #include <sys/ioctl.h>
    51 #include <sys/limits.h>
    52 #include <sha1.h>
    54 /* this macro is used to tell if "bit" is set in "array"
    55  * it selects a byte from the array, and does a boolean AND
    56  * operation with a byte that only has the relevant bit set.
    57  * eg. to check for the 12th bit, we do (array[1] & 1<<4)
    58  */
    59 #define test_bit(bit, array)    (array[bit/8] & (1<<(bit%8)))
    61 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
    62 #define sizeof_bit_array(bits)  ((bits + 7) / 8)
    64 #define INDENT "  "
    65 #define INDENT2 "    "
    66 #define INDENT3 "      "
    68 namespace android {
    70 static const char *WAKE_LOCK_ID = "KeyEvents";
    71 static const char *DEVICE_PATH = "/dev/input";
    73 /* return the larger integer */
    74 static inline int max(int v1, int v2)
    75 {
    76     return (v1 > v2) ? v1 : v2;
    77 }
    79 static inline const char* toString(bool value) {
    80     return value ? "true" : "false";
    81 }
    83 static String8 sha1(const String8& in) {
    84     SHA1_CTX ctx;
    85     SHA1Init(&ctx);
    86     SHA1Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
    87     u_char digest[SHA1_DIGEST_LENGTH];
    88     SHA1Final(digest, &ctx);
    90     String8 out;
    91     for (size_t i = 0; i < SHA1_DIGEST_LENGTH; i++) {
    92         out.appendFormat("%02x", digest[i]);
    93     }
    94     return out;
    95 }
    97 static void setDescriptor(InputDeviceIdentifier& identifier) {
    98     // Compute a device descriptor that uniquely identifies the device.
    99     // The descriptor is assumed to be a stable identifier.  Its value should not
   100     // change between reboots, reconnections, firmware updates or new releases of Android.
   101     // Ideally, we also want the descriptor to be short and relatively opaque.
   102     String8 rawDescriptor;
   103     rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, identifier.product);
   104     if (!identifier.uniqueId.isEmpty()) {
   105         rawDescriptor.append("uniqueId:");
   106         rawDescriptor.append(identifier.uniqueId);
   107     } if (identifier.vendor == 0 && identifier.product == 0) {
   108         // If we don't know the vendor and product id, then the device is probably
   109         // built-in so we need to rely on other information to uniquely identify
   110         // the input device.  Usually we try to avoid relying on the device name or
   111         // location but for built-in input device, they are unlikely to ever change.
   112         if (!identifier.name.isEmpty()) {
   113             rawDescriptor.append("name:");
   114             rawDescriptor.append(identifier.name);
   115         } else if (!identifier.location.isEmpty()) {
   116             rawDescriptor.append("location:");
   117             rawDescriptor.append(identifier.location);
   118         }
   119     }
   120     identifier.descriptor = sha1(rawDescriptor);
   121     ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
   122             identifier.descriptor.string());
   123 }
   125 // --- Global Functions ---
   127 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
   128     // Touch devices get dibs on touch-related axes.
   129     if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
   130         switch (axis) {
   131         case ABS_X:
   132         case ABS_Y:
   133         case ABS_PRESSURE:
   134         case ABS_TOOL_WIDTH:
   135         case ABS_DISTANCE:
   136         case ABS_TILT_X:
   137         case ABS_TILT_Y:
   138         case ABS_MT_SLOT:
   139         case ABS_MT_TOUCH_MAJOR:
   140         case ABS_MT_TOUCH_MINOR:
   141         case ABS_MT_WIDTH_MAJOR:
   142         case ABS_MT_WIDTH_MINOR:
   143         case ABS_MT_ORIENTATION:
   144         case ABS_MT_POSITION_X:
   145         case ABS_MT_POSITION_Y:
   146         case ABS_MT_TOOL_TYPE:
   147         case ABS_MT_BLOB_ID:
   148         case ABS_MT_TRACKING_ID:
   149         case ABS_MT_PRESSURE:
   150         case ABS_MT_DISTANCE:
   151             return INPUT_DEVICE_CLASS_TOUCH;
   152         }
   153     }
   155     // Joystick devices get the rest.
   156     return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
   157 }
   159 // --- EventHub::Device ---
   161 EventHub::Device::Device(int fd, int32_t id, const String8& path,
   162         const InputDeviceIdentifier& identifier) :
   163         next(NULL),
   164         fd(fd), id(id), path(path), identifier(identifier),
   165         classes(0), configuration(NULL), virtualKeyMap(NULL),
   166         ffEffectPlaying(false), ffEffectId(-1),
   167         timestampOverrideSec(0), timestampOverrideUsec(0) {
   168     memset(keyBitmask, 0, sizeof(keyBitmask));
   169     memset(absBitmask, 0, sizeof(absBitmask));
   170     memset(relBitmask, 0, sizeof(relBitmask));
   171     memset(swBitmask, 0, sizeof(swBitmask));
   172     memset(ledBitmask, 0, sizeof(ledBitmask));
   173     memset(ffBitmask, 0, sizeof(ffBitmask));
   174     memset(propBitmask, 0, sizeof(propBitmask));
   175 }
   177 EventHub::Device::~Device() {
   178     close();
   179     delete configuration;
   180     delete virtualKeyMap;
   181 }
   183 void EventHub::Device::close() {
   184     if (fd >= 0) {
   185         ::close(fd);
   186         fd = -1;
   187     }
   188 }
   191 // --- EventHub ---
   193 const uint32_t EventHub::EPOLL_ID_INOTIFY;
   194 const uint32_t EventHub::EPOLL_ID_WAKE;
   195 const int EventHub::EPOLL_SIZE_HINT;
   196 const int EventHub::EPOLL_MAX_EVENTS;
   198 EventHub::EventHub(void) :
   199         mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1),
   200         mOpeningDevices(0), mClosingDevices(0),
   201         mNeedToSendFinishedDeviceScan(false),
   202         mNeedToReopenDevices(false), mNeedToScanDevices(true),
   203         mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
   204     acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
   206     mEpollFd = epoll_create(EPOLL_SIZE_HINT);
   207     LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);
   209     mINotifyFd = inotify_init();
   210     int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
   211     LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s.  errno=%d",
   212             DEVICE_PATH, errno);
   214     struct epoll_event eventItem;
   215     memset(&eventItem, 0, sizeof(eventItem));
   216     eventItem.events = EPOLLIN;
   217     eventItem.data.u32 = EPOLL_ID_INOTIFY;
   218     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
   219     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
   221     int wakeFds[2];
   222     result = pipe(wakeFds);
   223     LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
   225     mWakeReadPipeFd = wakeFds[0];
   226     mWakeWritePipeFd = wakeFds[1];
   228     result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
   229     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
   230             errno);
   232     result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
   233     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
   234             errno);
   236     eventItem.data.u32 = EPOLL_ID_WAKE;
   237     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
   238     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
   239             errno);
   240 }
   242 EventHub::~EventHub(void) {
   243     closeAllDevicesLocked();
   245     while (mClosingDevices) {
   246         Device* device = mClosingDevices;
   247         mClosingDevices = device->next;
