Wed, 31 Dec 2014 07:22:50 +0100
Correct previous dual key logic pending first delivery installment.
1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
17 #define LOG_TAG "InputReader"
19 //#define LOG_NDEBUG 0
20 #include "cutils_log.h"
22 // Log debug messages for each raw event received from the EventHub.
23 #define DEBUG_RAW_EVENTS 0
25 // Log debug messages about touch screen filtering hacks.
26 #define DEBUG_HACKS 0
28 // Log debug messages about virtual key processing.
29 #define DEBUG_VIRTUAL_KEYS 0
31 // Log debug messages about pointers.
32 #define DEBUG_POINTERS 0
34 // Log debug messages about pointer assignment calculations.
35 #define DEBUG_POINTER_ASSIGNMENT 0
37 // Log debug messages about gesture detection.
38 #define DEBUG_GESTURES 0
40 // Log debug messages about the vibrator.
41 #define DEBUG_VIBRATOR 0
43 #include "InputReader.h"
45 #include "Keyboard.h"
46 #include "VirtualKeyMap.h"
48 #include <stddef.h>
49 #include <stdlib.h>
50 #include <unistd.h>
51 #include <errno.h>
52 #include <limits.h>
53 #include <math.h>
55 #define INDENT " "
56 #define INDENT2 " "
57 #define INDENT3 " "
58 #define INDENT4 " "
59 #define INDENT5 " "
61 namespace android {
63 // --- Constants ---
65 // Maximum number of slots supported when using the slot-based Multitouch Protocol B.
66 static const size_t MAX_SLOTS = 32;
68 // --- Static Functions ---
70 template<typename T>
71 inline static T abs(const T& value) {
72 return value < 0 ? - value : value;
73 }
75 template<typename T>
76 inline static T min(const T& a, const T& b) {
77 return a < b ? a : b;
78 }
80 template<typename T>
81 inline static void swap(T& a, T& b) {
82 T temp = a;
83 a = b;
84 b = temp;
85 }
87 inline static float avg(float x, float y) {
88 return (x + y) / 2;
89 }
91 inline static float distance(float x1, float y1, float x2, float y2) {
92 return hypotf(x1 - x2, y1 - y2);
93 }
95 inline static int32_t signExtendNybble(int32_t value) {
96 return value >= 8 ? value - 16 : value;
97 }
99 static inline const char* toString(bool value) {
100 return value ? "true" : "false";
101 }
103 static int32_t rotateValueUsingRotationMap(int32_t value, int32_t orientation,
104 const int32_t map[][4], size_t mapSize) {
105 if (orientation != DISPLAY_ORIENTATION_0) {
106 for (size_t i = 0; i < mapSize; i++) {
107 if (value == map[i][0]) {
108 return map[i][orientation];
109 }
110 }
111 }
112 return value;
113 }
115 static const int32_t keyCodeRotationMap[][4] = {
116 // key codes enumerated counter-clockwise with the original (unrotated) key first
117 // no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation
118 { AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT },
119 { AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN },
120 { AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT },
121 { AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP },
122 };
123 static const size_t keyCodeRotationMapSize =
124 sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]);
126 static int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) {
127 return rotateValueUsingRotationMap(keyCode, orientation,
128 keyCodeRotationMap, keyCodeRotationMapSize);
129 }
131 static void rotateDelta(int32_t orientation, float* deltaX, float* deltaY) {
132 float temp;
133 switch (orientation) {
134 case DISPLAY_ORIENTATION_90:
135 temp = *deltaX;
136 *deltaX = *deltaY;
137 *deltaY = -temp;
138 break;
140 case DISPLAY_ORIENTATION_180:
141 *deltaX = -*deltaX;
142 *deltaY = -*deltaY;
143 break;
145 case DISPLAY_ORIENTATION_270:
146 temp = *deltaX;
147 *deltaX = -*deltaY;
148 *deltaY = temp;
149 break;
150 }
151 }
153 static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) {
154 return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0;
155 }
157 // Returns true if the pointer should be reported as being down given the specified
158 // button states. This determines whether the event is reported as a touch event.
159 static bool isPointerDown(int32_t buttonState) {
160 return buttonState &
161 (AMOTION_EVENT_BUTTON_PRIMARY | AMOTION_EVENT_BUTTON_SECONDARY
162 | AMOTION_EVENT_BUTTON_TERTIARY);
163 }
165 static float calculateCommonVector(float a, float b) {
166 if (a > 0 && b > 0) {
167 return a < b ? a : b;
168 } else if (a < 0 && b < 0) {
169 return a > b ? a : b;
170 } else {
171 return 0;
172 }
173 }
175 static void synthesizeButtonKey(InputReaderContext* context, int32_t action,
176 nsecs_t when, int32_t deviceId, uint32_t source,
177 uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState,
178 int32_t buttonState, int32_t keyCode) {
179 if (
180 (action == AKEY_EVENT_ACTION_DOWN
181 && !(lastButtonState & buttonState)
182 && (currentButtonState & buttonState))
183 || (action == AKEY_EVENT_ACTION_UP
184 && (lastButtonState & buttonState)
185 && !(currentButtonState & buttonState))) {
186 NotifyKeyArgs args(when, deviceId, source, policyFlags,
187 action, 0, keyCode, 0, context->getGlobalMetaState(), when);
188 context->getListener()->notifyKey(&args);
189 }
190 }
192 static void synthesizeButtonKeys(InputReaderContext* context, int32_t action,
193 nsecs_t when, int32_t deviceId, uint32_t source,
194 uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState) {
195 synthesizeButtonKey(context, action, when, deviceId, source, policyFlags,
196 lastButtonState, currentButtonState,
197 AMOTION_EVENT_BUTTON_BACK, AKEYCODE_BACK);
198 synthesizeButtonKey(context, action, when, deviceId, source, policyFlags,
199 lastButtonState, currentButtonState,
200 AMOTION_EVENT_BUTTON_FORWARD, AKEYCODE_FORWARD);
201 }
204 // --- InputReaderConfiguration ---
206 bool InputReaderConfiguration::getDisplayInfo(bool external, DisplayViewport* outViewport) const {
207 const DisplayViewport& viewport = external ? mExternalDisplay : mInternalDisplay;
208 if (viewport.displayId >= 0) {
209 *outViewport = viewport;
210 return true;
211 }
212 return false;
213 }
215 void InputReaderConfiguration::setDisplayInfo(bool external, const DisplayViewport& viewport) {
216 DisplayViewport& v = external ? mExternalDisplay : mInternalDisplay;
217 v = viewport;
218 }
221 // --- InputReader ---
223 InputReader::InputReader(const sp<EventHubInterface>& eventHub,
224 const sp<InputReaderPolicyInterface>& policy,
225 const sp<InputListenerInterface>& listener) :
226 mContext(this), mEventHub(eventHub), mPolicy(policy),
227 mGlobalMetaState(0), mGeneration(1),
228 mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX),
229 mConfigurationChangesToRefresh(0) {
230 mQueuedListener = new QueuedInputListener(listener);
232 { // acquire lock
233 AutoMutex _l(mLock);
235 refreshConfigurationLocked(0);
236 updateGlobalMetaStateLocked();
237 } // release lock
238 }
240 InputReader::~InputReader() {
241 for (size_t i = 0; i < mDevices.size(); i++) {
242 delete mDevices.valueAt(i);
243 }
244 }
246 void InputReader::loopOnce() {
247 int32_t oldGeneration;
248 int32_t timeoutMillis;
249 bool inputDevicesChanged = false;
250 Vector<InputDeviceInfo> inputDevices;
251 { // acquire lock
252 AutoMutex _l(mLock);
254 oldGeneration = mGeneration;
255 timeoutMillis = -1;
257 uint32_t changes = mConfigurationChangesToRefresh;
258 if (changes) {
259 mConfigurationChangesToRefresh = 0;
260 timeoutMillis = 0;
261 refreshConfigurationLocked(changes);
262 } else if (mNextTimeout != LLONG_MAX) {
263 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
264 timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);
265 }
266 } // release lock
268 size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
270 { // acquire lock
271 AutoMutex _l(mLock);
272 mReaderIsAliveCondition.broadcast();
274 if (count) {
275 processEventsLocked(mEventBuffer, count);
276 }
278 if (mNextTimeout != LLONG_MAX) {
279 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
280 if (now >= mNextTimeout) {
281 #if DEBUG_RAW_EVENTS
282 ALOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f);
283 #endif
284 mNextTimeout = LLONG_MAX;
285 timeoutExpiredLocked(now);
286 }
287 }
289 if (oldGeneration != mGeneration) {
290 inputDevicesChanged = true;
291 getInputDevicesLocked(inputDevices);
292 }
293 } // release lock
295 // Send out a message that the describes the changed input devices.
296 if (inputDevicesChanged) {
297 mPolicy->notifyInputDevicesChanged(inputDevices);
298 }
300 // Flush queued events out to the listener.
301 // This must happen outside of the lock because the listener could potentially call
302 // back into the InputReader's methods, such as getScanCodeState, or become blocked
303 // on another thread similarly waiting to acquire the InputReader lock thereby
304 // resulting in a deadlock. This situation is actually quite plausible because the
305 // listener is actually the input dispatcher, which calls into the window manager,
306 // which occasionally calls into the input reader.
307 mQueuedListener->flush();
308 }
310 void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) {
311 for (const RawEvent* rawEvent = rawEvents; count;) {
312 int32_t type = rawEvent->type;
313 size_t batchSize = 1;
314 if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) {
315 int32_t deviceId = rawEvent->deviceId;
316 while (batchSize < count) {
317 if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT
318 || rawEvent[batchSize].deviceId != deviceId) {
319 break;
320 }
321 batchSize += 1;
322 }
323 #if DEBUG_RAW_EVENTS
324 ALOGD("BatchSize: %d Count: %d", batchSize, count);
325 #endif
326 processEventsForDeviceLocked(deviceId, rawEvent, batchSize);
327 } else {
328 switch (rawEvent->type) {
329 case EventHubInterface::DEVICE_ADDED:
330 addDeviceLocked(rawEvent->when, rawEvent->deviceId);
331 break;
332 case EventHubInterface::DEVICE_REMOVED:
333 removeDeviceLocked(rawEvent->when, rawEvent->deviceId);
334 break;
335 case EventHubInterface::FINISHED_DEVICE_SCAN:
336 handleConfigurationChangedLocked(rawEvent->when);
337 break;
338 default:
339 ALOG_ASSERT(false); // can't happen
340 break;
341 }
342 }
343 count -= batchSize;
344 rawEvent += batchSize;
345 }
346 }
348 void InputReader::addDeviceLocked(nsecs_t when, int32_t deviceId) {
349 ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
350 if (deviceIndex >= 0) {
351 ALOGW("Ignoring spurious device added event for deviceId %d.", deviceId);
352 return;
353 }
355 InputDeviceIdentifier identifier = mEventHub->getDeviceIdentifier(deviceId);
356 uint32_t classes = mEventHub->getDeviceClasses(deviceId);
358 InputDevice* device = createDeviceLocked(deviceId, identifier, classes);
359 device->configure(when, &mConfig, 0);
360 device->reset(when);
362 if (device->isIgnored()) {
363 ALOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId,
364 identifier.name.string());
365 } else {
366 ALOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId,
367 identifier.name.string(), device->getSources());
368 }
370 mDevices.add(deviceId, device);
371 bumpGenerationLocked();
372 }
374 void InputReader::removeDeviceLocked(nsecs_t when, int32_t deviceId) {
375 InputDevice* device = NULL;
376 ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
377 if (deviceIndex < 0) {
378 ALOGW("Ignoring spurious device removed event for deviceId %d.", deviceId);
379 return;
380 }
382 device = mDevices.valueAt(deviceIndex);
383 mDevices.removeItemsAt(deviceIndex, 1);
384 bumpGenerationLocked();
386 if (device->isIgnored()) {
387 ALOGI("Device removed: id=%d, name='%s' (ignored non-input device)",
388 device->getId(), device->getName().string());
389 } else {
390 ALOGI("Device removed: id=%d, name='%s', sources=0x%08x",
391 device->getId(), device->getName().string(), device->getSources());
392 }
394 device->reset(when);
395 delete device;
396 }
398 InputDevice* InputReader::createDeviceLocked(int32_t deviceId,
399 const InputDeviceIdentifier& identifier, uint32_t classes) {
400 InputDevice* device = new InputDevice(&mContext, deviceId, bumpGenerationLocked(),
401 identifier, classes);
403 // External devices.
404 if (classes & INPUT_DEVICE_CLASS_EXTERNAL) {
405 device->setExternal(true);
406 }
408 // Switch-like devices.
409 if (classes & INPUT_DEVICE_CLASS_SWITCH) {
410 device->addMapper(new SwitchInputMapper(device));
411 }
413 // Vibrator-like devices.
414 if (classes & INPUT_DEVICE_CLASS_VIBRATOR) {
415 device->addMapper(new VibratorInputMapper(device));
416 }
418 // Keyboard-like devices.
419 uint32_t keyboardSource = 0;
420 int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
421 if (classes & INPUT_DEVICE_CLASS_KEYBOARD) {
422 keyboardSource |= AINPUT_SOURCE_KEYBOARD;
423 }
424 if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) {
425 keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
426 }
427 if (classes & INPUT_DEVICE_CLASS_DPAD) {
428 keyboardSource |= AINPUT_SOURCE_DPAD;
429 }
430 if (classes & INPUT_DEVICE_CLASS_GAMEPAD) {
431 keyboardSource |= AINPUT_SOURCE_GAMEPAD;
432 }
434 if (keyboardSource != 0) {
435 device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType));
436 }
438 // Cursor-like devices.
439 if (classes & INPUT_DEVICE_CLASS_CURSOR) {
440 device->addMapper(new CursorInputMapper(device));
441 }
443 // Touchscreens and touchpad devices.
444 if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) {
445 device->addMapper(new MultiTouchInputMapper(device));
446 } else if (classes & INPUT_DEVICE_CLASS_TOUCH) {
447 device->addMapper(new SingleTouchInputMapper(device));
448 }
450 // Joystick-like devices.
451 if (classes & INPUT_DEVICE_CLASS_JOYSTICK) {
452 device->addMapper(new JoystickInputMapper(device));
453 }
455 return device;
456 }
458 void InputReader::processEventsForDeviceLocked(int32_t deviceId,
459 const RawEvent* rawEvents, size_t count) {
460 ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
461 if (deviceIndex < 0) {
462 ALOGW("Discarding event for unknown deviceId %d.", deviceId);
463 return;
464 }
466 InputDevice* device = mDevices.valueAt(deviceIndex);
467 if (device->isIgnored()) {
468 //ALOGD("Discarding event for ignored deviceId %d.", deviceId);
469 return;
470 }
472 device->process(rawEvents, count);
473 }
475 void InputReader::timeoutExpiredLocked(nsecs_t when) {
476 for (size_t i = 0; i < mDevices.size(); i++) {
477 InputDevice* device = mDevices.valueAt(i);
478 if (!device->isIgnored()) {
479 device->timeoutExpired(when);
480 }
481 }
482 }
484 void InputReader::handleConfigurationChangedLocked(nsecs_t when) {
485 // Reset global meta state because it depends on the list of all configured devices.
486 updateGlobalMetaStateLocked();
488 // Enqueue configuration changed.
489 NotifyConfigurationChangedArgs args(when);
490 mQueuedListener->notifyConfigurationChanged(&args);
491 }
493 void InputReader::refreshConfigurationLocked(uint32_t changes) {
494 mPolicy->getReaderConfiguration(&mConfig);
495 mEventHub->setExcludedDevices(mConfig.excludedDeviceNames);
497 if (changes) {
498 ALOGI("Reconfiguring input devices. changes=0x%08x", changes);
499 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
501 if (changes & InputReaderConfiguration::CHANGE_MUST_REOPEN) {
502 mEventHub->requestReopenDevices();
503 } else {
504 for (size_t i = 0; i < mDevices.size(); i++) {
505 InputDevice* device = mDevices.valueAt(i);
506 device->configure(now, &mConfig, changes);
507 }
508 }
509 }
510 }
512 void InputReader::updateGlobalMetaStateLocked() {
513 mGlobalMetaState = 0;
515 for (size_t i = 0; i < mDevices.size(); i++) {
516 InputDevice* device = mDevices.valueAt(i);
517 mGlobalMetaState |= device->getMetaState();
518 }
519 }
521 int32_t InputReader::getGlobalMetaStateLocked() {
522 return mGlobalMetaState;
523 }
525 void InputReader::disableVirtualKeysUntilLocked(nsecs_t time) {
526 mDisableVirtualKeysTimeout = time;
527 }
529 bool InputReader::shouldDropVirtualKeyLocked(nsecs_t now,
530 InputDevice* device, int32_t keyCode, int32_t scanCode) {
531 if (now < mDisableVirtualKeysTimeout) {
532 ALOGI("Dropping virtual key from device %s because virtual keys are "
533 "temporarily disabled for the next %0.3fms. keyCode=%d, scanCode=%d",
534 device->getName().string(),
535 (mDisableVirtualKeysTimeout - now) * 0.000001,
536 keyCode, scanCode);
537 return true;
538 } else {
539 return false;
540 }
541 }
543 void InputReader::fadePointerLocked() {
544 for (size_t i = 0; i < mDevices.size(); i++) {
545 InputDevice* device = mDevices.valueAt(i);
546 device->fadePointer();
547 }
548 }
550 void InputReader::requestTimeoutAtTimeLocked(nsecs_t when) {
551 if (when < mNextTimeout) {
552 mNextTimeout = when;
553 mEventHub->wake();
554 }
555 }
557 int32_t InputReader::bumpGenerationLocked() {
558 return ++mGeneration;
559 }
561 void InputReader::getInputDevices(Vector<InputDeviceInfo>& outInputDevices) {
562 AutoMutex _l(mLock);
563 getInputDevicesLocked(outInputDevices);
564 }
566 void InputReader::getInputDevicesLocked(Vector<InputDeviceInfo>& outInputDevices) {
567 outInputDevices.clear();
569 size_t numDevices = mDevices.size();
570 for (size_t i = 0; i < numDevices; i++) {
571 InputDevice* device = mDevices.valueAt(i);
572 if (!device->isIgnored()) {
573 outInputDevices.push();
574 device->getDeviceInfo(&outInputDevices.editTop());
575 }
576 }
577 }
579 int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask,
580 int32_t keyCode) {
581 AutoMutex _l(mLock);
583 return getStateLocked(deviceId, sourceMask, keyCode, &InputDevice::getKeyCodeState);
584 }
586 int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask,
587 int32_t scanCode) {
588 AutoMutex _l(mLock);
590 return getStateLocked(deviceId, sourceMask, scanCode, &InputDevice::getScanCodeState);
591 }
593 int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) {
594 AutoMutex _l(mLock);
596 return getStateLocked(deviceId, sourceMask, switchCode, &InputDevice::getSwitchState);
597 }
599 int32_t InputReader::getStateLocked(int32_t deviceId, uint32_t sourceMask, int32_t code,
600 GetStateFunc getStateFunc) {
601 int32_t result = AKEY_STATE_UNKNOWN;
602 if (deviceId >= 0) {
603 ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
604 if (deviceIndex >= 0) {
605 InputDevice* device = mDevices.valueAt(deviceIndex);
606 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
607 result = (device->*getStateFunc)(sourceMask, code);
608 }
609 }
610 } else {
611 size_t numDevices = mDevices.size();
612 for (size_t i = 0; i < numDevices; i++) {
613 InputDevice* device = mDevices.valueAt(i);
614 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
615 // If any device reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that
616 // value. Otherwise, return AKEY_STATE_UP as long as one device reports it.