   248         delete device;
   249     }
   251     ::close(mEpollFd);
   252     ::close(mINotifyFd);
   253     ::close(mWakeReadPipeFd);
   254     ::close(mWakeWritePipeFd);
   256     release_wake_lock(WAKE_LOCK_ID);
   257 }
   259 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
   260     AutoMutex _l(mLock);
   261     Device* device = getDeviceLocked(deviceId);
   262     if (device == NULL) return InputDeviceIdentifier();
   263     return device->identifier;
   264 }
   266 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
   267     AutoMutex _l(mLock);
   268     Device* device = getDeviceLocked(deviceId);
   269     if (device == NULL) return 0;
   270     return device->classes;
   271 }
   273 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
   274     AutoMutex _l(mLock);
   275     Device* device = getDeviceLocked(deviceId);
   276     if (device && device->configuration) {
   277         *outConfiguration = *device->configuration;
   278     } else {
   279         outConfiguration->clear();
   280     }
   281 }
   283 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
   284         RawAbsoluteAxisInfo* outAxisInfo) const {
   285     outAxisInfo->clear();
   287     if (axis >= 0 && axis <= ABS_MAX) {
   288         AutoMutex _l(mLock);
   290         Device* device = getDeviceLocked(deviceId);
   291         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
   292             struct input_absinfo info;
   293             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
   294                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
   295                      axis, device->identifier.name.string(), device->fd, errno);
   296                 return -errno;
   297             }
   299             if (info.minimum != info.maximum) {
   300                 outAxisInfo->valid = true;
   301                 outAxisInfo->minValue = info.minimum;
   302                 outAxisInfo->maxValue = info.maximum;
   303                 outAxisInfo->flat = info.flat;
   304                 outAxisInfo->fuzz = info.fuzz;
   305                 outAxisInfo->resolution = info.resolution;
   306             }
   307             return OK;
   308         }
   309     }
   310     return -1;
   311 }
   313 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
   314     if (axis >= 0 && axis <= REL_MAX) {
   315         AutoMutex _l(mLock);
   317         Device* device = getDeviceLocked(deviceId);
   318         if (device) {
   319             return test_bit(axis, device->relBitmask);
   320         }
   321     }
   322     return false;
   323 }
   325 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
   326     if (property >= 0 && property <= INPUT_PROP_MAX) {
   327         AutoMutex _l(mLock);
   329         Device* device = getDeviceLocked(deviceId);
   330         if (device) {
   331             return test_bit(property, device->propBitmask);
   332         }
   333     }
   334     return false;
   335 }
   337 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
   338     if (scanCode >= 0 && scanCode <= KEY_MAX) {
   339         AutoMutex _l(mLock);
   341         Device* device = getDeviceLocked(deviceId);
   342         if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
   343             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
   344             memset(keyState, 0, sizeof(keyState));
   345             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
   346                 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
   347             }
   348         }
   349     }
   350     return AKEY_STATE_UNKNOWN;
   351 }
   353 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
   354     AutoMutex _l(mLock);
   356     Device* device = getDeviceLocked(deviceId);
   357     if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
   358         Vector<int32_t> scanCodes;
   359         device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
   360         if (scanCodes.size() != 0) {
   361             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
   362             memset(keyState, 0, sizeof(keyState));
   363             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
   364                 for (size_t i = 0; i < scanCodes.size(); i++) {
   365                     int32_t sc = scanCodes.itemAt(i);
   366                     if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
   367                         return AKEY_STATE_DOWN;
   368                     }
   369                 }
   370                 return AKEY_STATE_UP;
   371             }
   372         }
   373     }
   374     return AKEY_STATE_UNKNOWN;
   375 }
   377 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
   378     if (sw >= 0 && sw <= SW_MAX) {
   379         AutoMutex _l(mLock);
   381         Device* device = getDeviceLocked(deviceId);
   382         if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
   383             uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
   384             memset(swState, 0, sizeof(swState));
   385             if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
   386                 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
   387             }
   388         }
   389     }
   390     return AKEY_STATE_UNKNOWN;
   391 }
   393 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
   394     *outValue = 0;
   396     if (axis >= 0 && axis <= ABS_MAX) {
   397         AutoMutex _l(mLock);
   399         Device* device = getDeviceLocked(deviceId);
   400         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
   401             struct input_absinfo info;
   402             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
   403                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
   404                      axis, device->identifier.name.string(), device->fd, errno);
   405                 return -errno;
   406             }
   408             *outValue = info.value;
   409             return OK;
   410         }
   411     }
   412     return -1;
   413 }
   415 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
   416         const int32_t* keyCodes, uint8_t* outFlags) const {
   417     AutoMutex _l(mLock);
   419     Device* device = getDeviceLocked(deviceId);
   420     if (device && device->keyMap.haveKeyLayout()) {
   421         Vector<int32_t> scanCodes;
   422         for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
   423             scanCodes.clear();
   425             status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
   426                     keyCodes[codeIndex], &scanCodes);
   427             if (! err) {
   428                 // check the possible scan codes identified by the layout map against the
   429                 // map of codes actually emitted by the driver
   430                 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
   431                     if (test_bit(scanCodes[sc], device->keyBitmask)) {
   432                         outFlags[codeIndex] = 1;
   433                         break;
   434                     }
   435                 }
   436             }
   437         }
   438         return true;
   439     }
   440     return false;
   441 }
   443 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
   444         int32_t* outKeycode, uint32_t* outFlags) const {
   445     AutoMutex _l(mLock);
   446     Device* device = getDeviceLocked(deviceId);
   448     if (device) {
   449         // Check the key character map first.
   450         sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
   451         if (kcm != NULL) {
   452             if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
   453                 *outFlags = 0;
   454                 return NO_ERROR;
   455             }
   456         }
   458         // Check the key layout next.
   459         if (device->keyMap.haveKeyLayout()) {
   460             if (!device->keyMap.keyLayoutMap->mapKey(
   461                     scanCode, usageCode, outKeycode, outFlags)) {
   462                 return NO_ERROR;
   463             }
   464         }
   465     }
   467     *outKeycode = 0;
   468     *outFlags = 0;
   469     return NAME_NOT_FOUND;
   470 }
   472 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
   473     AutoMutex _l(mLock);
   474     Device* device = getDeviceLocked(deviceId);
   476     if (device && device->keyMap.haveKeyLayout()) {
   477         status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
   478         if (err == NO_ERROR) {
   479             return NO_ERROR;
   480         }
   481     }
   483     return NAME_NOT_FOUND;
   484 }
   486 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
   487     AutoMutex _l(mLock);
   489     mExcludedDevices = devices;
   490 }
   492 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
   493     AutoMutex _l(mLock);
   494     Device* device = getDeviceLocked(deviceId);
   495     if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
   496         if (test_bit(scanCode, device->keyBitmask)) {
   497             return true;
   498         }
   499     }
   500     return false;
   501 }
   503 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
   504     AutoMutex _l(mLock);
   505     Device* device = getDeviceLocked(deviceId);
   506     if (device && led >= 0 && led <= LED_MAX) {
   507         if (test_bit(led, device->ledBitmask)) {
   508             return true;
   509         }
   510     }
   511     return false;
   512 }
   514 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
   515     AutoMutex _l(mLock);
   516     Device* device = getDeviceLocked(deviceId);
   517     if (device && !device->isVirtual() && led >= 0 && led <= LED_MAX) {
   518         struct input_event ev;
   519         ev.time.tv_sec = 0;
   520         ev.time.tv_usec = 0;
   521         ev.type = EV_LED;
   522         ev.code = led;
   523         ev.value = on ? 1 : 0;
   525         ssize_t nWrite;
   526         do {
   527             nWrite = write(device->fd, &ev, sizeof(struct input_event));
   528         } while (nWrite == -1 && errno == EINTR);
   529     }
   530 }
   532 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
   533         Vector<VirtualKeyDefinition>& outVirtualKeys) const {
   534     outVirtualKeys.clear();
   536     AutoMutex _l(mLock);
   537     Device* device = getDeviceLocked(deviceId);
   538     if (device && device->virtualKeyMap) {
   539         outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
   540     }
   541 }
   543 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
   544     AutoMutex _l(mLock);
   545     Device* device = getDeviceLocked(deviceId);
   546     if (device) {
   547         return device->getKeyCharacterMap();
   548     }
   549     return NULL;
   550 }
   552 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
   553         const sp<KeyCharacterMap>& map) {
   554     AutoMutex _l(mLock);
   555     Device* device = getDeviceLocked(deviceId);
   556     if (device) {
   557         if (map != device->overlayKeyMap) {
   558             device->overlayKeyMap = map;
   559             device->combinedKeyMap = KeyCharacterMap::combine(
   560                     device->keyMap.keyCharacterMap, map);
   561             return true;
   562         }
   563     }
   564     return false;
   565 }
   567 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
   568     AutoMutex _l(mLock);
   569     Device* device = getDeviceLocked(deviceId);
   570     if (device && !device->isVirtual()) {
   571         ff_effect effect;
   572         memset(&effect, 0, sizeof(effect));
   573         effect.type = FF_RUMBLE;
   574         effect.id = device->ffEffectId;
   575         effect.u.rumble.strong_magnitude = 0xc000;
   576         effect.u.rumble.weak_magnitude = 0xc000;
   577         effect.replay.length = (duration + 999999LL) / 1000000LL;
   578         effect.replay.delay = 0;
   579         if (ioctl(device->fd, EVIOCSFF, &effect)) {
   580             ALOGW("Could not upload force feedback effect to device %s due to error %d.",
   581                     device->identifier.name.string(), errno);
   582             return;
   583         }
   584         device->ffEffectId = effect.id;
   586         struct input_event ev;
   587         ev.time.tv_sec = 0;
   588         ev.time.tv_usec = 0;
   589         ev.type = EV_FF;
   590         ev.code = device->ffEffectId;
   591         ev.value = 1;
   592         if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
   593             ALOGW("Could not start force feedback effect on device %s due to error %d.",
   594                     device->identifier.name.string(), errno);
   595             return;
   596         }
   597         device->ffEffectPlaying = true;
   598     }
   599 }
   601 void EventHub::cancelVibrate(int32_t deviceId) {
   602     AutoMutex _l(mLock);
   603     Device* device = getDeviceLocked(deviceId);
   604     if (device && !device->isVirtual()) {
   605         if (device->ffEffectPlaying) {
   606             device->ffEffectPlaying = false;
   608             struct input_event ev;
   609             ev.time.tv_sec = 0;
   610             ev.time.tv_usec = 0;
   611             ev.type = EV_FF;
   612             ev.code = device->ffEffectId;
   613             ev.value = 0;
   614             if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
   615                 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
   616                         device->identifier.name.string(), errno);
   617                 return;
   618             }
   619         }
   620     }
   621 }
   623 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
   624     if (deviceId == BUILT_IN_KEYBOARD_ID) {
   625         deviceId = mBuiltInKeyboardId;
   626     }
   627     ssize_t index = mDevices.indexOfKey(deviceId);
   628     return index >= 0 ? mDevices.valueAt(index) : NULL;
   629 }
   631 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
   632     for (size_t i = 0; i < mDevices.size(); i++) {
   633         Device* device = mDevices.valueAt(i);
   634         if (device->path == devicePath) {
   635             return device;
   636         }
   637     }
   638     return NULL;
   639 }
   641 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
   642     ALOG_ASSERT(bufferSize >= 1);
   644     AutoMutex _l(mLock);
   646     struct input_event readBuffer[bufferSize];
   648     RawEvent* event = buffer;
   649     size_t capacity = bufferSize;
   650     bool awoken = false;
   651     for (;;) {
   652         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
   654         // Reopen input devices if needed.