617 int32_t currentResult = (device->*getStateFunc)(sourceMask, code);
618 if (currentResult >= AKEY_STATE_DOWN) {
619 return currentResult;
620 } else if (currentResult == AKEY_STATE_UP) {
621 result = currentResult;
622 }
623 }
624 }
625 }
626 return result;
627 }
629 bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask,
630 size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) {
631 AutoMutex _l(mLock);
633 memset(outFlags, 0, numCodes);
634 return markSupportedKeyCodesLocked(deviceId, sourceMask, numCodes, keyCodes, outFlags);
635 }
637 bool InputReader::markSupportedKeyCodesLocked(int32_t deviceId, uint32_t sourceMask,
638 size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) {
639 bool result = false;
640 if (deviceId >= 0) {
641 ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
642 if (deviceIndex >= 0) {
643 InputDevice* device = mDevices.valueAt(deviceIndex);
644 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
645 result = device->markSupportedKeyCodes(sourceMask,
646 numCodes, keyCodes, outFlags);
647 }
648 }
649 } else {
650 size_t numDevices = mDevices.size();
651 for (size_t i = 0; i < numDevices; i++) {
652 InputDevice* device = mDevices.valueAt(i);
653 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
654 result |= device->markSupportedKeyCodes(sourceMask,
655 numCodes, keyCodes, outFlags);
656 }
657 }
658 }
659 return result;
660 }
662 void InputReader::requestRefreshConfiguration(uint32_t changes) {
663 AutoMutex _l(mLock);
665 if (changes) {
666 bool needWake = !mConfigurationChangesToRefresh;
667 mConfigurationChangesToRefresh |= changes;
669 if (needWake) {
670 mEventHub->wake();
671 }
672 }
673 }
675 void InputReader::vibrate(int32_t deviceId, const nsecs_t* pattern, size_t patternSize,
676 ssize_t repeat, int32_t token) {
677 AutoMutex _l(mLock);
679 ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
680 if (deviceIndex >= 0) {
681 InputDevice* device = mDevices.valueAt(deviceIndex);
682 device->vibrate(pattern, patternSize, repeat, token);
683 }
684 }
686 void InputReader::cancelVibrate(int32_t deviceId, int32_t token) {
687 AutoMutex _l(mLock);
689 ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
690 if (deviceIndex >= 0) {
691 InputDevice* device = mDevices.valueAt(deviceIndex);
692 device->cancelVibrate(token);
693 }
694 }
696 void InputReader::dump(String8& dump) {
697 AutoMutex _l(mLock);
699 mEventHub->dump(dump);
700 dump.append("\n");
702 dump.append("Input Reader State:\n");
704 for (size_t i = 0; i < mDevices.size(); i++) {
705 mDevices.valueAt(i)->dump(dump);
706 }
708 dump.append(INDENT "Configuration:\n");
709 dump.append(INDENT2 "ExcludedDeviceNames: [");
710 for (size_t i = 0; i < mConfig.excludedDeviceNames.size(); i++) {
711 if (i != 0) {
712 dump.append(", ");
713 }
714 dump.append(mConfig.excludedDeviceNames.itemAt(i).string());
715 }
716 dump.append("]\n");
717 dump.appendFormat(INDENT2 "VirtualKeyQuietTime: %0.1fms\n",
718 mConfig.virtualKeyQuietTime * 0.000001f);
720 dump.appendFormat(INDENT2 "PointerVelocityControlParameters: "
721 "scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n",
722 mConfig.pointerVelocityControlParameters.scale,
723 mConfig.pointerVelocityControlParameters.lowThreshold,
724 mConfig.pointerVelocityControlParameters.highThreshold,
725 mConfig.pointerVelocityControlParameters.acceleration);
727 dump.appendFormat(INDENT2 "WheelVelocityControlParameters: "
728 "scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n",
729 mConfig.wheelVelocityControlParameters.scale,
730 mConfig.wheelVelocityControlParameters.lowThreshold,
731 mConfig.wheelVelocityControlParameters.highThreshold,
732 mConfig.wheelVelocityControlParameters.acceleration);
734 dump.appendFormat(INDENT2 "PointerGesture:\n");
735 dump.appendFormat(INDENT3 "Enabled: %s\n",
736 toString(mConfig.pointerGesturesEnabled));
737 dump.appendFormat(INDENT3 "QuietInterval: %0.1fms\n",
738 mConfig.pointerGestureQuietInterval * 0.000001f);
739 dump.appendFormat(INDENT3 "DragMinSwitchSpeed: %0.1fpx/s\n",
740 mConfig.pointerGestureDragMinSwitchSpeed);
741 dump.appendFormat(INDENT3 "TapInterval: %0.1fms\n",
742 mConfig.pointerGestureTapInterval * 0.000001f);
743 dump.appendFormat(INDENT3 "TapDragInterval: %0.1fms\n",
744 mConfig.pointerGestureTapDragInterval * 0.000001f);
745 dump.appendFormat(INDENT3 "TapSlop: %0.1fpx\n",
746 mConfig.pointerGestureTapSlop);
747 dump.appendFormat(INDENT3 "MultitouchSettleInterval: %0.1fms\n",
748 mConfig.pointerGestureMultitouchSettleInterval * 0.000001f);
749 dump.appendFormat(INDENT3 "MultitouchMinDistance: %0.1fpx\n",
750 mConfig.pointerGestureMultitouchMinDistance);
751 dump.appendFormat(INDENT3 "SwipeTransitionAngleCosine: %0.1f\n",
752 mConfig.pointerGestureSwipeTransitionAngleCosine);
753 dump.appendFormat(INDENT3 "SwipeMaxWidthRatio: %0.1f\n",
754 mConfig.pointerGestureSwipeMaxWidthRatio);
755 dump.appendFormat(INDENT3 "MovementSpeedRatio: %0.1f\n",
756 mConfig.pointerGestureMovementSpeedRatio);
757 dump.appendFormat(INDENT3 "ZoomSpeedRatio: %0.1f\n",
758 mConfig.pointerGestureZoomSpeedRatio);
759 }
761 void InputReader::monitor() {
762 // Acquire and release the lock to ensure that the reader has not deadlocked.
763 mLock.lock();
764 mEventHub->wake();
765 mReaderIsAliveCondition.wait(mLock);
766 mLock.unlock();
768 // Check the EventHub
769 mEventHub->monitor();
770 }
773 // --- InputReader::ContextImpl ---
775 InputReader::ContextImpl::ContextImpl(InputReader* reader) :
776 mReader(reader) {
777 }
779 void InputReader::ContextImpl::updateGlobalMetaState() {
780 // lock is already held by the input loop
781 mReader->updateGlobalMetaStateLocked();
782 }
784 int32_t InputReader::ContextImpl::getGlobalMetaState() {
785 // lock is already held by the input loop
786 return mReader->getGlobalMetaStateLocked();
787 }
789 void InputReader::ContextImpl::disableVirtualKeysUntil(nsecs_t time) {
790 // lock is already held by the input loop
791 mReader->disableVirtualKeysUntilLocked(time);
792 }
794 bool InputReader::ContextImpl::shouldDropVirtualKey(nsecs_t now,
795 InputDevice* device, int32_t keyCode, int32_t scanCode) {
796 // lock is already held by the input loop
797 return mReader->shouldDropVirtualKeyLocked(now, device, keyCode, scanCode);
798 }
800 void InputReader::ContextImpl::fadePointer() {
801 // lock is already held by the input loop
802 mReader->fadePointerLocked();
803 }
805 void InputReader::ContextImpl::requestTimeoutAtTime(nsecs_t when) {
806 // lock is already held by the input loop
807 mReader->requestTimeoutAtTimeLocked(when);
808 }
810 int32_t InputReader::ContextImpl::bumpGeneration() {
811 // lock is already held by the input loop
812 return mReader->bumpGenerationLocked();
813 }
815 InputReaderPolicyInterface* InputReader::ContextImpl::getPolicy() {
816 return mReader->mPolicy.get();
817 }
819 InputListenerInterface* InputReader::ContextImpl::getListener() {
820 return mReader->mQueuedListener.get();
821 }
823 EventHubInterface* InputReader::ContextImpl::getEventHub() {
824 return mReader->mEventHub.get();
825 }
828 // --- InputReaderThread ---
830 InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) :
831 Thread(/*canCallJava*/ true), mReader(reader) {
832 }
834 InputReaderThread::~InputReaderThread() {
835 }
837 bool InputReaderThread::threadLoop() {
838 mReader->loopOnce();
839 return true;
840 }
843 // --- InputDevice ---
845 InputDevice::InputDevice(InputReaderContext* context, int32_t id, int32_t generation,
846 const InputDeviceIdentifier& identifier, uint32_t classes) :
847 mContext(context), mId(id), mGeneration(generation),
848 mIdentifier(identifier), mClasses(classes),
849 mSources(0), mIsExternal(false), mDropUntilNextSync(false) {
850 }
852 InputDevice::~InputDevice() {
853 size_t numMappers = mMappers.size();
854 for (size_t i = 0; i < numMappers; i++) {
855 delete mMappers[i];
856 }
857 mMappers.clear();
858 }
860 void InputDevice::dump(String8& dump) {
861 InputDeviceInfo deviceInfo;
862 getDeviceInfo(& deviceInfo);
864 dump.appendFormat(INDENT "Device %d: %s\n", deviceInfo.getId(),
865 deviceInfo.getDisplayName().string());
866 dump.appendFormat(INDENT2 "Generation: %d\n", mGeneration);
867 dump.appendFormat(INDENT2 "IsExternal: %s\n", toString(mIsExternal));
868 dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources());
869 dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType());
871 const Vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges();
872 if (!ranges.isEmpty()) {
873 dump.append(INDENT2 "Motion Ranges:\n");
874 for (size_t i = 0; i < ranges.size(); i++) {
875 const InputDeviceInfo::MotionRange& range = ranges.itemAt(i);
876 const char* label = getAxisLabel(range.axis);
877 char name[32];
878 if (label) {
879 strncpy(name, label, sizeof(name));
880 name[sizeof(name) - 1] = '\0';
881 } else {
882 snprintf(name, sizeof(name), "%d", range.axis);
883 }
884 dump.appendFormat(INDENT3 "%s: source=0x%08x, "
885 "min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f, resolution=%0.3f\n",
886 name, range.source, range.min, range.max, range.flat, range.fuzz,
887 range.resolution);
888 }
889 }
891 size_t numMappers = mMappers.size();
892 for (size_t i = 0; i < numMappers; i++) {
893 InputMapper* mapper = mMappers[i];
894 mapper->dump(dump);
895 }
896 }
898 void InputDevice::addMapper(InputMapper* mapper) {
899 mMappers.add(mapper);
900 }
902 void InputDevice::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) {
903 mSources = 0;
905 if (!isIgnored()) {
906 if (!changes) { // first time only
907 mContext->getEventHub()->getConfiguration(mId, &mConfiguration);
908 }
910 if (!changes || (changes & InputReaderConfiguration::CHANGE_KEYBOARD_LAYOUTS)) {
911 if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) {
912 sp<KeyCharacterMap> keyboardLayout =
913 mContext->getPolicy()->getKeyboardLayoutOverlay(mIdentifier.descriptor);
914 if (mContext->getEventHub()->setKeyboardLayoutOverlay(mId, keyboardLayout)) {
915 bumpGeneration();
916 }
917 }
918 }
920 if (!changes || (changes & InputReaderConfiguration::CHANGE_DEVICE_ALIAS)) {
921 if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) {
922 String8 alias = mContext->getPolicy()->getDeviceAlias(mIdentifier);
923 if (mAlias != alias) {
924 mAlias = alias;
925 bumpGeneration();
926 }
927 }
928 }
930 size_t numMappers = mMappers.size();
931 for (size_t i = 0; i < numMappers; i++) {
932 InputMapper* mapper = mMappers[i];
933 mapper->configure(when, config, changes);
934 mSources |= mapper->getSources();
935 }
936 }
937 }
939 void InputDevice::reset(nsecs_t when) {
940 size_t numMappers = mMappers.size();
941 for (size_t i = 0; i < numMappers; i++) {
942 InputMapper* mapper = mMappers[i];
943 mapper->reset(when);
944 }
946 mContext->updateGlobalMetaState();
948 notifyReset(when);
949 }
951 void InputDevice::process(const RawEvent* rawEvents, size_t count) {
952 // Process all of the events in order for each mapper.
953 // We cannot simply ask each mapper to process them in bulk because mappers may
954 // have side-effects that must be interleaved. For example, joystick movement events and
955 // gamepad button presses are handled by different mappers but they should be dispatched
956 // in the order received.
957 size_t numMappers = mMappers.size();
958 for (const RawEvent* rawEvent = rawEvents; count--; rawEvent++) {
959 #if DEBUG_RAW_EVENTS
960 ALOGD("Input event: device=%d type=0x%04x code=0x%04x value=0x%08x when=%lld",
961 rawEvent->deviceId, rawEvent->type, rawEvent->code, rawEvent->value,
962 rawEvent->when);
963 #endif
965 if (mDropUntilNextSync) {
966 if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
967 mDropUntilNextSync = false;
968 #if DEBUG_RAW_EVENTS
969 ALOGD("Recovered from input event buffer overrun.");
970 #endif
971 } else {
972 #if DEBUG_RAW_EVENTS
973 ALOGD("Dropped input event while waiting for next input sync.");
974 #endif
975 }
976 } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED) {
977 ALOGI("Detected input event buffer overrun for device %s.", getName().string());
978 mDropUntilNextSync = true;
979 reset(rawEvent->when);
980 } else {
981 for (size_t i = 0; i < numMappers; i++) {
982 InputMapper* mapper = mMappers[i];
983 mapper->process(rawEvent);
984 }
985 }
986 }
987 }
989 void InputDevice::timeoutExpired(nsecs_t when) {
990 size_t numMappers = mMappers.size();
991 for (size_t i = 0; i < numMappers; i++) {
992 InputMapper* mapper = mMappers[i];
993 mapper->timeoutExpired(when);
994 }
995 }
997 void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) {
998 outDeviceInfo->initialize(mId, mGeneration, mIdentifier, mAlias, mIsExternal);
1000 size_t numMappers = mMappers.size();
1001 for (size_t i = 0; i < numMappers; i++) {
1002 InputMapper* mapper = mMappers[i];
1003 mapper->populateDeviceInfo(outDeviceInfo);
1004 }
1005 }
1007 int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
1008 return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState);
1009 }
1011 int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
1012 return getState(sourceMask, scanCode, & InputMapper::getScanCodeState);
1013 }
1015 int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
1016 return getState(sourceMask, switchCode, & InputMapper::getSwitchState);
1017 }
1019 int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) {
1020 int32_t result = AKEY_STATE_UNKNOWN;
1021 size_t numMappers = mMappers.size();
1022 for (size_t i = 0; i < numMappers; i++) {
1023 InputMapper* mapper = mMappers[i];
1024 if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
1025 // If any mapper reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that
1026 // value. Otherwise, return AKEY_STATE_UP as long as one mapper reports it.
1027 int32_t currentResult = (mapper->*getStateFunc)(sourceMask, code);
1028 if (currentResult >= AKEY_STATE_DOWN) {
1029 return currentResult;
1030 } else if (currentResult == AKEY_STATE_UP) {
1031 result = currentResult;
1032 }
1033 }
1034 }
1035 return result;
1036 }
1038 bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
1039 const int32_t* keyCodes, uint8_t* outFlags) {
1040 bool result = false;
1041 size_t numMappers = mMappers.size();
1042 for (size_t i = 0; i < numMappers; i++) {
1043 InputMapper* mapper = mMappers[i];
1044 if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
1045 result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags);
1046 }
1047 }
1048 return result;
1049 }
1051 void InputDevice::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat,
1052 int32_t token) {
1053 size_t numMappers = mMappers.size();
1054 for (size_t i = 0; i < numMappers; i++) {
1055 InputMapper* mapper = mMappers[i];
1056 mapper->vibrate(pattern, patternSize, repeat, token);
1057 }
1058 }
1060 void InputDevice::cancelVibrate(int32_t token) {
1061 size_t numMappers = mMappers.size();
1062 for (size_t i = 0; i < numMappers; i++) {
1063 InputMapper* mapper = mMappers[i];
1064 mapper->cancelVibrate(token);
1065 }
1066 }
1068 int32_t InputDevice::getMetaState() {
1069 int32_t result = 0;
1070 size_t numMappers = mMappers.size();
1071 for (size_t i = 0; i < numMappers; i++) {
1072 InputMapper* mapper = mMappers[i];
1073 result |= mapper->getMetaState();
1074 }
1075 return result;
1076 }
1078 void InputDevice::fadePointer() {
1079 size_t numMappers = mMappers.size();
1080 for (size_t i = 0; i < numMappers; i++) {
1081 InputMapper* mapper = mMappers[i];
1082 mapper->fadePointer();
1083 }
1084 }
1086 void InputDevice::bumpGeneration() {
1087 mGeneration = mContext->bumpGeneration();
1088 }
1090 void InputDevice::notifyReset(nsecs_t when) {
1091 NotifyDeviceResetArgs args(when, mId);
1092 mContext->getListener()->notifyDeviceReset(&args);
1093 }
1096 // --- CursorButtonAccumulator ---
1098 CursorButtonAccumulator::CursorButtonAccumulator() {
1099 clearButtons();
1100 }
1102 void CursorButtonAccumulator::reset(InputDevice* device) {
1103 mBtnLeft = device->isKeyPressed(BTN_LEFT);
1104 mBtnRight = device->isKeyPressed(BTN_RIGHT);
1105 mBtnMiddle = device->isKeyPressed(BTN_MIDDLE);
1106 mBtnBack = device->isKeyPressed(BTN_BACK);
1107 mBtnSide = device->isKeyPressed(BTN_SIDE);
1108 mBtnForward = device->isKeyPressed(BTN_FORWARD);
1109 mBtnExtra = device->isKeyPressed(BTN_EXTRA);
1110 mBtnTask = device->isKeyPressed(BTN_TASK);
1111 }
1113 void CursorButtonAccumulator::clearButtons() {
1114 mBtnLeft = 0;
1115 mBtnRight = 0;
1116 mBtnMiddle = 0;
1117 mBtnBack = 0;
1118 mBtnSide = 0;
1119 mBtnForward = 0;
1120 mBtnExtra = 0;
1121 mBtnTask = 0;
1122 }
1124 void CursorButtonAccumulator::process(const RawEvent* rawEvent) {
1125 if (rawEvent->type == EV_KEY) {
1126 switch (rawEvent->code) {
1127 case BTN_LEFT:
1128 mBtnLeft = rawEvent->value;
1129 break;
1130 case BTN_RIGHT:
1131 mBtnRight = rawEvent->value;
1132 break;
1133 case BTN_MIDDLE:
1134 mBtnMiddle = rawEvent->value;
1135 break;
1136 case BTN_BACK:
1137 mBtnBack = rawEvent->value;
1138 break;
1139 case BTN_SIDE:
1140 mBtnSide = rawEvent->value;
1141 break;
1142 case BTN_FORWARD:
1143 mBtnForward = rawEvent->value;
1144 break;
1145 case BTN_EXTRA:
1146 mBtnExtra = rawEvent->value;
1147 break;
1148 case BTN_TASK:
1149 mBtnTask = rawEvent->value;
1150 break;
1151 }
1152 }
1153 }
1155 uint32_t CursorButtonAccumulator::getButtonState() const {
1156 uint32_t result = 0;
1157 if (mBtnLeft) {
1158 result |= AMOTION_EVENT_BUTTON_PRIMARY;
1159 }
1160 if (mBtnRight) {
1161 result |= AMOTION_EVENT_BUTTON_SECONDARY;
1162 }
1163 if (mBtnMiddle) {
1164 result |= AMOTION_EVENT_BUTTON_TERTIARY;
1165 }
1166 if (mBtnBack || mBtnSide) {
1167 result |= AMOTION_EVENT_BUTTON_BACK;
1168 }
1169 if (mBtnForward || mBtnExtra) {
1170 result |= AMOTION_EVENT_BUTTON_FORWARD;
1171 }
1172 return result;
1173 }
1176 // --- CursorMotionAccumulator ---
1178 CursorMotionAccumulator::CursorMotionAccumulator() {
1179 clearRelativeAxes();
1180 }
1182 void CursorMotionAccumulator::reset(InputDevice* device) {
1183 clearRelativeAxes();
1184 }
1186 void CursorMotionAccumulator::clearRelativeAxes() {
1187 mRelX = 0;
1188 mRelY = 0;
1189 }
1191 void CursorMotionAccumulator::process(const RawEvent* rawEvent) {
1192 if (rawEvent->type == EV_REL) {
1193 switch (rawEvent->code) {
1194 case REL_X:
1195 mRelX = rawEvent->value;
1196 break;
1197 case REL_Y:
1198 mRelY = rawEvent->value;
1199 break;
1200 }
1201 }
1202 }
1204 void CursorMotionAccumulator::finishSync() {
1205 clearRelativeAxes();
1206 }
1209 // --- CursorScrollAccumulator ---
1211 CursorScrollAccumulator::CursorScrollAccumulator() :
1212 mHaveRelWheel(false), mHaveRelHWheel(false) {
1213 clearRelativeAxes();
1214 }
1216 void CursorScrollAccumulator::configure(InputDevice* device) {
1217 mHaveRelWheel = device->getEventHub()->hasRelativeAxis(device->getId(), REL_WHEEL);
1218 mHaveRelHWheel = device->getEventHub()->hasRelativeAxis(device->getId(), REL_HWHEEL);
1219 }
1221 void CursorScrollAccumulator::reset(InputDevice* device) {
1222 clearRelativeAxes();
1223 }
1225 void CursorScrollAccumulator::clearRelativeAxes() {
1226 mRelWheel = 0;
1227 mRelHWheel = 0;
1228 }
1230 void CursorScrollAccumulator::process(const RawEvent* rawEvent) {
1231 if (rawEvent->type == EV_REL) {
1232 switch (rawEvent->code) {
1233 case REL_WHEEL:
1234 mRelWheel = rawEvent->value;
1235 break;
1236 case REL_HWHEEL:
1237 mRelHWheel = rawEvent->value;
1238 break;
1239 }
1240 }
1241 }
1243 void CursorScrollAccumulator::finishSync() {
1244 clearRelativeAxes();
1245 }
1248 // --- TouchButtonAccumulator ---
1250 TouchButtonAccumulator::TouchButtonAccumulator() :
1251 mHaveBtnTouch(false), mHaveStylus(false) {
1252 clearButtons();
1253 }
1255 void TouchButtonAccumulator::configure(InputDevice* device) {
1256 mHaveBtnTouch = device->hasKey(BTN_TOUCH);
1257 mHaveStylus = device->hasKey(BTN_TOOL_PEN)
1258 || device->hasKey(BTN_TOOL_RUBBER)
1259 || device->hasKey(BTN_TOOL_BRUSH)
1260 || device->hasKey(BTN_TOOL_PENCIL)
1261 || device->hasKey(BTN_TOOL_AIRBRUSH);
1262 }
1264 void TouchButtonAccumulator::reset(InputDevice* device) {
1265 mBtnTouch = device->isKeyPressed(BTN_TOUCH);
1266 mBtnStylus = device->isKeyPressed(BTN_STYLUS);
1267 mBtnStylus2 = device->isKeyPressed(BTN_STYLUS);
1268 mBtnToolFinger = device->isKeyPressed(BTN_TOOL_FINGER);
1269 mBtnToolPen = device->isKeyPressed(BTN_TOOL_PEN);
1270 mBtnToolRubber = device->isKeyPressed(BTN_TOOL_RUBBER);
1271 mBtnToolBrush = device->isKeyPressed(BTN_TOOL_BRUSH);
1272 mBtnToolPencil = device->isKeyPressed(BTN_TOOL_PENCIL);
1273 mBtnToolAirbrush = device->isKeyPressed(BTN_TOOL_AIRBRUSH);
1274 mBtnToolMouse = device->isKeyPressed(BTN_TOOL_MOUSE);
1275 mBtnToolLens = device->isKeyPressed(BTN_TOOL_LENS);
1276 mBtnToolDoubleTap = device->isKeyPressed(BTN_TOOL_DOUBLETAP);
1277 mBtnToolTripleTap = device->isKeyPressed(BTN_TOOL_TRIPLETAP);
1278 mBtnToolQuadTap = device->isKeyPressed(BTN_TOOL_QUADTAP);
1279 }
1281 void TouchButtonAccumulator::clearButtons() {
1282 mBtnTouch = 0;
1283 mBtnStylus = 0;
1284 mBtnStylus2 = 0;
1285 mBtnToolFinger = 0;
1286 mBtnToolPen = 0;
1287 mBtnToolRubber = 0;
1288 mBtnToolBrush = 0;
1289 mBtnToolPencil = 0;
1290 mBtnToolAirbrush = 0;
1291 mBtnToolMouse = 0;
1292 mBtnToolLens = 0;
1293 mBtnToolDoubleTap = 0;
1294 mBtnToolTripleTap = 0;
1295 mBtnToolQuadTap = 0;
1296 }
1298 void TouchButtonAccumulator::process(const RawEvent* rawEvent) {
1299 if (rawEvent->type == EV_KEY) {
1300 switch (rawEvent->code) {
1301 case BTN_TOUCH:
1302 mBtnTouch = rawEvent->value;
1303 break;
1304 case BTN_STYLUS:
1305 mBtnStylus = rawEvent->value;
1306 break;
1307 case BTN_STYLUS2:
1308 mBtnStylus2 = rawEvent->value;
1309 break;
1310 case BTN_TOOL_FINGER:
1311 mBtnToolFinger = rawEvent->value;
1312 break;
1313 case BTN_TOOL_PEN:
1314 mBtnToolPen = rawEvent->value;
1315 break;
1316 case BTN_TOOL_RUBBER:
1317 mBtnToolRubber = rawEvent->value;
1318 break;
1319 case BTN_TOOL_BRUSH:
1320 mBtnToolBrush = rawEvent->value;
1321 break;
1322 case BTN_TOOL_PENCIL:
1323 mBtnToolPencil = rawEvent->value;
1324 break;
1325 case BTN_TOOL_AIRBRUSH:
1326 mBtnToolAirbrush = rawEvent->value;
1327 break;
1328 case BTN_TOOL_MOUSE:
1329 mBtnToolMouse = rawEvent->value;
1330 break;
1331 case BTN_TOOL_LENS:
1332 mBtnToolLens = rawEvent->value;
1333 break;
1334 case BTN_TOOL_DOUBLETAP:
1335 mBtnToolDoubleTap = rawEvent->value;
1336 break;
1337 case BTN_TOOL_TRIPLETAP:
1338 mBtnToolTripleTap = rawEvent->value;
1339 break;
1340 case BTN_TOOL_QUADTAP:
1341 mBtnToolQuadTap = rawEvent->value;
1342 break;
1343 }
1344 }
1345 }
1347 uint32_t TouchButtonAccumulator::getButtonState() const {
1348 uint32_t result = 0;
1349 if (mBtnStylus) {
1350 result |= AMOTION_EVENT_BUTTON_SECONDARY;
1351 }
1352 if (mBtnStylus2) {
1353 result |= AMOTION_EVENT_BUTTON_TERTIARY;
1354 }
1355 return result;
1356 }
1358 int32_t TouchButtonAccumulator::getToolType() const {
1359 if (mBtnToolMouse || mBtnToolLens) {
1360 return AMOTION_EVENT_TOOL_TYPE_MOUSE;
1361 }
1362 if (mBtnToolRubber) {
1363 return AMOTION_EVENT_TOOL_TYPE_ERASER;
1364 }
1365 if (mBtnToolPen || mBtnToolBrush || mBtnToolPencil || mBtnToolAirbrush) {
1366 return AMOTION_EVENT_TOOL_TYPE_STYLUS;
1367 }
1368 if (mBtnToolFinger || mBtnToolDoubleTap || mBtnToolTripleTap || mBtnToolQuadTap) {
1369 return AMOTION_EVENT_TOOL_TYPE_FINGER;
1370 }
1371 return AMOTION_EVENT_TOOL_TYPE_UNKNOWN;
1372 }
1374 bool TouchButtonAccumulator::isToolActive() const {
1375 return mBtnTouch || mBtnToolFinger || mBtnToolPen || mBtnToolRubber
1376 || mBtnToolBrush || mBtnToolPencil || mBtnToolAirbrush
1377 || mBtnToolMouse || mBtnToolLens
1378 || mBtnToolDoubleTap || mBtnToolTripleTap || mBtnToolQuadTap;
1379 }
1381 bool TouchButtonAccumulator::isHovering() const {
1382 return mHaveBtnTouch && !mBtnTouch;
1383 }
1385 bool TouchButtonAccumulator::hasStylus() const {
1386 return mHaveStylus;
1387 }
1390 // --- RawPointerAxes ---
1392 RawPointerAxes::RawPointerAxes() {
1393 clear();
1394 }
1396 void RawPointerAxes::clear() {
1397 x.clear();
1398 y.clear();
1399 pressure.clear();
1400 touchMajor.clear();
1401 touchMinor.clear();
1402 toolMajor.clear();
1403 toolMinor.clear();
1404 orientation.clear();
1405 distance.clear();
1406 tiltX.clear();
1407 tiltY.clear();
1408 trackingId.clear();
1409 slot.clear();
1410 }
1413 // --- RawPointerData ---
1415 RawPointerData::RawPointerData() {
1416 clear();
1417 }
1419 void RawPointerData::clear() {
1420 pointerCount = 0;
1421 clearIdBits();
1422 }
1424 void RawPointerData::copyFrom(const RawPointerData& other) {
1425 pointerCount = other.pointerCount;
1426 hoveringIdBits = other.hoveringIdBits;
1427 touchingIdBits = other.touchingIdBits;
1429 for (uint32_t i = 0; i < pointerCount; i++) {
1430 pointers[i] = other.pointers[i];
1432 int id = pointers[i].id;
1433 idToIndex[id] = other.idToIndex[id];
1434 }
1435 }
1437 void RawPointerData::getCentroidOfTouchingPointers(float* outX, float* outY) const {
1438 float x = 0, y = 0;
1439 uint32_t count = touchingIdBits.count();
1440 if (count) {
1441 for (BitSet32 idBits(touchingIdBits); !idBits.isEmpty(); ) {
1442 uint32_t id = idBits.clearFirstMarkedBit();
1443 const Pointer& pointer = pointerForId(id);
1444 x += pointer.x;
1445 y += pointer.y;
1446 }
1447 x /= count;
1448 y /= count;
1449 }
1450 *outX = x;
1451 *outY = y;
1452 }
1455 // --- CookedPointerData ---
1457 CookedPointerData::CookedPointerData() {
1458 clear();
1459 }
1461 void CookedPointerData::clear() {
1462 pointerCount = 0;
1463 hoveringIdBits.clear();
1464 touchingIdBits.clear();
1465 }
1467 void CookedPointerData::copyFrom(const CookedPointerData& other) {
1468 pointerCount = other.pointerCount;
1469 hoveringIdBits = other.hoveringIdBits;
1470 touchingIdBits = other.touchingIdBits;
1472 for (uint32_t i = 0; i < pointerCount; i++) {
1473 pointerProperties[i].copyFrom(other.pointerProperties[i]);
1474 pointerCoords[i].copyFrom(other.pointerCoords[i]);
1476 int id = pointerProperties[i].id;
1477 idToIndex[id] = other.idToIndex[id];
1478 }
1479 }
1482 // --- SingleTouchMotionAccumulator ---
1484 SingleTouchMotionAccumulator::SingleTouchMotionAccumulator() {
1485 clearAbsoluteAxes();
1486 }
1488 void SingleTouchMotionAccumulator::reset(InputDevice* device) {
1489 mAbsX = device->getAbsoluteAxisValue(ABS_X);
1490 mAbsY = device->getAbsoluteAxisValue(ABS_Y);
1491 mAbsPressure = device->getAbsoluteAxisValue(ABS_PRESSURE);
1492 mAbsToolWidth = device->getAbsoluteAxisValue(ABS_TOOL_WIDTH);
1493 mAbsDistance = device->getAbsoluteAxisValue(ABS_DISTANCE);
1494 mAbsTiltX = device->getAbsoluteAxisValue(ABS_TILT_X);
1495 mAbsTiltY = device->getAbsoluteAxisValue(ABS_TILT_Y);
1496 }
1498 void SingleTouchMotionAccumulator::clearAbsoluteAxes() {
1499 mAbsX = 0;
1500 mAbsY = 0;
1501 mAbsPressure = 0;
1502 mAbsToolWidth = 0;
1503 mAbsDistance = 0;
1504 mAbsTiltX = 0;
1505 mAbsTiltY = 0;
1506 }
1508 void SingleTouchMotionAccumulator::process(const RawEvent* rawEvent) {
1509 if (rawEvent->type == EV_ABS) {
1510 switch (rawEvent->code) {
1511 case ABS_X:
1512 mAbsX = rawEvent->value;
1513 break;
1514 case ABS_Y:
1515 mAbsY = rawEvent->value;
1516 break;
1517 case ABS_PRESSURE:
1518 mAbsPressure = rawEvent->value;
1519 break;
1520 case ABS_TOOL_WIDTH:
1521 mAbsToolWidth = rawEvent->value;
1522 break;
1523 case ABS_DISTANCE:
1524 mAbsDistance = rawEvent->value;
1525 break;
1526 case ABS_TILT_X:
1527 mAbsTiltX = rawEvent->value;
1528 break;
1529 case ABS_TILT_Y:
1530 mAbsTiltY = rawEvent->value;
1531 break;
1532 }
1533 }
1534 }
1537 // --- MultiTouchMotionAccumulator ---
1539 MultiTouchMotionAccumulator::MultiTouchMotionAccumulator() :
1540 mCurrentSlot(-1), mSlots(NULL), mSlotCount(0), mUsingSlotsProtocol(false),
1541 mHaveStylus(false) {
1542 }
1544 MultiTouchMotionAccumulator::~MultiTouchMotionAccumulator() {
1545 delete[] mSlots;
1546 }
1548 void MultiTouchMotionAccumulator::configure(InputDevice* device,
1549 size_t slotCount, bool usingSlotsProtocol) {
1550 mSlotCount = slotCount;
1551 mUsingSlotsProtocol = usingSlotsProtocol;
1552 mHaveStylus = device->hasAbsoluteAxis(ABS_MT_TOOL_TYPE);
1554 delete[] mSlots;
1555 mSlots = new Slot[slotCount];
1556 }
1558 void MultiTouchMotionAccumulator::reset(InputDevice* device) {
1559 // Unfortunately there is no way to read the initial contents of the slots.
1560 // So when we reset the accumulator, we must assume they are all zeroes.
1561 if (mUsingSlotsProtocol) {
1562 // Query the driver for the current slot index and use it as the initial slot
1563 // before we start reading events from the device. It is possible that the
1564 // current slot index will not be the same as it was when the first event was
1565 // written into the evdev buffer, which means the input mapper could start
1566 // out of sync with the initial state of the events in the evdev buffer.
1567 // In the extremely unlikely case that this happens, the data from
1568 // two slots will be confused until the next ABS_MT_SLOT event is received.
1569 // This can cause the touch point to "jump", but at least there will be
1570 // no stuck touches.
1571 int32_t initialSlot;
1572 status_t status = device->getEventHub()->getAbsoluteAxisValue(device->getId(),
1573 ABS_MT_SLOT, &initialSlot);
1574 if (status) {
1575 ALOGD("Could not retrieve current multitouch slot index. status=%d", status);
1576 initialSlot = -1;
1577 }
1578 clearSlots(initialSlot);
1579 } else {
1580 clearSlots(-1);
1581 }
1582 }
1584 void MultiTouchMotionAccumulator::clearSlots(int32_t initialSlot) {
1585 if (mSlots) {
1586 for (size_t i = 0; i < mSlotCount; i++) {
1587 mSlots[i].clear();
1588 }
1589 }
1590 mCurrentSlot = initialSlot;
1591 }
1593 void MultiTouchMotionAccumulator::process(const RawEvent* rawEvent) {
1594 if (rawEvent->type == EV_ABS) {
1595 bool newSlot = false;
1596 if (mUsingSlotsProtocol) {
1597 if (rawEvent->code == ABS_MT_SLOT) {
1598 mCurrentSlot = rawEvent->value;
1599 newSlot = true;
1600 }
1601 } else if (mCurrentSlot < 0) {
1602 mCurrentSlot = 0;
1603 }
1605 if (mCurrentSlot < 0 || size_t(mCurrentSlot) >= mSlotCount) {
1606 #if DEBUG_POINTERS
1607 if (newSlot) {
1608 ALOGW("MultiTouch device emitted invalid slot index %d but it "
1609 "should be between 0 and %d; ignoring this slot.",
1610 mCurrentSlot, mSlotCount - 1);
1611 }
1612 #endif
1613 } else {
1614 Slot* slot = &mSlots[mCurrentSlot];
1616 switch (rawEvent->code) {
1617 case ABS_MT_POSITION_X:
1618 slot->mInUse = true;
1619 slot->mAbsMTPositionX = rawEvent->value;
1620 break;
1621 case ABS_MT_POSITION_Y:
1622 slot->mInUse = true;
1623 slot->mAbsMTPositionY = rawEvent->value;
1624 break;
1625 case ABS_MT_TOUCH_MAJOR:
1626 slot->mInUse = true;
1627 slot->mAbsMTTouchMajor = rawEvent->value;
1628 break;
1629 case ABS_MT_TOUCH_MINOR:
1630 slot->mInUse = true;
1631 slot->mAbsMTTouchMinor = rawEvent->value;
1632 slot->mHaveAbsMTTouchMinor = true;
1633 break;
1634 case ABS_MT_WIDTH_MAJOR:
1635 slot->mInUse = true;
1636 slot->mAbsMTWidthMajor = rawEvent->value;
1637 break;
1638 case ABS_MT_WIDTH_MINOR:
1639 slot->mInUse = true;
1640 slot->mAbsMTWidthMinor = rawEvent->value;
1641 slot->mHaveAbsMTWidthMinor = true;
1642 break;
1643 case ABS_MT_ORIENTATION:
1644 slot->mInUse = true;
1645 slot->mAbsMTOrientation = rawEvent->value;
1646 break;
1647 case ABS_MT_TRACKING_ID:
1648 if (mUsingSlotsProtocol && rawEvent->value < 0) {
1649 // The slot is no longer in use but it retains its previous contents,
1650 // which may be reused for subsequent touches.
1651 slot->mInUse = false;
1652 } else {
1653 slot->mInUse = true;
1654 slot->mAbsMTTrackingId = rawEvent->value;
1655 }
1656 break;
1657 case ABS_MT_PRESSURE:
1658 slot->mInUse = true;
1659 slot->mAbsMTPressure = rawEvent->value;
1660 break;
1661 case ABS_MT_DISTANCE:
1662 slot->mInUse = true;
1663 slot->mAbsMTDistance = rawEvent->value;
1664 break;
1665 case ABS_MT_TOOL_TYPE:
1666 slot->mInUse = true;
1667 slot->mAbsMTToolType = rawEvent->value;
1668 slot->mHaveAbsMTToolType = true;
1669 break;
1670 }
1671 }
1672 } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_MT_REPORT) {
1673 // MultiTouch Sync: The driver has returned all data for *one* of the pointers.
1674 mCurrentSlot += 1;
1675 }
1676 }
1678 void MultiTouchMotionAccumulator::finishSync() {
1679 if (!mUsingSlotsProtocol) {
1680 clearSlots(-1);
1681 }
1682 }
1684 bool MultiTouchMotionAccumulator::hasStylus() const {
1685 return mHaveStylus;
1686 }
1689 // --- MultiTouchMotionAccumulator::Slot ---
1691 MultiTouchMotionAccumulator::Slot::Slot() {
1692 clear();
1693 }
1695 void MultiTouchMotionAccumulator::Slot::clear() {
1696 mInUse = false;
1697 mHaveAbsMTTouchMinor = false;
1698 mHaveAbsMTWidthMinor = false;
1699 mHaveAbsMTToolType = false;
1700 mAbsMTPositionX = 0;
1701 mAbsMTPositionY = 0;
1702 mAbsMTTouchMajor = 0;
1703 mAbsMTTouchMinor = 0;
1704 mAbsMTWidthMajor = 0;
1705 mAbsMTWidthMinor = 0;
1706 mAbsMTOrientation = 0;
1707 mAbsMTTrackingId = -1;
1708 mAbsMTPressure = 0;
1709 mAbsMTDistance = 0;
1710 mAbsMTToolType = 0;
1711 }
1713 int32_t MultiTouchMotionAccumulator::Slot::getToolType() const {
1714 if (mHaveAbsMTToolType) {
1715 switch (mAbsMTToolType) {
1716 case MT_TOOL_FINGER:
1717 return AMOTION_EVENT_TOOL_TYPE_FINGER;
1718 case MT_TOOL_PEN:
1719 return AMOTION_EVENT_TOOL_TYPE_STYLUS;
1720 }
1721 }
1722 return AMOTION_EVENT_TOOL_TYPE_UNKNOWN;
1723 }
1726 // --- InputMapper ---
1728 InputMapper::InputMapper(InputDevice* device) :
1729 mDevice(device), mContext(device->getContext()) {
1730 }
1732 InputMapper::~InputMapper() {
1733 }
1735 void InputMapper::populateDeviceInfo(InputDeviceInfo* info) {
1736 info->addSource(getSources());
1737 }
1739 void InputMapper::dump(String8& dump) {
1740 }
1742 void InputMapper::configure(nsecs_t when,
1743 const InputReaderConfiguration* config, uint32_t changes) {
1744 }
1746 void InputMapper::reset(nsecs_t when) {
1747 }
1749 void InputMapper::timeoutExpired(nsecs_t when) {
1750 }
1752 int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
1753 return AKEY_STATE_UNKNOWN;
1754 }
1756 int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
1757 return AKEY_STATE_UNKNOWN;
1758 }
1760 int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
1761 return AKEY_STATE_UNKNOWN;
1762 }
1764 bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
1765 const int32_t* keyCodes, uint8_t* outFlags) {
1766 return false;
1767 }
1769 void InputMapper::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat,
1770 int32_t token) {
1771 }
1773 void InputMapper::cancelVibrate(int32_t token) {
1774 }
1776 int32_t InputMapper::getMetaState() {
1777 return 0;
1778 }
1780 void InputMapper::fadePointer() {
1781 }
1783 status_t InputMapper::getAbsoluteAxisInfo(int32_t axis, RawAbsoluteAxisInfo* axisInfo) {
1784 return getEventHub()->getAbsoluteAxisInfo(getDeviceId(), axis, axisInfo);
1785 }
1787 void InputMapper::bumpGeneration() {
1788 mDevice->bumpGeneration();
1789 }
1791 void InputMapper::dumpRawAbsoluteAxisInfo(String8& dump,
1792 const RawAbsoluteAxisInfo& axis, const char* name) {
1793 if (axis.valid) {
1794 dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d, resolution=%d\n",
1795 name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz, axis.resolution);
1796 } else {
1797 dump.appendFormat(INDENT4 "%s: unknown range\n", name);
1798 }
1799 }
1802 // --- SwitchInputMapper ---
1804 SwitchInputMapper::SwitchInputMapper(InputDevice* device) :
1805 InputMapper(device), mUpdatedSwitchValues(0), mUpdatedSwitchMask(0) {
1806 }
1808 SwitchInputMapper::~SwitchInputMapper() {
1809 }
1811 uint32_t SwitchInputMapper::getSources() {
1812 return AINPUT_SOURCE_SWITCH;
1813 }
1815 void SwitchInputMapper::process(const RawEvent* rawEvent) {
1816 switch (rawEvent->type) {
1817 case EV_SW:
1818 processSwitch(rawEvent->code, rawEvent->value);
1819 break;
1821 case EV_SYN:
1822 if (rawEvent->code == SYN_REPORT) {
1823 sync(rawEvent->when);
1824 }
1825 }
1826 }
1828 void SwitchInputMapper::processSwitch(int32_t switchCode, int32_t switchValue) {
1829 if (switchCode >= 0 && switchCode < 32) {
1830 if (switchValue) {
1831 mUpdatedSwitchValues |= 1 << switchCode;
1832 }
1833 mUpdatedSwitchMask |= 1 << switchCode;
1834 }
1835 }
1837 void SwitchInputMapper::sync(nsecs_t when) {
1838 if (mUpdatedSwitchMask) {
1839 NotifySwitchArgs args(when, 0, mUpdatedSwitchValues, mUpdatedSwitchMask);
1840 getListener()->notifySwitch(&args);
1842 mUpdatedSwitchValues = 0;
1843 mUpdatedSwitchMask = 0;
1844 }
1845 }
1847 int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
1848 return getEventHub()->getSwitchState(getDeviceId(), switchCode);
1849 }
1852 // --- VibratorInputMapper ---
1854 VibratorInputMapper::VibratorInputMapper(InputDevice* device) :
1855 InputMapper(device), mVibrating(false) {
1856 }
1858 VibratorInputMapper::~VibratorInputMapper() {
1859 }
1861 uint32_t VibratorInputMapper::getSources() {
1862 return 0;
1863 }
1865 void VibratorInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
1866 InputMapper::populateDeviceInfo(info);
1868 info->setVibrator(true);
1869 }
1871 void VibratorInputMapper::process(const RawEvent* rawEvent) {
1872 // TODO: Handle FF_STATUS, although it does not seem to be widely supported.