   655         if (mNeedToReopenDevices) {
   656             mNeedToReopenDevices = false;
   658             ALOGI("Reopening all input devices due to a configuration change.");
   660             closeAllDevicesLocked();
   661             mNeedToScanDevices = true;
   662             break; // return to the caller before we actually rescan
   663         }
   665         // Report any devices that had last been added/removed.
   666         while (mClosingDevices) {
   667             Device* device = mClosingDevices;
   668             ALOGV("Reporting device closed: id=%d, name=%s\n",
   669                  device->id, device->path.string());
   670             mClosingDevices = device->next;
   671             event->when = now;
   672             event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
   673             event->type = DEVICE_REMOVED;
   674             event += 1;
   675             delete device;
   676             mNeedToSendFinishedDeviceScan = true;
   677             if (--capacity == 0) {
   678                 break;
   679             }
   680         }
   682         if (mNeedToScanDevices) {
   683             mNeedToScanDevices = false;
   684             scanDevicesLocked();
   685             mNeedToSendFinishedDeviceScan = true;
   686         }
   688         while (mOpeningDevices != NULL) {
   689             Device* device = mOpeningDevices;
   690             ALOGV("Reporting device opened: id=%d, name=%s\n",
   691                  device->id, device->path.string());
   692             mOpeningDevices = device->next;
   693             event->when = now;
   694             event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
   695             event->type = DEVICE_ADDED;
   696             event += 1;
   697             mNeedToSendFinishedDeviceScan = true;
   698             if (--capacity == 0) {
   699                 break;
   700             }
   701         }
   703         if (mNeedToSendFinishedDeviceScan) {
   704             mNeedToSendFinishedDeviceScan = false;
   705             event->when = now;
   706             event->type = FINISHED_DEVICE_SCAN;
   707             event += 1;
   708             if (--capacity == 0) {
   709                 break;
   710             }
   711         }
   713         // Grab the next input event.
   714         bool deviceChanged = false;
   715         while (mPendingEventIndex < mPendingEventCount) {
   716             const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
   717             if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
   718                 if (eventItem.events & EPOLLIN) {
   719                     mPendingINotify = true;
   720                 } else {
   721                     ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
   722                 }
   723                 continue;
   724             }
   726             if (eventItem.data.u32 == EPOLL_ID_WAKE) {
   727                 if (eventItem.events & EPOLLIN) {
   728                     ALOGV("awoken after wake()");
   729                     awoken = true;
   730                     char buffer[16];
   731                     ssize_t nRead;
   732                     do {
   733                         nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
   734                     } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
   735                 } else {
   736                     ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
   737                             eventItem.events);
   738                 }
   739                 continue;
   740             }
   742             ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
   743             if (deviceIndex < 0) {
   744                 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
   745                         eventItem.events, eventItem.data.u32);
   746                 continue;
   747             }
   749             Device* device = mDevices.valueAt(deviceIndex);
   750             if (eventItem.events & EPOLLIN) {
   751                 int32_t readSize = read(device->fd, readBuffer,
   752                         sizeof(struct input_event) * capacity);
   753                 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
   754                     // Device was removed before INotify noticed.
   755                     ALOGW("could not get event, removed? (fd: %d size: %d bufferSize: %d "
   756                             "capacity: %d errno: %d)\n",
   757                             device->fd, readSize, bufferSize, capacity, errno);
   758                     deviceChanged = true;
   759                     closeDeviceLocked(device);
   760                 } else if (readSize < 0) {
   761                     if (errno != EAGAIN && errno != EINTR) {
   762                         ALOGW("could not get event (errno=%d)", errno);
   763                     }
   764                 } else if ((readSize % sizeof(struct input_event)) != 0) {
   765                     ALOGE("could not get event (wrong size: %d)", readSize);
   766                 } else {
   767                     int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
   769                     size_t count = size_t(readSize) / sizeof(struct input_event);
   770                     for (size_t i = 0; i < count; i++) {
   771                         struct input_event& iev = readBuffer[i];
   772                         ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d",
   773                                 device->path.string(),
   774                                 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
   775                                 iev.type, iev.code, iev.value);
   777                         // Some input devices may have a better concept of the time
   778                         // when an input event was actually generated than the kernel
   779                         // which simply timestamps all events on entry to evdev.
   780                         // This is a custom Android extension of the input protocol
   781                         // mainly intended for use with uinput based device drivers.
   782                         if (iev.type == EV_MSC) {
   783                             if (iev.code == MSC_ANDROID_TIME_SEC) {
   784                                 device->timestampOverrideSec = iev.value;
   785                                 continue;
   786                             } else if (iev.code == MSC_ANDROID_TIME_USEC) {
   787                                 device->timestampOverrideUsec = iev.value;
   788                                 continue;
   789                             }
   790                         }
   791                         if (device->timestampOverrideSec || device->timestampOverrideUsec) {
   792                             iev.time.tv_sec = device->timestampOverrideSec;
   793                             iev.time.tv_usec = device->timestampOverrideUsec;
   794                             if (iev.type == EV_SYN && iev.code == SYN_REPORT) {
   795                                 device->timestampOverrideSec = 0;
   796                                 device->timestampOverrideUsec = 0;
   797                             }
   798                             ALOGV("applied override time %d.%06d",
   799                                     int(iev.time.tv_sec), int(iev.time.tv_usec));
   800                         }
   802 #ifdef HAVE_POSIX_CLOCKS
   803                         // Use the time specified in the event instead of the current time
   804                         // so that downstream code can get more accurate estimates of
   805                         // event dispatch latency from the time the event is enqueued onto
   806                         // the evdev client buffer.