1873 }
1875 void VibratorInputMapper::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat,
1876 int32_t token) {
1877 #if DEBUG_VIBRATOR
1878 String8 patternStr;
1879 for (size_t i = 0; i < patternSize; i++) {
1880 if (i != 0) {
1881 patternStr.append(", ");
1882 }
1883 patternStr.appendFormat("%lld", pattern[i]);
1884 }
1885 ALOGD("vibrate: deviceId=%d, pattern=[%s], repeat=%ld, token=%d",
1886 getDeviceId(), patternStr.string(), repeat, token);
1887 #endif
1889 mVibrating = true;
1890 memcpy(mPattern, pattern, patternSize * sizeof(nsecs_t));
1891 mPatternSize = patternSize;
1892 mRepeat = repeat;
1893 mToken = token;
1894 mIndex = -1;
1896 nextStep();
1897 }
1899 void VibratorInputMapper::cancelVibrate(int32_t token) {
1900 #if DEBUG_VIBRATOR
1901 ALOGD("cancelVibrate: deviceId=%d, token=%d", getDeviceId(), token);
1902 #endif
1904 if (mVibrating && mToken == token) {
1905 stopVibrating();
1906 }
1907 }
1909 void VibratorInputMapper::timeoutExpired(nsecs_t when) {
1910 if (mVibrating) {
1911 if (when >= mNextStepTime) {
1912 nextStep();
1913 } else {
1914 getContext()->requestTimeoutAtTime(mNextStepTime);
1915 }
1916 }
1917 }
1919 void VibratorInputMapper::nextStep() {
1920 mIndex += 1;
1921 if (size_t(mIndex) >= mPatternSize) {
1922 if (mRepeat < 0) {
1923 // We are done.
1924 stopVibrating();
1925 return;
1926 }
1927 mIndex = mRepeat;
1928 }
1930 bool vibratorOn = mIndex & 1;
1931 nsecs_t duration = mPattern[mIndex];
1932 if (vibratorOn) {
1933 #if DEBUG_VIBRATOR
1934 ALOGD("nextStep: sending vibrate deviceId=%d, duration=%lld",
1935 getDeviceId(), duration);
1936 #endif
1937 getEventHub()->vibrate(getDeviceId(), duration);
1938 } else {
1939 #if DEBUG_VIBRATOR
1940 ALOGD("nextStep: sending cancel vibrate deviceId=%d", getDeviceId());
1941 #endif
1942 getEventHub()->cancelVibrate(getDeviceId());
1943 }
1944 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
1945 mNextStepTime = now + duration;
1946 getContext()->requestTimeoutAtTime(mNextStepTime);
1947 #if DEBUG_VIBRATOR
1948 ALOGD("nextStep: scheduled timeout in %0.3fms", duration * 0.000001f);
1949 #endif
1950 }
1952 void VibratorInputMapper::stopVibrating() {
1953 mVibrating = false;
1954 #if DEBUG_VIBRATOR
1955 ALOGD("stopVibrating: sending cancel vibrate deviceId=%d", getDeviceId());
1956 #endif
1957 getEventHub()->cancelVibrate(getDeviceId());
1958 }
1960 void VibratorInputMapper::dump(String8& dump) {
1961 dump.append(INDENT2 "Vibrator Input Mapper:\n");
1962 dump.appendFormat(INDENT3 "Vibrating: %s\n", toString(mVibrating));
1963 }
1966 // --- KeyboardInputMapper ---
1968 KeyboardInputMapper::KeyboardInputMapper(InputDevice* device,
1969 uint32_t source, int32_t keyboardType) :
1970 InputMapper(device), mSource(source),
1971 mKeyboardType(keyboardType) {
1972 }
1974 KeyboardInputMapper::~KeyboardInputMapper() {
1975 }
1977 uint32_t KeyboardInputMapper::getSources() {
1978 return mSource;
1979 }
1981 void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
1982 InputMapper::populateDeviceInfo(info);
1984 info->setKeyboardType(mKeyboardType);
1985 info->setKeyCharacterMap(getEventHub()->getKeyCharacterMap(getDeviceId()));
1986 }
1988 void KeyboardInputMapper::dump(String8& dump) {
1989 dump.append(INDENT2 "Keyboard Input Mapper:\n");
1990 dumpParameters(dump);
1991 dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType);
1992 dump.appendFormat(INDENT3 "Orientation: %d\n", mOrientation);
1993 dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mKeyDowns.size());
1994 dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mMetaState);
1995 dump.appendFormat(INDENT3 "DownTime: %lld\n", mDownTime);
1996 }
1999 void KeyboardInputMapper::configure(nsecs_t when,
2000 const InputReaderConfiguration* config, uint32_t changes) {
2001 InputMapper::configure(when, config, changes);
2003 if (!changes) { // first time only
2004 // Configure basic parameters.
2005 configureParameters();
2006 }
2008 if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) {
2009 if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) {
2010 DisplayViewport v;
2011 if (config->getDisplayInfo(false /*external*/, &v)) {
2012 mOrientation = v.orientation;
2013 } else {
2014 mOrientation = DISPLAY_ORIENTATION_0;
2015 }
2016 } else {
2017 mOrientation = DISPLAY_ORIENTATION_0;
2018 }
2019 }
2020 }
2022 void KeyboardInputMapper::configureParameters() {
2023 mParameters.orientationAware = false;
2024 getDevice()->getConfiguration().tryGetProperty(String8("keyboard.orientationAware"),
2025 mParameters.orientationAware);
2027 mParameters.hasAssociatedDisplay = false;
2028 if (mParameters.orientationAware) {
2029 mParameters.hasAssociatedDisplay = true;
2030 }
2031 }
2033 void KeyboardInputMapper::dumpParameters(String8& dump) {
2034 dump.append(INDENT3 "Parameters:\n");
2035 dump.appendFormat(INDENT4 "HasAssociatedDisplay: %s\n",
2036 toString(mParameters.hasAssociatedDisplay));
2037 dump.appendFormat(INDENT4 "OrientationAware: %s\n",
2038 toString(mParameters.orientationAware));
2039 }
2041 void KeyboardInputMapper::reset(nsecs_t when) {
2042 mMetaState = AMETA_NONE;
2043 mDownTime = 0;
2044 mKeyDowns.clear();
2045 mCurrentHidUsage = 0;
2047 resetLedState();
2049 InputMapper::reset(when);
2050 }
2052 void KeyboardInputMapper::process(const RawEvent* rawEvent) {
2053 switch (rawEvent->type) {
2054 case EV_KEY: {
2055 int32_t scanCode = rawEvent->code;
2056 int32_t usageCode = mCurrentHidUsage;
2057 mCurrentHidUsage = 0;
2059 if (isKeyboardOrGamepadKey(scanCode)) {
2060 int32_t keyCode;
2061 uint32_t flags;
2062 if (getEventHub()->mapKey(getDeviceId(), scanCode, usageCode, &keyCode, &flags)) {
2063 keyCode = AKEYCODE_UNKNOWN;
2064 flags = 0;
2065 }
2066 processKey(rawEvent->when, rawEvent->value != 0, keyCode, scanCode, flags);
2067 }
2068 break;
2069 }
2070 case EV_MSC: {
2071 if (rawEvent->code == MSC_SCAN) {
2072 mCurrentHidUsage = rawEvent->value;
2073 }
2074 break;
2075 }
2076 case EV_SYN: {
2077 if (rawEvent->code == SYN_REPORT) {
2078 mCurrentHidUsage = 0;
2079 }
2080 }
2081 }
2082 }
2084 bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) {
2085 return scanCode < BTN_MOUSE
2086 || scanCode >= KEY_OK
2087 || (scanCode >= BTN_MISC && scanCode < BTN_MOUSE)
2088 || (scanCode >= BTN_JOYSTICK && scanCode < BTN_DIGI);
2089 }
2091 void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode,
2092 int32_t scanCode, uint32_t policyFlags) {
2094 if (down) {
2095 // Rotate key codes according to orientation if needed.
2096 if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) {
2097 keyCode = rotateKeyCode(keyCode, mOrientation);
2098 }
2100 // Add key down.
2101 ssize_t keyDownIndex = findKeyDown(scanCode);
2102 if (keyDownIndex >= 0) {
2103 // key repeat, be sure to use same keycode as before in case of rotation
2104 keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode;
2105 } else {
2106 // key down
2107 if ((policyFlags & POLICY_FLAG_VIRTUAL)
2108 && mContext->shouldDropVirtualKey(when,
2109 getDevice(), keyCode, scanCode)) {
2110 return;
2111 }
2113 mKeyDowns.push();
2114 KeyDown& keyDown = mKeyDowns.editTop();
2115 keyDown.keyCode = keyCode;
2116 keyDown.scanCode = scanCode;
2117 }
2119 mDownTime = when;
2120 } else {
2121 // Remove key down.
2122 ssize_t keyDownIndex = findKeyDown(scanCode);
2123 if (keyDownIndex >= 0) {
2124 // key up, be sure to use same keycode as before in case of rotation
2125 keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode;
2126 mKeyDowns.removeAt(size_t(keyDownIndex));
2127 } else {
2128 // key was not actually down
2129 ALOGI("Dropping key up from device %s because the key was not down. "
2130 "keyCode=%d, scanCode=%d",
2131 getDeviceName().string(), keyCode, scanCode);
2132 return;
2133 }
2134 }
2136 bool metaStateChanged = false;
2137 int32_t oldMetaState = mMetaState;
2138 int32_t newMetaState = updateMetaState(keyCode, down, oldMetaState);
2139 if (oldMetaState != newMetaState) {
2140 mMetaState = newMetaState;
2141 metaStateChanged = true;
2142 updateLedState(false);
2143 }
2145 nsecs_t downTime = mDownTime;
2147 // Key down on external an keyboard should wake the device.
2148 // We don't do this for internal keyboards to prevent them from waking up in your pocket.
2149 // For internal keyboards, the key layout file should specify the policy flags for
2150 // each wake key individually.
2151 // TODO: Use the input device configuration to control this behavior more finely.
2152 if (down && getDevice()->isExternal()
2153 && !(policyFlags & (POLICY_FLAG_WAKE | POLICY_FLAG_WAKE_DROPPED))) {
2154 policyFlags |= POLICY_FLAG_WAKE_DROPPED;
2155 }
2157 if (metaStateChanged) {
2158 getContext()->updateGlobalMetaState();
2159 }
2161 if (down && !isMetaKey(keyCode)) {
2162 getContext()->fadePointer();
2163 }
2165 NotifyKeyArgs args(when, getDeviceId(), mSource, policyFlags,
2166 down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
2167 AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime);
2168 getListener()->notifyKey(&args);
2169 }
2171 ssize_t KeyboardInputMapper::findKeyDown(int32_t scanCode) {
2172 size_t n = mKeyDowns.size();
2173 for (size_t i = 0; i < n; i++) {
2174 if (mKeyDowns[i].scanCode == scanCode) {
2175 return i;
2176 }
2177 }
2178 return -1;
2179 }
2181 int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
2182 return getEventHub()->getKeyCodeState(getDeviceId(), keyCode);
2183 }
2185 int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
2186 return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
2187 }
2189 bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
2190 const int32_t* keyCodes, uint8_t* outFlags) {
2191 return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags);
2192 }
2194 int32_t KeyboardInputMapper::getMetaState() {
2195 return mMetaState;
2196 }
2198 void KeyboardInputMapper::resetLedState() {
2199 initializeLedState(mCapsLockLedState, LED_CAPSL);
2200 initializeLedState(mNumLockLedState, LED_NUML);
2201 initializeLedState(mScrollLockLedState, LED_SCROLLL);
2203 updateLedState(true);
2204 }
2206 void KeyboardInputMapper::initializeLedState(LedState& ledState, int32_t led) {
2207 ledState.avail = getEventHub()->hasLed(getDeviceId(), led);
2208 ledState.on = false;
2209 }
2211 void KeyboardInputMapper::updateLedState(bool reset) {
2212 updateLedStateForModifier(mCapsLockLedState, LED_CAPSL,
2213 AMETA_CAPS_LOCK_ON, reset);
2214 updateLedStateForModifier(mNumLockLedState, LED_NUML,
2215 AMETA_NUM_LOCK_ON, reset);
2216 updateLedStateForModifier(mScrollLockLedState, LED_SCROLLL,
2217 AMETA_SCROLL_LOCK_ON, reset);
2218 }
2220 void KeyboardInputMapper::updateLedStateForModifier(LedState& ledState,
2221 int32_t led, int32_t modifier, bool reset) {
2222 if (ledState.avail) {
2223 bool desiredState = (mMetaState & modifier) != 0;
2224 if (reset || ledState.on != desiredState) {
2225 getEventHub()->setLedState(getDeviceId(), led, desiredState);
2226 ledState.on = desiredState;
2227 }
2228 }
2229 }
2232 // --- CursorInputMapper ---
2234 CursorInputMapper::CursorInputMapper(InputDevice* device) :
2235 InputMapper(device) {
2236 }
2238 CursorInputMapper::~CursorInputMapper() {
2239 }
2241 uint32_t CursorInputMapper::getSources() {
2242 return mSource;
2243 }
2245 void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
2246 InputMapper::populateDeviceInfo(info);
2248 if (mParameters.mode == Parameters::MODE_POINTER) {
2249 float minX, minY, maxX, maxY;
2250 if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
2251 info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, minX, maxX, 0.0f, 0.0f, 0.0f);
2252 info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, minY, maxY, 0.0f, 0.0f, 0.0f);
2253 }
2254 } else {
2255 info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, -1.0f, 1.0f, 0.0f, mXScale, 0.0f);
2256 info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, -1.0f, 1.0f, 0.0f, mYScale, 0.0f);
2257 }
2258 info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mSource, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f);
2260 if (mCursorScrollAccumulator.haveRelativeVWheel()) {
2261 info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f);
2262 }
2263 if (mCursorScrollAccumulator.haveRelativeHWheel()) {
2264 info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f);
2265 }
2266 }
2268 void CursorInputMapper::dump(String8& dump) {
2269 dump.append(INDENT2 "Cursor Input Mapper:\n");
2270 dumpParameters(dump);
2271 dump.appendFormat(INDENT3 "XScale: %0.3f\n", mXScale);
2272 dump.appendFormat(INDENT3 "YScale: %0.3f\n", mYScale);
2273 dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision);
2274 dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision);
2275 dump.appendFormat(INDENT3 "HaveVWheel: %s\n",
2276 toString(mCursorScrollAccumulator.haveRelativeVWheel()));
2277 dump.appendFormat(INDENT3 "HaveHWheel: %s\n",
2278 toString(mCursorScrollAccumulator.haveRelativeHWheel()));
2279 dump.appendFormat(INDENT3 "VWheelScale: %0.3f\n", mVWheelScale);
2280 dump.appendFormat(INDENT3 "HWheelScale: %0.3f\n", mHWheelScale);
2281 dump.appendFormat(INDENT3 "Orientation: %d\n", mOrientation);
2282 dump.appendFormat(INDENT3 "ButtonState: 0x%08x\n", mButtonState);
2283 dump.appendFormat(INDENT3 "Down: %s\n", toString(isPointerDown(mButtonState)));
2284 dump.appendFormat(INDENT3 "DownTime: %lld\n", mDownTime);
2285 }
2287 void CursorInputMapper::configure(nsecs_t when,
2288 const InputReaderConfiguration* config, uint32_t changes) {
2289 InputMapper::configure(when, config, changes);
2291 if (!changes) { // first time only
2292 mCursorScrollAccumulator.configure(getDevice());
2294 // Configure basic parameters.
2295 configureParameters();
2297 // Configure device mode.
2298 switch (mParameters.mode) {
2299 case Parameters::MODE_POINTER:
2300 mSource = AINPUT_SOURCE_MOUSE;
2301 mXPrecision = 1.0f;
2302 mYPrecision = 1.0f;
2303 mXScale = 1.0f;
2304 mYScale = 1.0f;
2305 mPointerController = getPolicy()->obtainPointerController(getDeviceId());
2306 break;
2307 case Parameters::MODE_NAVIGATION:
2308 mSource = AINPUT_SOURCE_TRACKBALL;
2309 mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
2310 mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
2311 mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
2312 mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
2313 break;
2314 }
2316 mVWheelScale = 1.0f;
2317 mHWheelScale = 1.0f;
2318 }
2320 if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) {
2321 mPointerVelocityControl.setParameters(config->pointerVelocityControlParameters);
2322 mWheelXVelocityControl.setParameters(config->wheelVelocityControlParameters);
2323 mWheelYVelocityControl.setParameters(config->wheelVelocityControlParameters);
2324 }
2326 if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) {
2327 if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) {
2328 DisplayViewport v;
2329 if (config->getDisplayInfo(false /*external*/, &v)) {
2330 mOrientation = v.orientation;
2331 } else {
2332 mOrientation = DISPLAY_ORIENTATION_0;
2333 }
2334 } else {
2335 mOrientation = DISPLAY_ORIENTATION_0;
2336 }
2337 bumpGeneration();
2338 }
2339 }
2341 void CursorInputMapper::configureParameters() {
2342 mParameters.mode = Parameters::MODE_POINTER;
2343 String8 cursorModeString;
2344 if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) {
2345 if (cursorModeString == "navigation") {
2346 mParameters.mode = Parameters::MODE_NAVIGATION;
2347 } else if (cursorModeString != "pointer" && cursorModeString != "default") {
2348 ALOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string());
2349 }
2350 }
2352 mParameters.orientationAware = false;
2353 getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"),
2354 mParameters.orientationAware);
2356 mParameters.hasAssociatedDisplay = false;
2357 if (mParameters.mode == Parameters::MODE_POINTER || mParameters.orientationAware) {
2358 mParameters.hasAssociatedDisplay = true;
2359 }
2360 }
2362 void CursorInputMapper::dumpParameters(String8& dump) {
2363 dump.append(INDENT3 "Parameters:\n");
2364 dump.appendFormat(INDENT4 "HasAssociatedDisplay: %s\n",
2365 toString(mParameters.hasAssociatedDisplay));
2367 switch (mParameters.mode) {
2368 case Parameters::MODE_POINTER:
2369 dump.append(INDENT4 "Mode: pointer\n");
2370 break;
2371 case Parameters::MODE_NAVIGATION:
2372 dump.append(INDENT4 "Mode: navigation\n");
2373 break;
2374 default:
2375 ALOG_ASSERT(false);
2376 }
2378 dump.appendFormat(INDENT4 "OrientationAware: %s\n",
2379 toString(mParameters.orientationAware));
2380 }
2382 void CursorInputMapper::reset(nsecs_t when) {
2383 mButtonState = 0;
2384 mDownTime = 0;
2386 mPointerVelocityControl.reset();
2387 mWheelXVelocityControl.reset();
2388 mWheelYVelocityControl.reset();
2390 mCursorButtonAccumulator.reset(getDevice());
2391 mCursorMotionAccumulator.reset(getDevice());
2392 mCursorScrollAccumulator.reset(getDevice());
2394 InputMapper::reset(when);
2395 }
2397 void CursorInputMapper::process(const RawEvent* rawEvent) {
2398 mCursorButtonAccumulator.process(rawEvent);
2399 mCursorMotionAccumulator.process(rawEvent);
2400 mCursorScrollAccumulator.process(rawEvent);
2402 if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
2403 sync(rawEvent->when);
2404 }
2405 }
2407 void CursorInputMapper::sync(nsecs_t when) {
2408 int32_t lastButtonState = mButtonState;
2409 int32_t currentButtonState = mCursorButtonAccumulator.getButtonState();
2410 mButtonState = currentButtonState;
2412 bool wasDown = isPointerDown(lastButtonState);
2413 bool down = isPointerDown(currentButtonState);
2414 bool downChanged;
2415 if (!wasDown && down) {
2416 mDownTime = when;
2417 downChanged = true;
2418 } else if (wasDown && !down) {
2419 downChanged = true;
2420 } else {
2421 downChanged = false;
2422 }
2423 nsecs_t downTime = mDownTime;
2424 bool buttonsChanged = currentButtonState != lastButtonState;
2425 bool buttonsPressed = currentButtonState & ~lastButtonState;
2427 float deltaX = mCursorMotionAccumulator.getRelativeX() * mXScale;
2428 float deltaY = mCursorMotionAccumulator.getRelativeY() * mYScale;
2429 bool moved = deltaX != 0 || deltaY != 0;
2431 // Rotate delta according to orientation if needed.