   807                         //
   808                         // The event's timestamp fortuitously uses the same monotonic clock
   809                         // time base as the rest of Android.  The kernel event device driver
   810                         // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
   811                         // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
   812                         // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
   813                         // system call that also queries ktime_get_ts().
   814                         event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
   815                                 + nsecs_t(iev.time.tv_usec) * 1000LL;
   816                         ALOGV("event time %lld, now %lld", event->when, now);
   818                         // Bug 7291243: Add a guard in case the kernel generates timestamps
   819                         // that appear to be far into the future because they were generated
   820                         // using the wrong clock source.
   821                         //
   822                         // This can happen because when the input device is initially opened
   823                         // it has a default clock source of CLOCK_REALTIME.  Any input events
   824                         // enqueued right after the device is opened will have timestamps
   825                         // generated using CLOCK_REALTIME.  We later set the clock source
   826                         // to CLOCK_MONOTONIC but it is already too late.
   827                         //
   828                         // Invalid input event timestamps can result in ANRs, crashes and
   829                         // and other issues that are hard to track down.  We must not let them
   830                         // propagate through the system.
   831                         //
   832                         // Log a warning so that we notice the problem and recover gracefully.
   833                         if (event->when >= now + 10 * 1000000000LL) {
   834                             // Double-check.  Time may have moved on.
   835                             nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
   836                             if (event->when > time) {
   837                                 ALOGW("An input event from %s has a timestamp that appears to "
   838                                         "have been generated using the wrong clock source "
   839                                         "(expected CLOCK_MONOTONIC): "
   840                                         "event time %lld, current time %lld, call time %lld.  "
   841                                         "Using current time instead.",
   842                                         device->path.string(), event->when, time, now);
   843                                 event->when = time;
   844                             } else {
   845                                 ALOGV("Event time is ok but failed the fast path and required "
   846                                         "an extra call to systemTime: "
   847                                         "event time %lld, current time %lld, call time %lld.",
   848                                         event->when, time, now);
   849                             }
   850                         }
   851 #else
   852                         event->when = now;
   853 #endif
   854                         event->deviceId = deviceId;
   855                         event->type = iev.type;
   856                         event->code = iev.code;
   857                         event->value = iev.value;
   858                         event += 1;
   859                         capacity -= 1;
   860                     }
   861                     if (capacity == 0) {
   862                         // The result buffer is full.  Reset the pending event index
   863                         // so we will try to read the device again on the next iteration.
   864                         mPendingEventIndex -= 1;
   865                         break;
   866                     }
   867                 }
   868             } else if (eventItem.events & EPOLLHUP) {
   869                 ALOGI("Removing device %s due to epoll hang-up event.",
   870                         device->identifier.name.string());
   871                 deviceChanged = true;
   872                 closeDeviceLocked(device);
   873             } else {
   874                 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
   875                         eventItem.events, device->identifier.name.string());
   876             }
   877         }
   879         // readNotify() will modify the list of devices so this must be done after
   880         // processing all other events to ensure that we read all remaining events
   881         // before closing the devices.
   882         if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
   883             mPendingINotify = false;
   884             readNotifyLocked();
   885             deviceChanged = true;
   886         }
   888         // Report added or removed devices immediately.
   889         if (deviceChanged) {
   890             continue;
   891         }
   893         // Return now if we have collected any events or if we were explicitly awoken.
   894         if (event != buffer || awoken) {
   895             break;
   896         }
   898         // Poll for events.  Mind the wake lock dance!
   899         // We hold a wake lock at all times except during epoll_wait().  This works due to some
   900         // subtle choreography.  When a device driver has pending (unread) events, it acquires
   901         // a kernel wake lock.  However, once the last pending event has been read, the device
   902         // driver will release the kernel wake lock.  To prevent the system from going to sleep
   903         // when this happens, the EventHub holds onto its own user wake lock while the client
   904         // is processing events.  Thus the system can only sleep if there are no events
   905         // pending or currently being processed.
   906         //
   907         // The timeout is advisory only.  If the device is asleep, it will not wake just to
   908         // service the timeout.
   909         mPendingEventIndex = 0;
   911         mLock.unlock(); // release lock before poll, must be before release_wake_lock
   912         release_wake_lock(WAKE_LOCK_ID);
   914         int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
   916         acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
   917         mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
   919         if (pollResult == 0) {
   920             // Timed out.
   921             mPendingEventCount = 0;
   922             break;
   923         }
   925         if (pollResult < 0) {
   926             // An error occurred.
   927             mPendingEventCount = 0;
   929             // Sleep after errors to avoid locking up the system.
   930             // Hopefully the error is transient.
   931             if (errno != EINTR) {
   932                 ALOGW("poll failed (errno=%d)\n", errno);
   933                 usleep(100000);
   934             }
   935         } else {
   936             // Some events occurred.
   937             mPendingEventCount = size_t(pollResult);
   938         }
   939     }
   941     // All done, return the number of events we read.
   942     return event - buffer;
   943 }
   945 void EventHub::wake() {
   946     ALOGV("wake() called");
   948     ssize_t nWrite;
   949     do {
   950         nWrite = write(mWakeWritePipeFd, "W", 1);
   951     } while (nWrite == -1 && errno == EINTR);
   953     if (nWrite != 1 && errno != EAGAIN) {
   954         ALOGW("Could not write wake signal, errno=%d", errno);
   955     }
   956 }
   958 void EventHub::scanDevicesLocked() {
   959     status_t res = scanDirLocked(DEVICE_PATH);
   960     if(res < 0) {
   961         ALOGE("scan dir failed for %s\n", DEVICE_PATH);
   962     }
   963     if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
   964         createVirtualKeyboardLocked();
   965     }
   966 }
   968 // ----------------------------------------------------------------------------
   970 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
   971     const uint8_t* end = array + endIndex;
   972     array += startIndex;
   973     while (array != end) {
   974         if (*(array++) != 0) {
   975             return true;
   976         }
   977     }
   978     return false;
   979 }
   981 static const int32_t GAMEPAD_KEYCODES[] = {
   982         AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
   983         AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
   984         AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
   985         AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
   986         AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
   987         AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
   988         AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
   989         AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
   990         AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
   991         AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
   992 };
   994 status_t EventHub::openDeviceLocked(const char *devicePath) {
   995     char buffer[80];
   997     ALOGV("Opening device: %s", devicePath);
   999     int fd = open(devicePath, O_RDWR | O_CLOEXEC);
  1000     if(fd < 0) {
  1001         ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
  1002         return -1;
  1005     InputDeviceIdentifier identifier;
  1007     // Get device name.