2432 if (mParameters.orientationAware && mParameters.hasAssociatedDisplay
2433 && (deltaX != 0.0f || deltaY != 0.0f)) {
2434 rotateDelta(mOrientation, &deltaX, &deltaY);
2435 }
2437 // Move the pointer.
2438 PointerProperties pointerProperties;
2439 pointerProperties.clear();
2440 pointerProperties.id = 0;
2441 pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_MOUSE;
2443 PointerCoords pointerCoords;
2444 pointerCoords.clear();
2446 float vscroll = mCursorScrollAccumulator.getRelativeVWheel();
2447 float hscroll = mCursorScrollAccumulator.getRelativeHWheel();
2448 bool scrolled = vscroll != 0 || hscroll != 0;
2450 mWheelYVelocityControl.move(when, NULL, &vscroll);
2451 mWheelXVelocityControl.move(when, &hscroll, NULL);
2453 mPointerVelocityControl.move(when, &deltaX, &deltaY);
2455 int32_t displayId;
2456 if (mPointerController != NULL) {
2457 if (moved || scrolled || buttonsChanged) {
2458 mPointerController->setPresentation(
2459 PointerControllerInterface::PRESENTATION_POINTER);
2461 if (moved) {
2462 mPointerController->move(deltaX, deltaY);
2463 }
2465 if (buttonsChanged) {
2466 mPointerController->setButtonState(currentButtonState);
2467 }
2469 mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
2470 }
2472 float x, y;
2473 mPointerController->getPosition(&x, &y);
2474 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x);
2475 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
2476 displayId = ADISPLAY_ID_DEFAULT;
2477 } else {
2478 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, deltaX);
2479 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, deltaY);
2480 displayId = ADISPLAY_ID_NONE;
2481 }
2483 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f);
2485 // Moving an external trackball or mouse should wake the device.
2486 // We don't do this for internal cursor devices to prevent them from waking up
2487 // the device in your pocket.
2488 // TODO: Use the input device configuration to control this behavior more finely.
2489 uint32_t policyFlags = 0;
2490 if ((buttonsPressed || moved || scrolled) && getDevice()->isExternal()) {
2491 policyFlags |= POLICY_FLAG_WAKE_DROPPED;
2492 }
2494 // Synthesize key down from buttons if needed.
2495 synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource,
2496 policyFlags, lastButtonState, currentButtonState);
2498 // Send motion event.
2499 if (downChanged || moved || scrolled || buttonsChanged) {
2500 int32_t metaState = mContext->getGlobalMetaState();
2501 int32_t motionEventAction;
2502 if (downChanged) {
2503 motionEventAction = down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
2504 } else if (down || mPointerController == NULL) {
2505 motionEventAction = AMOTION_EVENT_ACTION_MOVE;
2506 } else {
2507 motionEventAction = AMOTION_EVENT_ACTION_HOVER_MOVE;
2508 }
2510 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags,
2511 motionEventAction, 0, metaState, currentButtonState, 0,
2512 displayId, 1, &pointerProperties, &pointerCoords,
2513 mXPrecision, mYPrecision, downTime);
2514 getListener()->notifyMotion(&args);
2516 // Send hover move after UP to tell the application that the mouse is hovering now.
2517 if (motionEventAction == AMOTION_EVENT_ACTION_UP
2518 && mPointerController != NULL) {
2519 NotifyMotionArgs hoverArgs(when, getDeviceId(), mSource, policyFlags,
2520 AMOTION_EVENT_ACTION_HOVER_MOVE, 0,
2521 metaState, currentButtonState, AMOTION_EVENT_EDGE_FLAG_NONE,
2522 displayId, 1, &pointerProperties, &pointerCoords,
2523 mXPrecision, mYPrecision, downTime);
2524 getListener()->notifyMotion(&hoverArgs);
2525 }
2527 // Send scroll events.
2528 if (scrolled) {
2529 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll);
2530 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll);
2532 NotifyMotionArgs scrollArgs(when, getDeviceId(), mSource, policyFlags,
2533 AMOTION_EVENT_ACTION_SCROLL, 0, metaState, currentButtonState,
2534 AMOTION_EVENT_EDGE_FLAG_NONE,
2535 displayId, 1, &pointerProperties, &pointerCoords,
2536 mXPrecision, mYPrecision, downTime);
2537 getListener()->notifyMotion(&scrollArgs);
2538 }
2539 }
2541 // Synthesize key up from buttons if needed.
2542 synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource,
2543 policyFlags, lastButtonState, currentButtonState);
2545 mCursorMotionAccumulator.finishSync();
2546 mCursorScrollAccumulator.finishSync();
2547 }
2549 int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
2550 if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) {
2551 return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
2552 } else {
2553 return AKEY_STATE_UNKNOWN;
2554 }
2555 }
2557 void CursorInputMapper::fadePointer() {
2558 if (mPointerController != NULL) {
2559 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
2560 }
2561 }
2564 // --- TouchInputMapper ---
2566 TouchInputMapper::TouchInputMapper(InputDevice* device) :
2567 InputMapper(device),
2568 mSource(0), mDeviceMode(DEVICE_MODE_DISABLED),
2569 mSurfaceWidth(-1), mSurfaceHeight(-1), mSurfaceLeft(0), mSurfaceTop(0),
2570 mSurfaceOrientation(DISPLAY_ORIENTATION_0) {
2571 }
2573 TouchInputMapper::~TouchInputMapper() {
2574 }
2576 uint32_t TouchInputMapper::getSources() {
2577 return mSource;
2578 }
2580 void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
2581 InputMapper::populateDeviceInfo(info);
2583 if (mDeviceMode != DEVICE_MODE_DISABLED) {
2584 info->addMotionRange(mOrientedRanges.x);
2585 info->addMotionRange(mOrientedRanges.y);
2586 info->addMotionRange(mOrientedRanges.pressure);
2588 if (mOrientedRanges.haveSize) {
2589 info->addMotionRange(mOrientedRanges.size);
2590 }
2592 if (mOrientedRanges.haveTouchSize) {
2593 info->addMotionRange(mOrientedRanges.touchMajor);
2594 info->addMotionRange(mOrientedRanges.touchMinor);
2595 }
2597 if (mOrientedRanges.haveToolSize) {
2598 info->addMotionRange(mOrientedRanges.toolMajor);
2599 info->addMotionRange(mOrientedRanges.toolMinor);
2600 }
2602 if (mOrientedRanges.haveOrientation) {
2603 info->addMotionRange(mOrientedRanges.orientation);
2604 }
2606 if (mOrientedRanges.haveDistance) {
2607 info->addMotionRange(mOrientedRanges.distance);
2608 }
2610 if (mOrientedRanges.haveTilt) {
2611 info->addMotionRange(mOrientedRanges.tilt);
2612 }
2614 if (mCursorScrollAccumulator.haveRelativeVWheel()) {
2615 info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f,
2616 0.0f);
2617 }
2618 if (mCursorScrollAccumulator.haveRelativeHWheel()) {
2619 info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f,
2620 0.0f);
2621 }
2622 if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_BOX) {
2623 const InputDeviceInfo::MotionRange& x = mOrientedRanges.x;
2624 const InputDeviceInfo::MotionRange& y = mOrientedRanges.y;
2625 info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_1, mSource, x.min, x.max, x.flat,
2626 x.fuzz, x.resolution);
2627 info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_2, mSource, y.min, y.max, y.flat,
2628 y.fuzz, y.resolution);
2629 info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_3, mSource, x.min, x.max, x.flat,
2630 x.fuzz, x.resolution);
2631 info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_4, mSource, y.min, y.max, y.flat,
2632 y.fuzz, y.resolution);
2633 }
2634 }
2635 }
2637 void TouchInputMapper::dump(String8& dump) {
2638 dump.append(INDENT2 "Touch Input Mapper:\n");
2639 dumpParameters(dump);
2640 dumpVirtualKeys(dump);
2641 dumpRawPointerAxes(dump);
2642 dumpCalibration(dump);
2643 dumpSurface(dump);
2645 dump.appendFormat(INDENT3 "Translation and Scaling Factors:\n");
2646 dump.appendFormat(INDENT4 "XTranslate: %0.3f\n", mXTranslate);
2647 dump.appendFormat(INDENT4 "YTranslate: %0.3f\n", mYTranslate);
2648 dump.appendFormat(INDENT4 "XScale: %0.3f\n", mXScale);
2649 dump.appendFormat(INDENT4 "YScale: %0.3f\n", mYScale);
2650 dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mXPrecision);
2651 dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mYPrecision);
2652 dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mGeometricScale);
2653 dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mPressureScale);
2654 dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mSizeScale);
2655 dump.appendFormat(INDENT4 "OrientationScale: %0.3f\n", mOrientationScale);
2656 dump.appendFormat(INDENT4 "DistanceScale: %0.3f\n", mDistanceScale);
2657 dump.appendFormat(INDENT4 "HaveTilt: %s\n", toString(mHaveTilt));
2658 dump.appendFormat(INDENT4 "TiltXCenter: %0.3f\n", mTiltXCenter);
2659 dump.appendFormat(INDENT4 "TiltXScale: %0.3f\n", mTiltXScale);
2660 dump.appendFormat(INDENT4 "TiltYCenter: %0.3f\n", mTiltYCenter);
2661 dump.appendFormat(INDENT4 "TiltYScale: %0.3f\n", mTiltYScale);
2663 dump.appendFormat(INDENT3 "Last Button State: 0x%08x\n", mLastButtonState);
2665 dump.appendFormat(INDENT3 "Last Raw Touch: pointerCount=%d\n",
2666 mLastRawPointerData.pointerCount);
2667 for (uint32_t i = 0; i < mLastRawPointerData.pointerCount; i++) {
2668 const RawPointerData::Pointer& pointer = mLastRawPointerData.pointers[i];
2669 dump.appendFormat(INDENT4 "[%d]: id=%d, x=%d, y=%d, pressure=%d, "
2670 "touchMajor=%d, touchMinor=%d, toolMajor=%d, toolMinor=%d, "
2671 "orientation=%d, tiltX=%d, tiltY=%d, distance=%d, "
2672 "toolType=%d, isHovering=%s\n", i,
2673 pointer.id, pointer.x, pointer.y, pointer.pressure,
2674 pointer.touchMajor, pointer.touchMinor,
2675 pointer.toolMajor, pointer.toolMinor,
2676 pointer.orientation, pointer.tiltX, pointer.tiltY, pointer.distance,
2677 pointer.toolType, toString(pointer.isHovering));
2678 }
2680 dump.appendFormat(INDENT3 "Last Cooked Touch: pointerCount=%d\n",
2681 mLastCookedPointerData.pointerCount);
2682 for (uint32_t i = 0; i < mLastCookedPointerData.pointerCount; i++) {
2683 const PointerProperties& pointerProperties = mLastCookedPointerData.pointerProperties[i];
2684 const PointerCoords& pointerCoords = mLastCookedPointerData.pointerCoords[i];
2685 dump.appendFormat(INDENT4 "[%d]: id=%d, x=%0.3f, y=%0.3f, pressure=%0.3f, "
2686 "touchMajor=%0.3f, touchMinor=%0.3f, toolMajor=%0.3f, toolMinor=%0.3f, "
2687 "orientation=%0.3f, tilt=%0.3f, distance=%0.3f, "
2688 "toolType=%d, isHovering=%s\n", i,
2689 pointerProperties.id,
2690 pointerCoords.getX(),
2691 pointerCoords.getY(),
2692 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
2693 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
2694 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
2695 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
2696 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
2697 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION),
2698 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TILT),
2699 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_DISTANCE),
2700 pointerProperties.toolType,
2701 toString(mLastCookedPointerData.isHovering(i)));
2702 }
2704 if (mDeviceMode == DEVICE_MODE_POINTER) {
2705 dump.appendFormat(INDENT3 "Pointer Gesture Detector:\n");
2706 dump.appendFormat(INDENT4 "XMovementScale: %0.3f\n",
2707 mPointerXMovementScale);
2708 dump.appendFormat(INDENT4 "YMovementScale: %0.3f\n",
2709 mPointerYMovementScale);
2710 dump.appendFormat(INDENT4 "XZoomScale: %0.3f\n",
2711 mPointerXZoomScale);
2712 dump.appendFormat(INDENT4 "YZoomScale: %0.3f\n",
2713 mPointerYZoomScale);
2714 dump.appendFormat(INDENT4 "MaxSwipeWidth: %f\n",
2715 mPointerGestureMaxSwipeWidth);
2716 }
2717 }
2719 void TouchInputMapper::configure(nsecs_t when,
2720 const InputReaderConfiguration* config, uint32_t changes) {
2721 InputMapper::configure(when, config, changes);
2723 mConfig = *config;
2725 if (!changes) { // first time only
2726 // Configure basic parameters.
2727 configureParameters();
2729 // Configure common accumulators.
2730 mCursorScrollAccumulator.configure(getDevice());
2731 mTouchButtonAccumulator.configure(getDevice());
2733 // Configure absolute axis information.
2734 configureRawPointerAxes();
2736 // Prepare input device calibration.
2737 parseCalibration();
2738 resolveCalibration();
2739 }
2741 if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) {
2742 // Update pointer speed.
2743 mPointerVelocityControl.setParameters(mConfig.pointerVelocityControlParameters);
2744 mWheelXVelocityControl.setParameters(mConfig.wheelVelocityControlParameters);
2745 mWheelYVelocityControl.setParameters(mConfig.wheelVelocityControlParameters);
2746 }
2748 bool resetNeeded = false;
2749 if (!changes || (changes & (InputReaderConfiguration::CHANGE_DISPLAY_INFO
2750 | InputReaderConfiguration::CHANGE_POINTER_GESTURE_ENABLEMENT
2751 | InputReaderConfiguration::CHANGE_SHOW_TOUCHES))) {
2752 // Configure device sources, surface dimensions, orientation and
2753 // scaling factors.
2754 configureSurface(when, &resetNeeded);
2755 }
2757 if (changes && resetNeeded) {
2758 // Send reset, unless this is the first time the device has been configured,
2759 // in which case the reader will call reset itself after all mappers are ready.
2760 getDevice()->notifyReset(when);
2761 }
2762 }
2764 void TouchInputMapper::configureParameters() {
2765 // Use the pointer presentation mode for devices that do not support distinct
2766 // multitouch. The spot-based presentation relies on being able to accurately
2767 // locate two or more fingers on the touch pad.
2768 mParameters.gestureMode = getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_SEMI_MT)
2769 ? Parameters::GESTURE_MODE_POINTER : Parameters::GESTURE_MODE_SPOTS;
2771 String8 gestureModeString;
2772 if (getDevice()->getConfiguration().tryGetProperty(String8("touch.gestureMode"),
2773 gestureModeString)) {
2774 if (gestureModeString == "pointer") {
2775 mParameters.gestureMode = Parameters::GESTURE_MODE_POINTER;
2776 } else if (gestureModeString == "spots") {
2777 mParameters.gestureMode = Parameters::GESTURE_MODE_SPOTS;
2778 } else if (gestureModeString != "default") {
2779 ALOGW("Invalid value for touch.gestureMode: '%s'", gestureModeString.string());
2780 }
2781 }
2783 if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_DIRECT)) {
2784 // The device is a touch screen.
2785 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN;
2786 } else if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_POINTER)) {
2787 // The device is a pointing device like a track pad.
2788 mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
2789 } else if (getEventHub()->hasRelativeAxis(getDeviceId(), REL_X)
2790 || getEventHub()->hasRelativeAxis(getDeviceId(), REL_Y)) {
2791 // The device is a cursor device with a touch pad attached.
2792 // By default don't use the touch pad to move the pointer.
2793 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
2794 } else {
2795 // The device is a touch pad of unknown purpose.
2796 mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
2797 }
2799 String8 deviceTypeString;
2800 if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"),
2801 deviceTypeString)) {
2802 if (deviceTypeString == "touchScreen") {
2803 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN;
2804 } else if (deviceTypeString == "touchPad") {
2805 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
2806 } else if (deviceTypeString == "touchNavigation") {
2807 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_NAVIGATION;
2808 } else if (deviceTypeString == "pointer") {
2809 mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
2810 } else if (deviceTypeString != "default") {
2811 ALOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string());
2812 }
2813 }
2815 mParameters.orientationAware = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN;
2816 getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"),
2817 mParameters.orientationAware);
2819 mParameters.hasAssociatedDisplay = false;
2820 mParameters.associatedDisplayIsExternal = false;
2821 if (mParameters.orientationAware
2822 || mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN
2823 || mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
2824 mParameters.hasAssociatedDisplay = true;
2825 mParameters.associatedDisplayIsExternal =
2826 mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN
2827 && getDevice()->isExternal();
2828 }
2829 }
2831 void TouchInputMapper::dumpParameters(String8& dump) {
2832 dump.append(INDENT3 "Parameters:\n");
2834 switch (mParameters.gestureMode) {
2835 case Parameters::GESTURE_MODE_POINTER:
2836 dump.append(INDENT4 "GestureMode: pointer\n");
2837 break;
2838 case Parameters::GESTURE_MODE_SPOTS:
2839 dump.append(INDENT4 "GestureMode: spots\n");
2840 break;
2841 default:
2842 assert(false);
2843 }
2845 switch (mParameters.deviceType) {
2846 case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
2847 dump.append(INDENT4 "DeviceType: touchScreen\n");
2848 break;
2849 case Parameters::DEVICE_TYPE_TOUCH_PAD:
2850 dump.append(INDENT4 "DeviceType: touchPad\n");
2851 break;
2852 case Parameters::DEVICE_TYPE_TOUCH_NAVIGATION:
2853 dump.append(INDENT4 "DeviceType: touchNavigation\n");
2854 break;
2855 case Parameters::DEVICE_TYPE_POINTER:
2856 dump.append(INDENT4 "DeviceType: pointer\n");
2857 break;
2858 default:
2859 ALOG_ASSERT(false);
2860 }
2862 dump.appendFormat(INDENT4 "AssociatedDisplay: hasAssociatedDisplay=%s, isExternal=%s\n",
2863 toString(mParameters.hasAssociatedDisplay),
2864 toString(mParameters.associatedDisplayIsExternal));
2865 dump.appendFormat(INDENT4 "OrientationAware: %s\n",
2866 toString(mParameters.orientationAware));
2867 }
2869 void TouchInputMapper::configureRawPointerAxes() {
2870 mRawPointerAxes.clear();
2871 }
2873 void TouchInputMapper::dumpRawPointerAxes(String8& dump) {
2874 dump.append(INDENT3 "Raw Touch Axes:\n");
2875 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.x, "X");
2876 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.y, "Y");
2877 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.pressure, "Pressure");
2878 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMajor, "TouchMajor");
2879 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMinor, "TouchMinor");
2880 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMajor, "ToolMajor");
2881 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMinor, "ToolMinor");
2882 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.orientation, "Orientation");
2883 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.distance, "Distance");
2884 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltX, "TiltX");
2885 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltY, "TiltY");
2886 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.trackingId, "TrackingId");
2887 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.slot, "Slot");
2888 }
2890 void TouchInputMapper::configureSurface(nsecs_t when, bool* outResetNeeded) {
2891 int32_t oldDeviceMode = mDeviceMode;
2893 // Determine device mode.
2894 if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER
2895 && mConfig.pointerGesturesEnabled) {
2896 mSource = AINPUT_SOURCE_MOUSE;
2897 mDeviceMode = DEVICE_MODE_POINTER;
2898 if (hasStylus()) {
2899 mSource |= AINPUT_SOURCE_STYLUS;
2900 }
2901 } else if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN
2902 && mParameters.hasAssociatedDisplay) {
2903 mSource = AINPUT_SOURCE_TOUCHSCREEN;
2904 mDeviceMode = DEVICE_MODE_DIRECT;
2905 if (hasStylus()) {
2906 mSource |= AINPUT_SOURCE_STYLUS;
2907 }
2908 } else if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_NAVIGATION) {
2909 mSource = AINPUT_SOURCE_TOUCH_NAVIGATION;
2910 mDeviceMode = DEVICE_MODE_NAVIGATION;
2911 } else {
2912 mSource = AINPUT_SOURCE_TOUCHPAD;
2913 mDeviceMode = DEVICE_MODE_UNSCALED;
2914 }
2916 // Ensure we have valid X and Y axes.