  1008     if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
  1009         //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
  1010     } else {
  1011         buffer[sizeof(buffer) - 1] = '\0';
  1012         identifier.name.setTo(buffer);
  1015     // Check to see if the device is on our excluded list
  1016     for (size_t i = 0; i < mExcludedDevices.size(); i++) {
  1017         const String8& item = mExcludedDevices.itemAt(i);
  1018         if (identifier.name == item) {
  1019             ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
  1020             close(fd);
  1021             return -1;
  1025     // Get device driver version.
  1026     int driverVersion;
  1027     if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
  1028         ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
  1029         close(fd);
  1030         return -1;
  1033     // Get device identifier.
  1034     struct input_id inputId;
  1035     if(ioctl(fd, EVIOCGID, &inputId)) {
  1036         ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
  1037         close(fd);
  1038         return -1;
  1040     identifier.bus = inputId.bustype;
  1041     identifier.product = inputId.product;
  1042     identifier.vendor = inputId.vendor;
  1043     identifier.version = inputId.version;
  1045     // Get device physical location.
  1046     if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
  1047         //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
  1048     } else {
  1049         buffer[sizeof(buffer) - 1] = '\0';
  1050         identifier.location.setTo(buffer);
  1053     // Get device unique id.
  1054     if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
  1055         //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
  1056     } else {
  1057         buffer[sizeof(buffer) - 1] = '\0';
  1058         identifier.uniqueId.setTo(buffer);
  1061     // Fill in the descriptor.
  1062     setDescriptor(identifier);
  1064     // Make file descriptor non-blocking for use with poll().
  1065     if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
  1066         ALOGE("Error %d making device file descriptor non-blocking.", errno);
  1067         close(fd);
  1068         return -1;
  1071     // Allocate device.  (The device object takes ownership of the fd at this point.)
  1072     int32_t deviceId = mNextDeviceId++;
  1073     Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
  1075     ALOGV("add device %d: %s\n", deviceId, devicePath);
  1076     ALOGV("  bus:        %04x\n"
  1077          "  vendor      %04x\n"
  1078          "  product     %04x\n"
  1079          "  version     %04x\n",
  1080         identifier.bus, identifier.vendor, identifier.product, identifier.version);
  1081     ALOGV("  name:       \"%s\"\n", identifier.name.string());
  1082     ALOGV("  location:   \"%s\"\n", identifier.location.string());
  1083     ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.string());
  1084     ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.string());
  1085     ALOGV("  driver:     v%d.%d.%d\n",
  1086         driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
  1088     // Load the configuration file for the device.
  1089     loadConfigurationLocked(device);
  1091     // Figure out the kinds of events the device reports.
  1092     ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
  1093     ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
  1094     ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
  1095     ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
  1096     ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
  1097     ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
  1098     ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
  1100     // See if this is a keyboard.  Ignore everything in the button range except for
  1101     // joystick and gamepad buttons which are handled like keyboards for the most part.
  1102     bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
  1103             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
  1104                     sizeof_bit_array(KEY_MAX + 1));
  1105     bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
  1106                     sizeof_bit_array(BTN_MOUSE))
  1107             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
  1108                     sizeof_bit_array(BTN_DIGI));
  1109     if (haveKeyboardKeys || haveGamepadButtons) {
  1110         device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
  1113     // See if this is a cursor device such as a trackball or mouse.
  1114     if (test_bit(BTN_MOUSE, device->keyBitmask)
  1115             && test_bit(REL_X, device->relBitmask)
  1116             && test_bit(REL_Y, device->relBitmask)) {
  1117         device->classes |= INPUT_DEVICE_CLASS_CURSOR;
  1120     // See if this is a touch pad.
  1121     // Is this a new modern multi-touch driver?
  1122     if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
  1123             && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
  1124         // Some joysticks such as the PS3 controller report axes that conflict
  1125         // with the ABS_MT range.  Try to confirm that the device really is
  1126         // a touch screen.
  1127         if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
  1128             device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
  1130     // Is this an old style single-touch driver?
  1131     } else if (test_bit(BTN_TOUCH, device->keyBitmask)
  1132             && test_bit(ABS_X, device->absBitmask)
  1133             && test_bit(ABS_Y, device->absBitmask)) {
  1134         device->classes |= INPUT_DEVICE_CLASS_TOUCH;
  1137     // See if this device is a joystick.
  1138     // Assumes that joysticks always have gamepad buttons in order to distinguish them
  1139     // from other devices such as accelerometers that also have absolute axes.
  1140     if (haveGamepadButtons) {
  1141         uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
  1142         for (int i = 0; i <= ABS_MAX; i++) {
  1143             if (test_bit(i, device->absBitmask)
  1144                     && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
  1145                 device->classes = assumedClasses;
  1146                 break;
  1151     // Check whether this device has switches.
  1152     for (int i = 0; i <= SW_MAX; i++) {
  1153         if (test_bit(i, device->swBitmask)) {
  1154             device->classes |= INPUT_DEVICE_CLASS_SWITCH;
  1155             break;
  1159     // Check whether this device supports the vibrator.
  1160     if (test_bit(FF_RUMBLE, device->ffBitmask)) {
  1161         device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
  1164     // Configure virtual keys.
  1165     if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
  1166         // Load the virtual keys for the touch screen, if any.
  1167         // We do this now so that we can make sure to load the keymap if necessary.
  1168         status_t status = loadVirtualKeyMapLocked(device);
  1169         if (!status) {
  1170             device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
  1174     // Load the key map.
  1175     // We need to do this for joysticks too because the key layout may specify axes.
  1176     status_t keyMapStatus = NAME_NOT_FOUND;
  1177     if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
  1178         // Load the keymap for the device.
  1179         keyMapStatus = loadKeyMapLocked(device);
  1182     // Configure the keyboard, gamepad or virtual keyboard.
  1183     if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
  1184         // Register the keyboard as a built-in keyboard if it is eligible.
  1185         if (!keyMapStatus
  1186                 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
  1187                 && isEligibleBuiltInKeyboard(device->identifier,
  1188                         device->configuration, &device->keyMap)) {
  1189             mBuiltInKeyboardId = device->id;
  1192         // 'Q' key support = cheap test of whether this is an alpha-capable kbd
  1193         if (hasKeycodeLocked(device, AKEYCODE_Q)) {
  1194             device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
  1197         // See if this device has a DPAD.
  1198         if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
  1199                 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
  1200                 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
  1201                 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
  1202                 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
  1203             device->classes |= INPUT_DEVICE_CLASS_DPAD;
  1206         // See if this device has a gamepad.
  1207         for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
  1208             if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
  1209                 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
  1210                 break;
  1214         // Disable kernel key repeat since we handle it ourselves
  1215         unsigned int repeatRate[] = {0,0};
  1216         if (ioctl(fd, EVIOCSREP, repeatRate)) {
  1217             ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno));
  1221     // If the device isn't recognized as something we handle, don't monitor it.
  1222     if (device->classes == 0) {
  1223         ALOGV("Dropping device: id=%d, path='%s', name='%s'",
  1224                 deviceId, devicePath, device->identifier.name.string());
  1225         delete device;
  1226         return -1;
  1229     // Determine whether the device is external or internal.
  1230     if (isExternalDeviceLocked(device)) {
  1231         device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
  1234     // Register with epoll.
  1235     struct epoll_event eventItem;
  1236     memset(&eventItem, 0, sizeof(eventItem));
  1237     eventItem.events = EPOLLIN;
  1238     eventItem.data.u32 = deviceId;
  1239     if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
  1240         ALOGE("Could not add device fd to epoll instance.  errno=%d", errno);
  1241         delete device;
  1242         return -1;
  1245     // Enable wake-lock behavior on kernels that support it.
  1246     // TODO: Only need this for devices that can really wake the system.
  1247     bool usingSuspendBlockIoctl = !ioctl(fd, EVIOCSSUSPENDBLOCK, 1);
  1249     // Tell the kernel that we want to use the monotonic clock for reporting timestamps
  1250     // associated with input events.  This is important because the input system
  1251     // uses the timestamps extensively and assumes they were recorded using the monotonic
  1252     // clock.
  1253     //
  1254     // In older kernel, before Linux 3.4, there was no way to tell the kernel which
  1255     // clock to use to input event timestamps.  The standard kernel behavior was to
  1256     // record a real time timestamp, which isn't what we want.  Android kernels therefore
  1257     // contained a patch to the evdev_event() function in drivers/input/evdev.c to
  1258     // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
  1259     // clock to be used instead of the real time clock.
  1260     //
  1261     // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
  1262     // Therefore, we no longer require the Android-specific kernel patch described above
  1263     // as long as we make sure to set select the monotonic clock.  We do that here.
  1264     int clockId = CLOCK_MONOTONIC;
  1265     bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
  1267     ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
  1268             "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
  1269             "usingSuspendBlockIoctl=%s, usingClockIoctl=%s",
  1270          deviceId, fd, devicePath, device->identifier.name.string(),
  1271          device->classes,
  1272          device->configurationFile.string(),
  1273          device->keyMap.keyLayoutFile.string(),
  1274          device->keyMap.keyCharacterMapFile.string(),
  1275          toString(mBuiltInKeyboardId == deviceId),
  1276          toString(usingSuspendBlockIoctl), toString(usingClockIoctl));
  1278     addDeviceLocked(device);
  1279     return 0;
  1282 void EventHub::createVirtualKeyboardLocked() {
  1283     InputDeviceIdentifier identifier;
  1284     identifier.name = "Virtual";
  1285     identifier.uniqueId = "<virtual>";
  1286     setDescriptor(identifier);
  1288     Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
  1289     device->classes = INPUT_DEVICE_CLASS_KEYBOARD
  1290             | INPUT_DEVICE_CLASS_ALPHAKEY
  1291             | INPUT_DEVICE_CLASS_DPAD
  1292             | INPUT_DEVICE_CLASS_VIRTUAL;
  1293     loadKeyMapLocked(device);
  1294     addDeviceLocked(device);
  1297 void EventHub::addDeviceLocked(Device* device) {
  1298     mDevices.add(device->id, device);
  1299     device->next = mOpeningDevices;
  1300     mOpeningDevices = device;
  1303 void EventHub::loadConfigurationLocked(Device* device) {
  1304     device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
  1305             device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
  1306     if (device->configurationFile.isEmpty()) {
  1307         ALOGD("No input device configuration file found for device '%s'.",
  1308                 device->identifier.name.string());
  1309     } else {
  1310         status_t status = PropertyMap::load(device->configurationFile,
  1311                 &device->configuration);
  1312         if (status) {
  1313             ALOGE("Error loading input device configuration file for device '%s'.  "
  1314                     "Using default configuration.",
  1315                     device->identifier.name.string());
  1320 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
  1321     // The virtual key map is supplied by the kernel as a system board property file.