2917 if (!mRawPointerAxes.x.valid || !mRawPointerAxes.y.valid) {
2918 ALOGW(INDENT "Touch device '%s' did not report support for X or Y axis! "
2919 "The device will be inoperable.", getDeviceName().string());
2920 mDeviceMode = DEVICE_MODE_DISABLED;
2921 return;
2922 }
2924 // Raw width and height in the natural orientation.
2925 int32_t rawWidth = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1;
2926 int32_t rawHeight = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1;
2928 // Get associated display dimensions.
2929 bool viewportChanged = false;
2930 DisplayViewport newViewport;
2931 if (mParameters.hasAssociatedDisplay) {
2932 if (!mConfig.getDisplayInfo(mParameters.associatedDisplayIsExternal, &newViewport)) {
2933 ALOGI(INDENT "Touch device '%s' could not query the properties of its associated "
2934 "display. The device will be inoperable until the display size "
2935 "becomes available.",
2936 getDeviceName().string());
2937 mDeviceMode = DEVICE_MODE_DISABLED;
2938 return;
2939 }
2940 } else {
2941 newViewport.setNonDisplayViewport(rawWidth, rawHeight);
2942 }
2943 if (mViewport != newViewport) {
2944 mViewport = newViewport;
2945 viewportChanged = true;
2947 if (mDeviceMode == DEVICE_MODE_DIRECT || mDeviceMode == DEVICE_MODE_POINTER) {
2948 // Convert rotated viewport to natural surface coordinates.
2949 int32_t naturalLogicalWidth, naturalLogicalHeight;
2950 int32_t naturalPhysicalWidth, naturalPhysicalHeight;
2951 int32_t naturalPhysicalLeft, naturalPhysicalTop;
2952 int32_t naturalDeviceWidth, naturalDeviceHeight;
2953 switch (mViewport.orientation) {
2954 case DISPLAY_ORIENTATION_90:
2955 naturalLogicalWidth = mViewport.logicalBottom - mViewport.logicalTop;
2956 naturalLogicalHeight = mViewport.logicalRight - mViewport.logicalLeft;
2957 naturalPhysicalWidth = mViewport.physicalBottom - mViewport.physicalTop;
2958 naturalPhysicalHeight = mViewport.physicalRight - mViewport.physicalLeft;
2959 naturalPhysicalLeft = mViewport.deviceHeight - mViewport.physicalBottom;
2960 naturalPhysicalTop = mViewport.physicalLeft;
2961 naturalDeviceWidth = mViewport.deviceHeight;
2962 naturalDeviceHeight = mViewport.deviceWidth;
2963 break;
2964 case DISPLAY_ORIENTATION_180:
2965 naturalLogicalWidth = mViewport.logicalRight - mViewport.logicalLeft;
2966 naturalLogicalHeight = mViewport.logicalBottom - mViewport.logicalTop;
2967 naturalPhysicalWidth = mViewport.physicalRight - mViewport.physicalLeft;
2968 naturalPhysicalHeight = mViewport.physicalBottom - mViewport.physicalTop;
2969 naturalPhysicalLeft = mViewport.deviceWidth - mViewport.physicalRight;
2970 naturalPhysicalTop = mViewport.deviceHeight - mViewport.physicalBottom;
2971 naturalDeviceWidth = mViewport.deviceWidth;
2972 naturalDeviceHeight = mViewport.deviceHeight;
2973 break;
2974 case DISPLAY_ORIENTATION_270:
2975 naturalLogicalWidth = mViewport.logicalBottom - mViewport.logicalTop;
2976 naturalLogicalHeight = mViewport.logicalRight - mViewport.logicalLeft;
2977 naturalPhysicalWidth = mViewport.physicalBottom - mViewport.physicalTop;
2978 naturalPhysicalHeight = mViewport.physicalRight - mViewport.physicalLeft;
2979 naturalPhysicalLeft = mViewport.physicalTop;
2980 naturalPhysicalTop = mViewport.deviceWidth - mViewport.physicalRight;
2981 naturalDeviceWidth = mViewport.deviceHeight;
2982 naturalDeviceHeight = mViewport.deviceWidth;
2983 break;
2984 case DISPLAY_ORIENTATION_0:
2985 default:
2986 naturalLogicalWidth = mViewport.logicalRight - mViewport.logicalLeft;
2987 naturalLogicalHeight = mViewport.logicalBottom - mViewport.logicalTop;
2988 naturalPhysicalWidth = mViewport.physicalRight - mViewport.physicalLeft;
2989 naturalPhysicalHeight = mViewport.physicalBottom - mViewport.physicalTop;
2990 naturalPhysicalLeft = mViewport.physicalLeft;
2991 naturalPhysicalTop = mViewport.physicalTop;
2992 naturalDeviceWidth = mViewport.deviceWidth;
2993 naturalDeviceHeight = mViewport.deviceHeight;
2994 break;
2995 }
2997 mSurfaceWidth = naturalLogicalWidth * naturalDeviceWidth / naturalPhysicalWidth;
2998 mSurfaceHeight = naturalLogicalHeight * naturalDeviceHeight / naturalPhysicalHeight;
2999 mSurfaceLeft = naturalPhysicalLeft * naturalLogicalWidth / naturalPhysicalWidth;
3000 mSurfaceTop = naturalPhysicalTop * naturalLogicalHeight / naturalPhysicalHeight;
3002 mSurfaceOrientation = mParameters.orientationAware ?
3003 mViewport.orientation : DISPLAY_ORIENTATION_0;
3004 } else {
3005 mSurfaceWidth = rawWidth;
3006 mSurfaceHeight = rawHeight;
3007 mSurfaceLeft = 0;
3008 mSurfaceTop = 0;
3009 mSurfaceOrientation = DISPLAY_ORIENTATION_0;
3010 }
3011 }
3013 // If moving between pointer modes, need to reset some state.
3014 bool deviceModeChanged;
3015 if (mDeviceMode != oldDeviceMode) {
3016 deviceModeChanged = true;
3017 mOrientedRanges.clear();
3018 }
3020 // Create pointer controller if needed.
3021 if (mDeviceMode == DEVICE_MODE_POINTER ||
3022 (mDeviceMode == DEVICE_MODE_DIRECT && mConfig.showTouches)) {
3023 if (mPointerController == NULL) {
3024 mPointerController = getPolicy()->obtainPointerController(getDeviceId());
3025 }
3026 } else {
3027 mPointerController.clear();
3028 }
3030 if (viewportChanged || deviceModeChanged) {
3031 ALOGI("Device reconfigured: id=%d, name='%s', size %dx%d, orientation %d, mode %d, "
3032 "display id %d",
3033 getDeviceId(), getDeviceName().string(), mSurfaceWidth, mSurfaceHeight,
3034 mSurfaceOrientation, mDeviceMode, mViewport.displayId);
3036 // Configure X and Y factors.
3037 mXScale = float(mSurfaceWidth) / rawWidth;
3038 mYScale = float(mSurfaceHeight) / rawHeight;
3039 mXTranslate = -mSurfaceLeft;
3040 mYTranslate = -mSurfaceTop;
3041 mXPrecision = 1.0f / mXScale;
3042 mYPrecision = 1.0f / mYScale;
3044 mOrientedRanges.x.axis = AMOTION_EVENT_AXIS_X;
3045 mOrientedRanges.x.source = mSource;
3046 mOrientedRanges.y.axis = AMOTION_EVENT_AXIS_Y;
3047 mOrientedRanges.y.source = mSource;
3049 configureVirtualKeys();
3051 // Scale factor for terms that are not oriented in a particular axis.
3052 // If the pixels are square then xScale == yScale otherwise we fake it
3053 // by choosing an average.
3054 mGeometricScale = avg(mXScale, mYScale);
3056 // Size of diagonal axis.
3057 float diagonalSize = hypotf(mSurfaceWidth, mSurfaceHeight);
3059 // Size factors.
3060 if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) {
3061 if (mRawPointerAxes.touchMajor.valid
3062 && mRawPointerAxes.touchMajor.maxValue != 0) {
3063 mSizeScale = 1.0f / mRawPointerAxes.touchMajor.maxValue;
3064 } else if (mRawPointerAxes.toolMajor.valid
3065 && mRawPointerAxes.toolMajor.maxValue != 0) {
3066 mSizeScale = 1.0f / mRawPointerAxes.toolMajor.maxValue;
3067 } else {
3068 mSizeScale = 0.0f;
3069 }
3071 mOrientedRanges.haveTouchSize = true;
3072 mOrientedRanges.haveToolSize = true;
3073 mOrientedRanges.haveSize = true;
3075 mOrientedRanges.touchMajor.axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR;
3076 mOrientedRanges.touchMajor.source = mSource;
3077 mOrientedRanges.touchMajor.min = 0;
3078 mOrientedRanges.touchMajor.max = diagonalSize;
3079 mOrientedRanges.touchMajor.flat = 0;
3080 mOrientedRanges.touchMajor.fuzz = 0;
3081 mOrientedRanges.touchMajor.resolution = 0;
3083 mOrientedRanges.touchMinor = mOrientedRanges.touchMajor;
3084 mOrientedRanges.touchMinor.axis = AMOTION_EVENT_AXIS_TOUCH_MINOR;
3086 mOrientedRanges.toolMajor.axis = AMOTION_EVENT_AXIS_TOOL_MAJOR;
3087 mOrientedRanges.toolMajor.source = mSource;
3088 mOrientedRanges.toolMajor.min = 0;
3089 mOrientedRanges.toolMajor.max = diagonalSize;
3090 mOrientedRanges.toolMajor.flat = 0;
3091 mOrientedRanges.toolMajor.fuzz = 0;
3092 mOrientedRanges.toolMajor.resolution = 0;
3094 mOrientedRanges.toolMinor = mOrientedRanges.toolMajor;
3095 mOrientedRanges.toolMinor.axis = AMOTION_EVENT_AXIS_TOOL_MINOR;
3097 mOrientedRanges.size.axis = AMOTION_EVENT_AXIS_SIZE;
3098 mOrientedRanges.size.source = mSource;
3099 mOrientedRanges.size.min = 0;
3100 mOrientedRanges.size.max = 1.0;
3101 mOrientedRanges.size.flat = 0;
3102 mOrientedRanges.size.fuzz = 0;
3103 mOrientedRanges.size.resolution = 0;
3104 } else {
3105 mSizeScale = 0.0f;
3106 }
3108 // Pressure factors.
3109 mPressureScale = 0;
3110 if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL
3111 || mCalibration.pressureCalibration
3112 == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) {
3113 if (mCalibration.havePressureScale) {
3114 mPressureScale = mCalibration.pressureScale;
3115 } else if (mRawPointerAxes.pressure.valid
3116 && mRawPointerAxes.pressure.maxValue != 0) {
3117 mPressureScale = 1.0f / mRawPointerAxes.pressure.maxValue;
3118 }
3119 }
3121 mOrientedRanges.pressure.axis = AMOTION_EVENT_AXIS_PRESSURE;
3122 mOrientedRanges.pressure.source = mSource;
3123 mOrientedRanges.pressure.min = 0;
3124 mOrientedRanges.pressure.max = 1.0;
3125 mOrientedRanges.pressure.flat = 0;
3126 mOrientedRanges.pressure.fuzz = 0;
3127 mOrientedRanges.pressure.resolution = 0;
3129 // Tilt
3130 mTiltXCenter = 0;
3131 mTiltXScale = 0;
3132 mTiltYCenter = 0;
3133 mTiltYScale = 0;
3134 mHaveTilt = mRawPointerAxes.tiltX.valid && mRawPointerAxes.tiltY.valid;
3135 if (mHaveTilt) {
3136 mTiltXCenter = avg(mRawPointerAxes.tiltX.minValue,
3137 mRawPointerAxes.tiltX.maxValue);
3138 mTiltYCenter = avg(mRawPointerAxes.tiltY.minValue,
3139 mRawPointerAxes.tiltY.maxValue);
3140 mTiltXScale = M_PI / 180;
3141 mTiltYScale = M_PI / 180;
3143 mOrientedRanges.haveTilt = true;
3145 mOrientedRanges.tilt.axis = AMOTION_EVENT_AXIS_TILT;
3146 mOrientedRanges.tilt.source = mSource;
3147 mOrientedRanges.tilt.min = 0;
3148 mOrientedRanges.tilt.max = M_PI_2;
3149 mOrientedRanges.tilt.flat = 0;
3150 mOrientedRanges.tilt.fuzz = 0;
3151 mOrientedRanges.tilt.resolution = 0;
3152 }
3154 // Orientation
3155 mOrientationScale = 0;
3156 if (mHaveTilt) {
3157 mOrientedRanges.haveOrientation = true;
3159 mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION;
3160 mOrientedRanges.orientation.source = mSource;
3161 mOrientedRanges.orientation.min = -M_PI;
3162 mOrientedRanges.orientation.max = M_PI;
3163 mOrientedRanges.orientation.flat = 0;
3164 mOrientedRanges.orientation.fuzz = 0;
3165 mOrientedRanges.orientation.resolution = 0;
3166 } else if (mCalibration.orientationCalibration !=
3167 Calibration::ORIENTATION_CALIBRATION_NONE) {
3168 if (mCalibration.orientationCalibration
3169 == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) {
3170 if (mRawPointerAxes.orientation.valid) {
3171 if (mRawPointerAxes.orientation.maxValue > 0) {
3172 mOrientationScale = M_PI_2 / mRawPointerAxes.orientation.maxValue;
3173 } else if (mRawPointerAxes.orientation.minValue < 0) {
3174 mOrientationScale = -M_PI_2 / mRawPointerAxes.orientation.minValue;
3175 } else {
3176 mOrientationScale = 0;
3177 }
3178 }
3179 }
3181 mOrientedRanges.haveOrientation = true;
3183 mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION;
3184 mOrientedRanges.orientation.source = mSource;
3185 mOrientedRanges.orientation.min = -M_PI_2;
3186 mOrientedRanges.orientation.max = M_PI_2;
3187 mOrientedRanges.orientation.flat = 0;
3188 mOrientedRanges.orientation.fuzz = 0;
3189 mOrientedRanges.orientation.resolution = 0;
3190 }
3192 // Distance
3193 mDistanceScale = 0;
3194 if (mCalibration.distanceCalibration != Calibration::DISTANCE_CALIBRATION_NONE) {
3195 if (mCalibration.distanceCalibration
3196 == Calibration::DISTANCE_CALIBRATION_SCALED) {
3197 if (mCalibration.haveDistanceScale) {
3198 mDistanceScale = mCalibration.distanceScale;
3199 } else {
3200 mDistanceScale = 1.0f;
3201 }
3202 }
3204 mOrientedRanges.haveDistance = true;
3206 mOrientedRanges.distance.axis = AMOTION_EVENT_AXIS_DISTANCE;
3207 mOrientedRanges.distance.source = mSource;
3208 mOrientedRanges.distance.min =
3209 mRawPointerAxes.distance.minValue * mDistanceScale;
3210 mOrientedRanges.distance.max =
3211 mRawPointerAxes.distance.maxValue * mDistanceScale;
3212 mOrientedRanges.distance.flat = 0;
3213 mOrientedRanges.distance.fuzz =
3214 mRawPointerAxes.distance.fuzz * mDistanceScale;
3215 mOrientedRanges.distance.resolution = 0;
3216 }
3218 // Compute oriented precision, scales and ranges.
3219 // Note that the maximum value reported is an inclusive maximum value so it is one
3220 // unit less than the total width or height of surface.
3221 switch (mSurfaceOrientation) {
3222 case DISPLAY_ORIENTATION_90:
3223 case DISPLAY_ORIENTATION_270:
3224 mOrientedXPrecision = mYPrecision;
3225 mOrientedYPrecision = mXPrecision;
3227 mOrientedRanges.x.min = mYTranslate;
3228 mOrientedRanges.x.max = mSurfaceHeight + mYTranslate - 1;
3229 mOrientedRanges.x.flat = 0;
3230 mOrientedRanges.x.fuzz = 0;
3231 mOrientedRanges.x.resolution = mRawPointerAxes.y.resolution * mYScale;
3233 mOrientedRanges.y.min = mXTranslate;
3234 mOrientedRanges.y.max = mSurfaceWidth + mXTranslate - 1;
3235 mOrientedRanges.y.flat = 0;
3236 mOrientedRanges.y.fuzz = 0;
3237 mOrientedRanges.y.resolution = mRawPointerAxes.x.resolution * mXScale;
3238 break;
3240 default:
3241 mOrientedXPrecision = mXPrecision;
3242 mOrientedYPrecision = mYPrecision;
3244 mOrientedRanges.x.min = mXTranslate;
3245 mOrientedRanges.x.max = mSurfaceWidth + mXTranslate - 1;
3246 mOrientedRanges.x.flat = 0;
3247 mOrientedRanges.x.fuzz = 0;
3248 mOrientedRanges.x.resolution = mRawPointerAxes.x.resolution * mXScale;
3250 mOrientedRanges.y.min = mYTranslate;
3251 mOrientedRanges.y.max = mSurfaceHeight + mYTranslate - 1;
3252 mOrientedRanges.y.flat = 0;
3253 mOrientedRanges.y.fuzz = 0;
3254 mOrientedRanges.y.resolution = mRawPointerAxes.y.resolution * mYScale;
3255 break;
3256 }
3258 if (mDeviceMode == DEVICE_MODE_POINTER) {
3259 // Compute pointer gesture detection parameters.
3260 float rawDiagonal = hypotf(rawWidth, rawHeight);
3261 float displayDiagonal = hypotf(mSurfaceWidth, mSurfaceHeight);
3263 // Scale movements such that one whole swipe of the touch pad covers a
3264 // given area relative to the diagonal size of the display when no acceleration
3265 // is applied.
3266 // Assume that the touch pad has a square aspect ratio such that movements in
3267 // X and Y of the same number of raw units cover the same physical distance.
3268 mPointerXMovementScale = mConfig.pointerGestureMovementSpeedRatio
3269 * displayDiagonal / rawDiagonal;
3270 mPointerYMovementScale = mPointerXMovementScale;
3272 // Scale zooms to cover a smaller range of the display than movements do.
3273 // This value determines the area around the pointer that is affected by freeform
3274 // pointer gestures.
3275 mPointerXZoomScale = mConfig.pointerGestureZoomSpeedRatio
3276 * displayDiagonal / rawDiagonal;
3277 mPointerYZoomScale = mPointerXZoomScale;
3279 // Max width between pointers to detect a swipe gesture is more than some fraction
3280 // of the diagonal axis of the touch pad. Touches that are wider than this are
3281 // translated into freeform gestures.
3282 mPointerGestureMaxSwipeWidth =
3283 mConfig.pointerGestureSwipeMaxWidthRatio * rawDiagonal;
3285 // Abort current pointer usages because the state has changed.
3286 abortPointerUsage(when, 0 /*policyFlags*/);
3287 }
3289 // Inform the dispatcher about the changes.