  1322     String8 path;
  1323     path.append("/sys/board_properties/virtualkeys.");
  1324     path.append(device->identifier.name);
  1325     if (access(path.string(), R_OK)) {
  1326         return NAME_NOT_FOUND;
  1328     return VirtualKeyMap::load(path, &device->virtualKeyMap);
  1331 status_t EventHub::loadKeyMapLocked(Device* device) {
  1332     return device->keyMap.load(device->identifier, device->configuration);
  1335 bool EventHub::isExternalDeviceLocked(Device* device) {
  1336     if (device->configuration) {
  1337         bool value;
  1338         if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
  1339             return !value;
  1342     return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
  1345 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
  1346     if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
  1347         return false;
  1350     Vector<int32_t> scanCodes;
  1351     device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
  1352     const size_t N = scanCodes.size();
  1353     for (size_t i=0; i<N && i<=KEY_MAX; i++) {
  1354         int32_t sc = scanCodes.itemAt(i);
  1355         if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
  1356             return true;
  1360     return false;
  1363 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
  1364     Device* device = getDeviceByPathLocked(devicePath);
  1365     if (device) {
  1366         closeDeviceLocked(device);
  1367         return 0;
  1369     ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
  1370     return -1;
  1373 void EventHub::closeAllDevicesLocked() {
  1374     while (mDevices.size() > 0) {
  1375         closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
  1379 void EventHub::closeDeviceLocked(Device* device) {
  1380     ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
  1381          device->path.string(), device->identifier.name.string(), device->id,
  1382          device->fd, device->classes);
  1384     if (device->id == mBuiltInKeyboardId) {
  1385         ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
  1386                 device->path.string(), mBuiltInKeyboardId);
  1387         mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
  1390     if (!device->isVirtual()) {
  1391         if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
  1392             ALOGW("Could not remove device fd from epoll instance.  errno=%d", errno);
  1396     mDevices.removeItem(device->id);
  1397     device->close();
  1399     // Unlink for opening devices list if it is present.
  1400     Device* pred = NULL;
  1401     bool found = false;
  1402     for (Device* entry = mOpeningDevices; entry != NULL; ) {
  1403         if (entry == device) {
  1404             found = true;
  1405             break;
  1407         pred = entry;
  1408         entry = entry->next;
  1410     if (found) {
  1411         // Unlink the device from the opening devices list then delete it.
  1412         // We don't need to tell the client that the device was closed because
  1413         // it does not even know it was opened in the first place.
  1414         ALOGI("Device %s was immediately closed after opening.", device->path.string());
  1415         if (pred) {
  1416             pred->next = device->next;
  1417         } else {
  1418             mOpeningDevices = device->next;
  1420         delete device;
  1421     } else {
  1422         // Link into closing devices list.
  1423         // The device will be deleted later after we have informed the client.
  1424         device->next = mClosingDevices;
  1425         mClosingDevices = device;
  1429 status_t EventHub::readNotifyLocked() {
  1430     int res;
  1431     char devname[PATH_MAX];
  1432     char *filename;
  1433     char event_buf[512];
  1434     int event_size;
  1435     int event_pos = 0;
  1436     struct inotify_event *event;
  1438     ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
  1439     res = read(mINotifyFd, event_buf, sizeof(event_buf));
  1440     if(res < (int)sizeof(*event)) {
  1441         if(errno == EINTR)
  1442             return 0;
  1443         ALOGW("could not get event, %s\n", strerror(errno));
  1444         return -1;
  1446     //printf("got %d bytes of event information\n", res);
  1448     strcpy(devname, DEVICE_PATH);
  1449     filename = devname + strlen(devname);
  1450     *filename++ = '/';
  1452     while(res >= (int)sizeof(*event)) {
  1453         event = (struct inotify_event *)(event_buf + event_pos);
  1454         //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
  1455         if(event->len) {
  1456             strcpy(filename, event->name);
  1457             if(event->mask & IN_CREATE) {
  1458                 openDeviceLocked(devname);
  1459             } else {
  1460                 ALOGI("Removing device '%s' due to inotify event\n", devname);
  1461                 closeDeviceByPathLocked(devname);
  1464         event_size = sizeof(*event) + event->len;
  1465         res -= event_size;
  1466         event_pos += event_size;
  1468     return 0;
  1471 status_t EventHub::scanDirLocked(const char *dirname)
  1473     char devname[PATH_MAX];
  1474     char *filename;
  1475     DIR *dir;
  1476     struct dirent *de;
  1477     dir = opendir(dirname);
  1478     if(dir == NULL)
  1479         return -1;
  1480     strcpy(devname, dirname);
  1481     filename = devname + strlen(devname);
  1482     *filename++ = '/';
  1483     while((de = readdir(dir))) {
  1484         if(de->d_name[0] == '.' &&
  1485            (de->d_name[1] == '\0' ||
  1486             (de->d_name[1] == '.' && de->d_name[2] == '\0')))
  1487             continue;
  1488         strcpy(filename, de->d_name);
  1489         openDeviceLocked(devname);
  1491     closedir(dir);
  1492     return 0;
  1495 void EventHub::requestReopenDevices() {
  1496     ALOGV("requestReopenDevices() called");
  1498     AutoMutex _l(mLock);
  1499     mNeedToReopenDevices = true;
  1502 void EventHub::dump(String8& dump) {
  1503     dump.append("Event Hub State:\n");
  1505     { // acquire lock
  1506         AutoMutex _l(mLock);
  1508         dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
  1510         dump.append(INDENT "Devices:\n");
  1512         for (size_t i = 0; i < mDevices.size(); i++) {
  1513             const Device* device = mDevices.valueAt(i);
  1514             if (mBuiltInKeyboardId == device->id) {
  1515                 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
  1516                         device->id, device->identifier.name.string());
  1517             } else {
  1518                 dump.appendFormat(INDENT2 "%d: %s\n", device->id,
  1519                         device->identifier.name.string());
  1521             dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
  1522             dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
  1523             dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
  1524             dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
  1525             dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
  1526             dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
  1527                     "product=0x%04x, version=0x%04x\n",
  1528                     device->identifier.bus, device->identifier.vendor,
  1529                     device->identifier.product, device->identifier.version);
  1530             dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
  1531                     device->keyMap.keyLayoutFile.string());
  1532             dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
  1533                     device->keyMap.keyCharacterMapFile.string());
  1534             dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
  1535                     device->configurationFile.string());
  1536             dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
  1537                     toString(device->overlayKeyMap != NULL));
  1539     } // release lock
  1542 void EventHub::monitor() {
  1543     // Acquire and release the lock to ensure that the event hub has not deadlocked.
  1544     mLock.lock();
  1545     mLock.unlock();
  1549 }; // namespace android

mercurial