3290 *outResetNeeded = true;
3291 bumpGeneration();
3292 }
3293 }
3295 void TouchInputMapper::dumpSurface(String8& dump) {
3296 dump.appendFormat(INDENT3 "Viewport: displayId=%d, orientation=%d, "
3297 "logicalFrame=[%d, %d, %d, %d], "
3298 "physicalFrame=[%d, %d, %d, %d], "
3299 "deviceSize=[%d, %d]\n",
3300 mViewport.displayId, mViewport.orientation,
3301 mViewport.logicalLeft, mViewport.logicalTop,
3302 mViewport.logicalRight, mViewport.logicalBottom,
3303 mViewport.physicalLeft, mViewport.physicalTop,
3304 mViewport.physicalRight, mViewport.physicalBottom,
3305 mViewport.deviceWidth, mViewport.deviceHeight);
3307 dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mSurfaceWidth);
3308 dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mSurfaceHeight);
3309 dump.appendFormat(INDENT3 "SurfaceLeft: %d\n", mSurfaceLeft);
3310 dump.appendFormat(INDENT3 "SurfaceTop: %d\n", mSurfaceTop);
3311 dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mSurfaceOrientation);
3312 }
3314 void TouchInputMapper::configureVirtualKeys() {
3315 Vector<VirtualKeyDefinition> virtualKeyDefinitions;
3316 getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions);
3318 mVirtualKeys.clear();
3320 if (virtualKeyDefinitions.size() == 0) {
3321 return;
3322 }
3324 mVirtualKeys.setCapacity(virtualKeyDefinitions.size());
3326 int32_t touchScreenLeft = mRawPointerAxes.x.minValue;
3327 int32_t touchScreenTop = mRawPointerAxes.y.minValue;
3328 int32_t touchScreenWidth = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1;
3329 int32_t touchScreenHeight = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1;
3331 for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) {
3332 const VirtualKeyDefinition& virtualKeyDefinition =
3333 virtualKeyDefinitions[i];
3335 mVirtualKeys.add();
3336 VirtualKey& virtualKey = mVirtualKeys.editTop();
3338 virtualKey.scanCode = virtualKeyDefinition.scanCode;
3339 int32_t keyCode;
3340 uint32_t flags;
3341 if (getEventHub()->mapKey(getDeviceId(), virtualKey.scanCode, 0, &keyCode, &flags)) {
3342 ALOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring",
3343 virtualKey.scanCode);
3344 mVirtualKeys.pop(); // drop the key
3345 continue;
3346 }
3348 virtualKey.keyCode = keyCode;
3349 virtualKey.flags = flags;
3351 // convert the key definition's display coordinates into touch coordinates for a hit box
3352 int32_t halfWidth = virtualKeyDefinition.width / 2;
3353 int32_t halfHeight = virtualKeyDefinition.height / 2;
3355 virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth)
3356 * touchScreenWidth / mSurfaceWidth + touchScreenLeft;
3357 virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth)
3358 * touchScreenWidth / mSurfaceWidth + touchScreenLeft;
3359 virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight)
3360 * touchScreenHeight / mSurfaceHeight + touchScreenTop;
3361 virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight)
3362 * touchScreenHeight / mSurfaceHeight + touchScreenTop;
3363 }
3364 }
3366 void TouchInputMapper::dumpVirtualKeys(String8& dump) {
3367 if (!mVirtualKeys.isEmpty()) {
3368 dump.append(INDENT3 "Virtual Keys:\n");
3370 for (size_t i = 0; i < mVirtualKeys.size(); i++) {
3371 const VirtualKey& virtualKey = mVirtualKeys.itemAt(i);
3372 dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, "
3373 "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n",
3374 i, virtualKey.scanCode, virtualKey.keyCode,
3375 virtualKey.hitLeft, virtualKey.hitRight,
3376 virtualKey.hitTop, virtualKey.hitBottom);
3377 }
3378 }
3379 }
3381 void TouchInputMapper::parseCalibration() {
3382 const PropertyMap& in = getDevice()->getConfiguration();
3383 Calibration& out = mCalibration;
3385 // Size
3386 out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT;
3387 String8 sizeCalibrationString;
3388 if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) {
3389 if (sizeCalibrationString == "none") {
3390 out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
3391 } else if (sizeCalibrationString == "geometric") {
3392 out.sizeCalibration = Calibration::SIZE_CALIBRATION_GEOMETRIC;
3393 } else if (sizeCalibrationString == "diameter") {
3394 out.sizeCalibration = Calibration::SIZE_CALIBRATION_DIAMETER;
3395 } else if (sizeCalibrationString == "box") {
3396 out.sizeCalibration = Calibration::SIZE_CALIBRATION_BOX;
3397 } else if (sizeCalibrationString == "area") {
3398 out.sizeCalibration = Calibration::SIZE_CALIBRATION_AREA;
3399 } else if (sizeCalibrationString != "default") {
3400 ALOGW("Invalid value for touch.size.calibration: '%s'",
3401 sizeCalibrationString.string());
3402 }
3403 }
3405 out.haveSizeScale = in.tryGetProperty(String8("touch.size.scale"),
3406 out.sizeScale);
3407 out.haveSizeBias = in.tryGetProperty(String8("touch.size.bias"),
3408 out.sizeBias);
3409 out.haveSizeIsSummed = in.tryGetProperty(String8("touch.size.isSummed"),
3410 out.sizeIsSummed);
3412 // Pressure
3413 out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT;
3414 String8 pressureCalibrationString;
3415 if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) {
3416 if (pressureCalibrationString == "none") {
3417 out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
3418 } else if (pressureCalibrationString == "physical") {
3419 out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL;
3420 } else if (pressureCalibrationString == "amplitude") {
3421 out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
3422 } else if (pressureCalibrationString != "default") {
3423 ALOGW("Invalid value for touch.pressure.calibration: '%s'",
3424 pressureCalibrationString.string());
3425 }
3426 }
3428 out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"),
3429 out.pressureScale);
3431 // Orientation
3432 out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT;
3433 String8 orientationCalibrationString;
3434 if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) {
3435 if (orientationCalibrationString == "none") {
3436 out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
3437 } else if (orientationCalibrationString == "interpolated") {
3438 out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
3439 } else if (orientationCalibrationString == "vector") {
3440 out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_VECTOR;
3441 } else if (orientationCalibrationString != "default") {
3442 ALOGW("Invalid value for touch.orientation.calibration: '%s'",
3443 orientationCalibrationString.string());
3444 }
3445 }
3447 // Distance
3448 out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_DEFAULT;
3449 String8 distanceCalibrationString;
3450 if (in.tryGetProperty(String8("touch.distance.calibration"), distanceCalibrationString)) {
3451 if (distanceCalibrationString == "none") {
3452 out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE;
3453 } else if (distanceCalibrationString == "scaled") {
3454 out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED;
3455 } else if (distanceCalibrationString != "default") {
3456 ALOGW("Invalid value for touch.distance.calibration: '%s'",
3457 distanceCalibrationString.string());
3458 }
3459 }
3461 out.haveDistanceScale = in.tryGetProperty(String8("touch.distance.scale"),
3462 out.distanceScale);
3464 out.coverageCalibration = Calibration::COVERAGE_CALIBRATION_DEFAULT;
3465 String8 coverageCalibrationString;
3466 if (in.tryGetProperty(String8("touch.coverage.calibration"), coverageCalibrationString)) {
3467 if (coverageCalibrationString == "none") {
3468 out.coverageCalibration = Calibration::COVERAGE_CALIBRATION_NONE;
3469 } else if (coverageCalibrationString == "box") {
3470 out.coverageCalibration = Calibration::COVERAGE_CALIBRATION_BOX;
3471 } else if (coverageCalibrationString != "default") {
3472 ALOGW("Invalid value for touch.coverage.calibration: '%s'",
3473 coverageCalibrationString.string());
3474 }
3475 }
3476 }
3478 void TouchInputMapper::resolveCalibration() {
3479 // Size
3480 if (mRawPointerAxes.touchMajor.valid || mRawPointerAxes.toolMajor.valid) {
3481 if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_DEFAULT) {
3482 mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_GEOMETRIC;
3483 }
3484 } else {
3485 mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
3486 }
3488 // Pressure
3489 if (mRawPointerAxes.pressure.valid) {
3490 if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_DEFAULT) {
3491 mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL;
3492 }
3493 } else {
3494 mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
3495 }
3497 // Orientation
3498 if (mRawPointerAxes.orientation.valid) {
3499 if (mCalibration.orientationCalibration == Calibration::ORIENTATION_CALIBRATION_DEFAULT) {
3500 mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
3501 }
3502 } else {
3503 mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
3504 }
3506 // Distance
3507 if (mRawPointerAxes.distance.valid) {
3508 if (mCalibration.distanceCalibration == Calibration::DISTANCE_CALIBRATION_DEFAULT) {
3509 mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED;
3510 }
3511 } else {
3512 mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE;
3513 }
3515 // Coverage
3516 if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_DEFAULT) {
3517 mCalibration.coverageCalibration = Calibration::COVERAGE_CALIBRATION_NONE;
3518 }
3519 }
3521 void TouchInputMapper::dumpCalibration(String8& dump) {
3522 dump.append(INDENT3 "Calibration:\n");
3524 // Size
3525 switch (mCalibration.sizeCalibration) {
3526 case Calibration::SIZE_CALIBRATION_NONE:
3527 dump.append(INDENT4 "touch.size.calibration: none\n");
3528 break;
3529 case Calibration::SIZE_CALIBRATION_GEOMETRIC:
3530 dump.append(INDENT4 "touch.size.calibration: geometric\n");
3531 break;
3532 case Calibration::SIZE_CALIBRATION_DIAMETER:
3533 dump.append(INDENT4 "touch.size.calibration: diameter\n");
3534 break;
3535 case Calibration::SIZE_CALIBRATION_BOX:
3536 dump.append(INDENT4 "touch.size.calibration: box\n");
3537 break;
3538 case Calibration::SIZE_CALIBRATION_AREA:
3539 dump.append(INDENT4 "touch.size.calibration: area\n");
3540 break;
3541 default:
3542 ALOG_ASSERT(false);
3543 }
3545 if (mCalibration.haveSizeScale) {
3546 dump.appendFormat(INDENT4 "touch.size.scale: %0.3f\n",
3547 mCalibration.sizeScale);
3548 }
3550 if (mCalibration.haveSizeBias) {
3551 dump.appendFormat(INDENT4 "touch.size.bias: %0.3f\n",
3552 mCalibration.sizeBias);
3553 }
3555 if (mCalibration.haveSizeIsSummed) {
3556 dump.appendFormat(INDENT4 "touch.size.isSummed: %s\n",
3557 toString(mCalibration.sizeIsSummed));
3558 }
3560 // Pressure
3561 switch (mCalibration.pressureCalibration) {
3562 case Calibration::PRESSURE_CALIBRATION_NONE:
3563 dump.append(INDENT4 "touch.pressure.calibration: none\n");
3564 break;
3565 case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
3566 dump.append(INDENT4 "touch.pressure.calibration: physical\n");
3567 break;
3568 case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
3569 dump.append(INDENT4 "touch.pressure.calibration: amplitude\n");
3570 break;
3571 default:
3572 ALOG_ASSERT(false);
3573 }
3575 if (mCalibration.havePressureScale) {
3576 dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n",
3577 mCalibration.pressureScale);
3578 }
3580 // Orientation
3581 switch (mCalibration.orientationCalibration) {
3582 case Calibration::ORIENTATION_CALIBRATION_NONE:
3583 dump.append(INDENT4 "touch.orientation.calibration: none\n");
3584 break;
3585 case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
3586 dump.append(INDENT4 "touch.orientation.calibration: interpolated\n");
3587 break;
3588 case Calibration::ORIENTATION_CALIBRATION_VECTOR:
3589 dump.append(INDENT4 "touch.orientation.calibration: vector\n");
3590 break;
3591 default:
3592 ALOG_ASSERT(false);
3593 }
3595 // Distance
3596 switch (mCalibration.distanceCalibration) {
3597 case Calibration::DISTANCE_CALIBRATION_NONE:
3598 dump.append(INDENT4 "touch.distance.calibration: none\n");
3599 break;
3600 case Calibration::DISTANCE_CALIBRATION_SCALED:
3601 dump.append(INDENT4 "touch.distance.calibration: scaled\n");
3602 break;
3603 default:
3604 ALOG_ASSERT(false);
3605 }
3607 if (mCalibration.haveDistanceScale) {
3608 dump.appendFormat(INDENT4 "touch.distance.scale: %0.3f\n",
3609 mCalibration.distanceScale);
3610 }
3612 switch (mCalibration.coverageCalibration) {
3613 case Calibration::COVERAGE_CALIBRATION_NONE:
3614 dump.append(INDENT4 "touch.coverage.calibration: none\n");
3615 break;
3616 case Calibration::COVERAGE_CALIBRATION_BOX:
3617 dump.append(INDENT4 "touch.coverage.calibration: box\n");
3618 break;
3619 default:
3620 ALOG_ASSERT(false);
3621 }
3622 }
3624 void TouchInputMapper::reset(nsecs_t when) {
3625 mCursorButtonAccumulator.reset(getDevice());
3626 mCursorScrollAccumulator.reset(getDevice());
3627 mTouchButtonAccumulator.reset(getDevice());
3629 mPointerVelocityControl.reset();
3630 mWheelXVelocityControl.reset();
3631 mWheelYVelocityControl.reset();
3633 mCurrentRawPointerData.clear();
3634 mLastRawPointerData.clear();
3635 mCurrentCookedPointerData.clear();
3636 mLastCookedPointerData.clear();
3637 mCurrentButtonState = 0;
3638 mLastButtonState = 0;
3639 mCurrentRawVScroll = 0;
3640 mCurrentRawHScroll = 0;
3641 mCurrentFingerIdBits.clear();
3642 mLastFingerIdBits.clear();
3643 mCurrentStylusIdBits.clear();
3644 mLastStylusIdBits.clear();
3645 mCurrentMouseIdBits.clear();
3646 mLastMouseIdBits.clear();
3647 mPointerUsage = POINTER_USAGE_NONE;
3648 mSentHoverEnter = false;
3649 mDownTime = 0;
3651 mCurrentVirtualKey.down = false;
3653 mPointerGesture.reset();
3654 mPointerSimple.reset();
3656 if (mPointerController != NULL) {
3657 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
3658 mPointerController->clearSpots();
3659 }
3661 InputMapper::reset(when);
3662 }
3664 void TouchInputMapper::process(const RawEvent* rawEvent) {
3665 mCursorButtonAccumulator.process(rawEvent);
3666 mCursorScrollAccumulator.process(rawEvent);
3667 mTouchButtonAccumulator.process(rawEvent);
3669 if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
3670 sync(rawEvent->when);
3671 }
3672 }
3674 void TouchInputMapper::sync(nsecs_t when) {
3675 // Sync button state.
3676 mCurrentButtonState = mTouchButtonAccumulator.getButtonState()
3677 | mCursorButtonAccumulator.getButtonState();
3679 // Sync scroll state.
3680 mCurrentRawVScroll = mCursorScrollAccumulator.getRelativeVWheel();
3681 mCurrentRawHScroll = mCursorScrollAccumulator.getRelativeHWheel();
3682 mCursorScrollAccumulator.finishSync();
3684 // Sync touch state.
3685 bool havePointerIds = true;
3686 mCurrentRawPointerData.clear();
3687 syncTouch(when, &havePointerIds);
3689 #if DEBUG_RAW_EVENTS
3690 if (!havePointerIds) {
3691 ALOGD("syncTouch: pointerCount %d -> %d, no pointer ids",
3692 mLastRawPointerData.pointerCount,
3693 mCurrentRawPointerData.pointerCount);
3694 } else {
3695 ALOGD("syncTouch: pointerCount %d -> %d, touching ids 0x%08x -> 0x%08x, "
3696 "hovering ids 0x%08x -> 0x%08x",
3697 mLastRawPointerData.pointerCount,
3698 mCurrentRawPointerData.pointerCount,
3699 mLastRawPointerData.touchingIdBits.value,
3700 mCurrentRawPointerData.touchingIdBits.value,
3701 mLastRawPointerData.hoveringIdBits.value,
3702 mCurrentRawPointerData.hoveringIdBits.value);
3703 }
3704 #endif
3706 // Reset state that we will compute below.
3707 mCurrentFingerIdBits.clear();
3708 mCurrentStylusIdBits.clear();
3709 mCurrentMouseIdBits.clear();
3710 mCurrentCookedPointerData.clear();
3712 if (mDeviceMode == DEVICE_MODE_DISABLED) {
3713 // Drop all input if the device is disabled.
3714 mCurrentRawPointerData.clear();
3715 mCurrentButtonState = 0;
3716 } else {
3717 // Preprocess pointer data.
3718 if (!havePointerIds) {
3719 assignPointerIds();
3720 }
3722 // Handle policy on initial down or hover events.
3723 uint32_t policyFlags = 0;
3724 bool initialDown = mLastRawPointerData.pointerCount == 0
3725 && mCurrentRawPointerData.pointerCount != 0;
3726 bool buttonsPressed = mCurrentButtonState & ~mLastButtonState;
3727 if (initialDown || buttonsPressed) {
3728 // If this is a touch screen, hide the pointer on an initial down.
3729 if (mDeviceMode == DEVICE_MODE_DIRECT) {
3730 getContext()->fadePointer();
3731 }
3733 // Initial downs on external touch devices should wake the device.
3734 // We don't do this for internal touch screens to prevent them from waking
3735 // up in your pocket.
3736 // TODO: Use the input device configuration to control this behavior more finely.
3737 if (getDevice()->isExternal()) {
3738 policyFlags |= POLICY_FLAG_WAKE_DROPPED;
3739 }
3740 }
3742 // Synthesize key down from raw buttons if needed.
3743 synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource,
3744 policyFlags, mLastButtonState, mCurrentButtonState);
3746 // Consume raw off-screen touches before cooking pointer data.
3747 // If touches are consumed, subsequent code will not receive any pointer data.
3748 if (consumeRawTouches(when, policyFlags)) {
3749 mCurrentRawPointerData.clear();
3750 }
3752 // Cook pointer data. This call populates the mCurrentCookedPointerData structure
3753 // with cooked pointer data that has the same ids and indices as the raw data.
3754 // The following code can use either the raw or cooked data, as needed.
3755 cookPointerData();
3757 // Dispatch the touches either directly or by translation through a pointer on screen.
3758 if (mDeviceMode == DEVICE_MODE_POINTER) {
3759 for (BitSet32 idBits(mCurrentRawPointerData.touchingIdBits); !idBits.isEmpty(); ) {
3760 uint32_t id = idBits.clearFirstMarkedBit();
3761 const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id);
3762 if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS
3763 || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) {
3764 mCurrentStylusIdBits.markBit(id);
3765 } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_FINGER
3766 || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
3767 mCurrentFingerIdBits.markBit(id);
3768 } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_MOUSE) {
3769 mCurrentMouseIdBits.markBit(id);
3770 }
3771 }
3772 for (BitSet32 idBits(mCurrentRawPointerData.hoveringIdBits); !idBits.isEmpty(); ) {
3773 uint32_t id = idBits.clearFirstMarkedBit();
3774 const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id);
3775 if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS
3776 || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) {
3777 mCurrentStylusIdBits.markBit(id);
3778 }
3779 }
3781 // Stylus takes precedence over all tools, then mouse, then finger.
3782 PointerUsage pointerUsage = mPointerUsage;
3783 if (!mCurrentStylusIdBits.isEmpty()) {
3784 mCurrentMouseIdBits.clear();
3785 mCurrentFingerIdBits.clear();
3786 pointerUsage = POINTER_USAGE_STYLUS;
3787 } else if (!mCurrentMouseIdBits.isEmpty()) {
3788 mCurrentFingerIdBits.clear();
3789 pointerUsage = POINTER_USAGE_MOUSE;
3790 } else if (!mCurrentFingerIdBits.isEmpty() || isPointerDown(mCurrentButtonState)) {
3791 pointerUsage = POINTER_USAGE_GESTURES;
3792 }
3794 dispatchPointerUsage(when, policyFlags, pointerUsage);
3795 } else {
3796 if (mDeviceMode == DEVICE_MODE_DIRECT
3797 && mConfig.showTouches && mPointerController != NULL) {
3798 mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT);
3799 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
3801 mPointerController->setButtonState(mCurrentButtonState);
3802 mPointerController->setSpots(mCurrentCookedPointerData.pointerCoords,
3803 mCurrentCookedPointerData.idToIndex,
3804 mCurrentCookedPointerData.touchingIdBits);
3805 }
3807 dispatchHoverExit(when, policyFlags);
3808 dispatchTouches(when, policyFlags);
3809 dispatchHoverEnterAndMove(when, policyFlags);
3810 }
3812 // Synthesize key up from raw buttons if needed.
3813 synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource,
3814 policyFlags, mLastButtonState, mCurrentButtonState);
3815 }
3817 // Copy current touch to last touch in preparation for the next cycle.
3818 mLastRawPointerData.copyFrom(mCurrentRawPointerData);
3819 mLastCookedPointerData.copyFrom(mCurrentCookedPointerData);
3820 mLastButtonState = mCurrentButtonState;
3821 mLastFingerIdBits = mCurrentFingerIdBits;
3822 mLastStylusIdBits = mCurrentStylusIdBits;
3823 mLastMouseIdBits = mCurrentMouseIdBits;
3825 // Clear some transient state.
3826 mCurrentRawVScroll = 0;
3827 mCurrentRawHScroll = 0;
3828 }
3830 void TouchInputMapper::timeoutExpired(nsecs_t when) {
3831 if (mDeviceMode == DEVICE_MODE_POINTER) {
3832 if (mPointerUsage == POINTER_USAGE_GESTURES) {
3833 dispatchPointerGestures(when, 0 /*policyFlags*/, true /*isTimeout*/);
3834 }
3835 }
3836 }
3838 bool TouchInputMapper::consumeRawTouches(nsecs_t when, uint32_t policyFlags) {
3839 // Check for release of a virtual key.
3840 if (mCurrentVirtualKey.down) {
3841 if (mCurrentRawPointerData.touchingIdBits.isEmpty()) {
3842 // Pointer went up while virtual key was down.
3843 mCurrentVirtualKey.down = false;
3844 if (!mCurrentVirtualKey.ignored) {
3845 #if DEBUG_VIRTUAL_KEYS
3846 ALOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d",
3847 mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode);
3848 #endif
3849 dispatchVirtualKey(when, policyFlags,
3850 AKEY_EVENT_ACTION_UP,
3851 AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY);
3852 }
3853 return true;
3854 }
3856 if (mCurrentRawPointerData.touchingIdBits.count() == 1) {
3857 uint32_t id = mCurrentRawPointerData.touchingIdBits.firstMarkedBit();
3858 const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id);
3859 const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y);
3860 if (virtualKey && virtualKey->keyCode == mCurrentVirtualKey.keyCode) {
3861 // Pointer is still within the space of the virtual key.
3862 return true;
3863 }
3864 }
3866 // Pointer left virtual key area or another pointer also went down.
3867 // Send key cancellation but do not consume the touch yet.
3868 // This is useful when the user swipes through from the virtual key area
3869 // into the main display surface.
3870 mCurrentVirtualKey.down = false;
3871 if (!mCurrentVirtualKey.ignored) {
3872 #if DEBUG_VIRTUAL_KEYS
3873 ALOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d",
3874 mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode);
3875 #endif
3876 dispatchVirtualKey(when, policyFlags,
3877 AKEY_EVENT_ACTION_UP,
3878 AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
3879 | AKEY_EVENT_FLAG_CANCELED);
3880 }
3881 }
3883 if (mLastRawPointerData.touchingIdBits.isEmpty()
3884 && !mCurrentRawPointerData.touchingIdBits.isEmpty()) {
3885 // Pointer just went down. Check for virtual key press or off-screen touches.
3886 uint32_t id = mCurrentRawPointerData.touchingIdBits.firstMarkedBit();
3887 const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id);
3888 if (!isPointInsideSurface(pointer.x, pointer.y)) {
3889 // If exactly one pointer went down, check for virtual key hit.
3890 // Otherwise we will drop the entire stroke.
3891 if (mCurrentRawPointerData.touchingIdBits.count() == 1) {
3892 const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y);
3893 if (virtualKey) {
3894 mCurrentVirtualKey.down = true;
3895 mCurrentVirtualKey.downTime = when;
3896 mCurrentVirtualKey.keyCode = virtualKey->keyCode;
3897 mCurrentVirtualKey.scanCode = virtualKey->scanCode;
3898 mCurrentVirtualKey.ignored = mContext->shouldDropVirtualKey(
3899 when, getDevice(), virtualKey->keyCode, virtualKey->scanCode);
3901 if (!mCurrentVirtualKey.ignored) {
3902 #if DEBUG_VIRTUAL_KEYS
3903 ALOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d",
3904 mCurrentVirtualKey.keyCode,
3905 mCurrentVirtualKey.scanCode);
3906 #endif
3907 dispatchVirtualKey(when, policyFlags,
3908 AKEY_EVENT_ACTION_DOWN,
3909 AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY);
3910 }
3911 }
3912 }
3913 return true;
3914 }
3915 }
3917 // Disable all virtual key touches that happen within a short time interval of the
3918 // most recent touch within the screen area. The idea is to filter out stray
3919 // virtual key presses when interacting with the touch screen.
3920 //
3921 // Problems we're trying to solve:
3922 //
3923 // 1. While scrolling a list or dragging the window shade, the user swipes down into a
3924 // virtual key area that is implemented by a separate touch panel and accidentally
3925 // triggers a virtual key.
3926 //
3927 // 2. While typing in the on screen keyboard, the user taps slightly outside the screen
3928 // area and accidentally triggers a virtual key. This often happens when virtual keys
3929 // are layed out below the screen near to where the on screen keyboard's space bar
3930 // is displayed.
3931 if (mConfig.virtualKeyQuietTime > 0 && !mCurrentRawPointerData.touchingIdBits.isEmpty()) {
3932 mContext->disableVirtualKeysUntil(when + mConfig.virtualKeyQuietTime);
3933 }
3934 return false;
3935 }
3937 void TouchInputMapper::dispatchVirtualKey(nsecs_t when, uint32_t policyFlags,
3938 int32_t keyEventAction, int32_t keyEventFlags) {
3939 int32_t keyCode = mCurrentVirtualKey.keyCode;
3940 int32_t scanCode = mCurrentVirtualKey.scanCode;
3941 nsecs_t downTime = mCurrentVirtualKey.downTime;
3942 int32_t metaState = mContext->getGlobalMetaState();
3943 policyFlags |= POLICY_FLAG_VIRTUAL;
3945 NotifyKeyArgs args(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags,
3946 keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime);
3947 getListener()->notifyKey(&args);
3948 }
3950 void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
3951 BitSet32 currentIdBits = mCurrentCookedPointerData.touchingIdBits;
3952 BitSet32 lastIdBits = mLastCookedPointerData.touchingIdBits;
3953 int32_t metaState = getContext()->getGlobalMetaState();
3954 int32_t buttonState = mCurrentButtonState;
3956 if (currentIdBits == lastIdBits) {
3957 if (!currentIdBits.isEmpty()) {
3958 // No pointer id changes so this is a move event.
3959 // The listener takes care of batching moves so we don't have to deal with that here.
3960 dispatchMotion(when, policyFlags, mSource,
3961 AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState,
3962 AMOTION_EVENT_EDGE_FLAG_NONE,
3963 mCurrentCookedPointerData.pointerProperties,
3964 mCurrentCookedPointerData.pointerCoords,
3965 mCurrentCookedPointerData.idToIndex,
3966 currentIdBits, -1,
3967 mOrientedXPrecision, mOrientedYPrecision, mDownTime);
3968 }
3969 } else {
3970 // There may be pointers going up and pointers going down and pointers moving
3971 // all at the same time.
3972 BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value);
3973 BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value);
3974 BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
3975 BitSet32 dispatchedIdBits(lastIdBits.value);
3977 // Update last coordinates of pointers that have moved so that we observe the new
3978 // pointer positions at the same time as other pointers that have just gone up.
3979 bool moveNeeded = updateMovedPointers(
3980 mCurrentCookedPointerData.pointerProperties,
3981 mCurrentCookedPointerData.pointerCoords,
3982 mCurrentCookedPointerData.idToIndex,
3983 mLastCookedPointerData.pointerProperties,
3984 mLastCookedPointerData.pointerCoords,
3985 mLastCookedPointerData.idToIndex,
3986 moveIdBits);
3987 if (buttonState != mLastButtonState) {
3988 moveNeeded = true;
3989 }
3991 // Dispatch pointer up events.
3992 while (!upIdBits.isEmpty()) {
3993 uint32_t upId = upIdBits.clearFirstMarkedBit();
3995 dispatchMotion(when, policyFlags, mSource,
3996 AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, buttonState, 0,
3997 mLastCookedPointerData.pointerProperties,
3998 mLastCookedPointerData.pointerCoords,
3999 mLastCookedPointerData.idToIndex,
4000 dispatchedIdBits, upId,
4001 mOrientedXPrecision, mOrientedYPrecision, mDownTime);
4002 dispatchedIdBits.clearBit(upId);
4003 }
4005 // Dispatch move events if any of the remaining pointers moved from their old locations.
4006 // Although applications receive new locations as part of individual pointer up
4007 // events, they do not generally handle them except when presented in a move event.
4008 if (moveNeeded) {
4009 ALOG_ASSERT(moveIdBits.value == dispatchedIdBits.value);
4010 dispatchMotion(when, policyFlags, mSource,
4011 AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, 0,
4012 mCurrentCookedPointerData.pointerProperties,
4013 mCurrentCookedPointerData.pointerCoords,
4014 mCurrentCookedPointerData.idToIndex,
4015 dispatchedIdBits, -1,
4016 mOrientedXPrecision, mOrientedYPrecision, mDownTime);
4017 }
4019 // Dispatch pointer down events using the new pointer locations.
4020 while (!downIdBits.isEmpty()) {
4021 uint32_t downId = downIdBits.clearFirstMarkedBit();
4022 dispatchedIdBits.markBit(downId);
4024 if (dispatchedIdBits.count() == 1) {
4025 // First pointer is going down. Set down time.
4026 mDownTime = when;
4027 }
4029 dispatchMotion(when, policyFlags, mSource,
4030 AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, 0,
4031 mCurrentCookedPointerData.pointerProperties,
4032 mCurrentCookedPointerData.pointerCoords,
4033 mCurrentCookedPointerData.idToIndex,
4034 dispatchedIdBits, downId,
4035 mOrientedXPrecision, mOrientedYPrecision, mDownTime);
4036 }
4037 }
4038 }
4040 void TouchInputMapper::dispatchHoverExit(nsecs_t when, uint32_t policyFlags) {
4041 if (mSentHoverEnter &&
4042 (mCurrentCookedPointerData.hoveringIdBits.isEmpty()
4043 || !mCurrentCookedPointerData.touchingIdBits.isEmpty())) {
4044 int32_t metaState = getContext()->getGlobalMetaState();
4045 dispatchMotion(when, policyFlags, mSource,
4046 AMOTION_EVENT_ACTION_HOVER_EXIT, 0, metaState, mLastButtonState, 0,
4047 mLastCookedPointerData.pointerProperties,
4048 mLastCookedPointerData.pointerCoords,
4049 mLastCookedPointerData.idToIndex,
4050 mLastCookedPointerData.hoveringIdBits, -1,
4051 mOrientedXPrecision, mOrientedYPrecision, mDownTime);
4052 mSentHoverEnter = false;
4053 }
4054 }
4056 void TouchInputMapper::dispatchHoverEnterAndMove(nsecs_t when, uint32_t policyFlags) {
4057 if (mCurrentCookedPointerData.touchingIdBits.isEmpty()
4058 && !mCurrentCookedPointerData.hoveringIdBits.isEmpty()) {
4059 int32_t metaState = getContext()->getGlobalMetaState();
4060 if (!mSentHoverEnter) {
4061 dispatchMotion(when, policyFlags, mSource,
4062 AMOTION_EVENT_ACTION_HOVER_ENTER, 0, metaState, mCurrentButtonState, 0,
4063 mCurrentCookedPointerData.pointerProperties,
4064 mCurrentCookedPointerData.pointerCoords,
4065 mCurrentCookedPointerData.idToIndex,
4066 mCurrentCookedPointerData.hoveringIdBits, -1,
4067 mOrientedXPrecision, mOrientedYPrecision, mDownTime);
4068 mSentHoverEnter = true;
4069 }
4071 dispatchMotion(when, policyFlags, mSource,
4072 AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, mCurrentButtonState, 0,
4073 mCurrentCookedPointerData.pointerProperties,
4074 mCurrentCookedPointerData.pointerCoords,
4075 mCurrentCookedPointerData.idToIndex,
4076 mCurrentCookedPointerData.hoveringIdBits, -1,
4077 mOrientedXPrecision, mOrientedYPrecision, mDownTime);
4078 }
4079 }
4081 void TouchInputMapper::cookPointerData() {
4082 uint32_t currentPointerCount = mCurrentRawPointerData.pointerCount;
4084 mCurrentCookedPointerData.clear();
4085 mCurrentCookedPointerData.pointerCount = currentPointerCount;
4086 mCurrentCookedPointerData.hoveringIdBits = mCurrentRawPointerData.hoveringIdBits;
4087 mCurrentCookedPointerData.touchingIdBits = mCurrentRawPointerData.touchingIdBits;
4089 // Walk through the the active pointers and map device coordinates onto
4090 // surface coordinates and adjust for display orientation.
4091 for (uint32_t i = 0; i < currentPointerCount; i++) {
4092 const RawPointerData::Pointer& in = mCurrentRawPointerData.pointers[i];
4094 // Size
4095 float touchMajor, touchMinor, toolMajor, toolMinor, size;
4096 switch (mCalibration.sizeCalibration) {
4097 case Calibration::SIZE_CALIBRATION_GEOMETRIC:
4098 case Calibration::SIZE_CALIBRATION_DIAMETER:
4099 case Calibration::SIZE_CALIBRATION_BOX:
4100 case Calibration::SIZE_CALIBRATION_AREA:
4101 if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.toolMajor.valid) {
4102 touchMajor = in.touchMajor;
4103 touchMinor = mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor;
4104 toolMajor = in.toolMajor;
4105 toolMinor = mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor;
4106 size = mRawPointerAxes.touchMinor.valid
4107 ? avg(in.touchMajor, in.touchMinor) : in.touchMajor;
4108 } else if (mRawPointerAxes.touchMajor.valid) {
4109 toolMajor = touchMajor = in.touchMajor;
4110 toolMinor = touchMinor = mRawPointerAxes.touchMinor.valid
4111 ? in.touchMinor : in.touchMajor;
4112 size = mRawPointerAxes.touchMinor.valid
4113 ? avg(in.touchMajor, in.touchMinor) : in.touchMajor;
4114 } else if (mRawPointerAxes.toolMajor.valid) {
4115 touchMajor = toolMajor = in.toolMajor;
4116 touchMinor = toolMinor = mRawPointerAxes.toolMinor.valid
4117 ? in.toolMinor : in.toolMajor;
4118 size = mRawPointerAxes.toolMinor.valid
4119 ? avg(in.toolMajor, in.toolMinor) : in.toolMajor;
4120 } else {
4121 ALOG_ASSERT(false, "No touch or tool axes. "
4122 "Size calibration should have been resolved to NONE.");
4123 touchMajor = 0;
4124 touchMinor = 0;
4125 toolMajor = 0;
4126 toolMinor = 0;
4127 size = 0;
4128 }
4130 if (mCalibration.haveSizeIsSummed && mCalibration.sizeIsSummed) {
4131 uint32_t touchingCount = mCurrentRawPointerData.touchingIdBits.count();
4132 if (touchingCount > 1) {
4133 touchMajor /= touchingCount;
4134 touchMinor /= touchingCount;
4135 toolMajor /= touchingCount;
4136 toolMinor /= touchingCount;
4137 size /= touchingCount;
4138 }
4139 }
4141 if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_GEOMETRIC) {
4142 touchMajor *= mGeometricScale;
4143 touchMinor *= mGeometricScale;
4144 toolMajor *= mGeometricScale;
4145 toolMinor *= mGeometricScale;
4146 } else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_AREA) {
4147 touchMajor = touchMajor > 0 ? sqrtf(touchMajor) : 0;
4148 touchMinor = touchMajor;
4149 toolMajor = toolMajor > 0 ? sqrtf(toolMajor) : 0;
4150 toolMinor = toolMajor;
4151 } else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_DIAMETER) {
4152 touchMinor = touchMajor;
4153 toolMinor = toolMajor;
4154 }
4156 mCalibration.applySizeScaleAndBias(&touchMajor);
4157 mCalibration.applySizeScaleAndBias(&touchMinor);
4158 mCalibration.applySizeScaleAndBias(&toolMajor);
4159 mCalibration.applySizeScaleAndBias(&toolMinor);
4160 size *= mSizeScale;
4161 break;
4162 default:
4163 touchMajor = 0;
4164 touchMinor = 0;
4165 toolMajor = 0;
4166 toolMinor = 0;
4167 size = 0;
4168 break;
4169 }
4171 // Pressure
4172 float pressure;
4173 switch (mCalibration.pressureCalibration) {
4174 case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
4175 case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
4176 pressure = in.pressure * mPressureScale;
4177 break;
4178 default:
4179 pressure = in.isHovering ? 0 : 1;
4180 break;
4181 }
4183 // Tilt and Orientation
4184 float tilt;
4185 float orientation;
4186 if (mHaveTilt) {
4187 float tiltXAngle = (in.tiltX - mTiltXCenter) * mTiltXScale;
4188 float tiltYAngle = (in.tiltY - mTiltYCenter) * mTiltYScale;
4189 orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle));
4190 tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle));
4191 } else {
4192 tilt = 0;
4194 switch (mCalibration.orientationCalibration) {
4195 case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
4196 orientation = in.orientation * mOrientationScale;
4197 break;
4198 case Calibration::ORIENTATION_CALIBRATION_VECTOR: {
4199 int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4);
4200 int32_t c2 = signExtendNybble(in.orientation & 0x0f);
4201 if (c1 != 0 || c2 != 0) {
4202 orientation = atan2f(c1, c2) * 0.5f;
4203 float confidence = hypotf(c1, c2);
4204 float scale = 1.0f + confidence / 16.0f;
4205 touchMajor *= scale;
4206 touchMinor /= scale;
4207 toolMajor *= scale;
4208 toolMinor /= scale;
4209 } else {
4210 orientation = 0;
4211 }
4212 break;
4213 }
4214 default:
4215 orientation = 0;
4216 }
4217 }
4219 // Distance
4220 float distance;
4221 switch (mCalibration.distanceCalibration) {
4222 case Calibration::DISTANCE_CALIBRATION_SCALED:
4223 distance = in.distance * mDistanceScale;
4224 break;
4225 default:
4226 distance = 0;
4227 }
4229 // Coverage
4230 int32_t rawLeft, rawTop, rawRight, rawBottom;
4231 switch (mCalibration.coverageCalibration) {
4232 case Calibration::COVERAGE_CALIBRATION_BOX:
4233 rawLeft = (in.toolMinor & 0xffff0000) >> 16;
4234 rawRight = in.toolMinor & 0x0000ffff;
4235 rawBottom = in.toolMajor & 0x0000ffff;
4236 rawTop = (in.toolMajor & 0xffff0000) >> 16;
4237 break;
4238 default:
4239 rawLeft = rawTop = rawRight = rawBottom = 0;
4240 break;
4241 }
4243 // X, Y, and the bounding box for coverage information
4244 // Adjust coords for surface orientation.
4245 float x, y, left, top, right, bottom;
4246 switch (mSurfaceOrientation) {
4247 case DISPLAY_ORIENTATION_90:
4248 x = float(in.y - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
4249 y = float(mRawPointerAxes.x.maxValue - in.x) * mXScale + mXTranslate;
4250 left = float(rawTop - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
4251 right = float(rawBottom- mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
4252 bottom = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale + mXTranslate;
4253 top = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale + mXTranslate;
4254 orientation -= M_PI_2;
4255 if (orientation < - M_PI_2) {
4256 orientation += M_PI;
4257 }
4258 break;
4259 case DISPLAY_ORIENTATION_180:
4260 x = float(mRawPointerAxes.x.maxValue - in.x) * mXScale + mXTranslate;
4261 y = float(mRawPointerAxes.y.maxValue - in.y) * mYScale + mYTranslate;
4262 left = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale + mXTranslate;
4263 right = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale + mXTranslate;
4264 bottom = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale + mYTranslate;
4265 top = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale + mYTranslate;
4266 break;
4267 case DISPLAY_ORIENTATION_270:
4268 x = float(mRawPointerAxes.y.maxValue - in.y) * mYScale + mYTranslate;
4269 y = float(in.x - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
4270 left = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale + mYTranslate;
4271 right = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale + mYTranslate;
4272 bottom = float(rawRight - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
4273 top = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
4274 orientation += M_PI_2;
4275 if (orientation > M_PI_2) {
4276 orientation -= M_PI;
4277 }
4278 break;
4279 default:
4280 x = float(in.x - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
4281 y = float(in.y - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
4282 left = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
4283 right = float(rawRight - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
4284 bottom = float(rawBottom - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
4285 top = float(rawTop - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
4286 break;
4287 }
4289 // Write output coords.
4290 PointerCoords& out = mCurrentCookedPointerData.pointerCoords[i];
4291 out.clear();
4292 out.setAxisValue(AMOTION_EVENT_AXIS_X, x);
4293 out.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
4294 out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure);
4295 out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size);
4296 out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor);
4297 out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor);
4298 out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation);
4299 out.setAxisValue(AMOTION_EVENT_AXIS_TILT, tilt);
4300 out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance);
4301 if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_BOX) {
4302 out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_1, left);
4303 out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_2, top);
4304 out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_3, right);
4305 out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_4, bottom);
4306 } else {
4307 out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor);
4308 out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor);
4309 }
4311 // Write output properties.
4312 PointerProperties& properties = mCurrentCookedPointerData.pointerProperties[i];
4313 uint32_t id = in.id;
4314 properties.clear();
4315 properties.id = id;
4316 properties.toolType = in.toolType;
4318 // Write id index.
4319 mCurrentCookedPointerData.idToIndex[id] = i;
4320 }
4321 }
4323 void TouchInputMapper::dispatchPointerUsage(nsecs_t when, uint32_t policyFlags,
4324 PointerUsage pointerUsage) {
4325 if (pointerUsage != mPointerUsage) {
4326 abortPointerUsage(when, policyFlags);
4327 mPointerUsage = pointerUsage;
4328 }
4330 switch (mPointerUsage) {
4331 case POINTER_USAGE_GESTURES:
4332 dispatchPointerGestures(when, policyFlags, false /*isTimeout*/);
4333 break;
4334 case POINTER_USAGE_STYLUS:
4335 dispatchPointerStylus(when, policyFlags);
4336 break;
4337 case POINTER_USAGE_MOUSE:
4338 dispatchPointerMouse(when, policyFlags);
4339 break;
4340 default:
4341 break;
4342 }
4343 }
4345 void TouchInputMapper::abortPointerUsage(nsecs_t when, uint32_t policyFlags) {
4346 switch (mPointerUsage) {
4347 case POINTER_USAGE_GESTURES:
4348 abortPointerGestures(when, policyFlags);
4349 break;
4350 case POINTER_USAGE_STYLUS:
4351 abortPointerStylus(when, policyFlags);
4352 break;
4353 case POINTER_USAGE_MOUSE:
4354 abortPointerMouse(when, policyFlags);
4355 break;
4356 default:
4357 break;
4358 }
4360 mPointerUsage = POINTER_USAGE_NONE;
4361 }
4363 void TouchInputMapper::dispatchPointerGestures(nsecs_t when, uint32_t policyFlags,
4364 bool isTimeout) {
4365 // Update current gesture coordinates.
4366 bool cancelPreviousGesture, finishPreviousGesture;
4367 bool sendEvents = preparePointerGestures(when,
4368 &cancelPreviousGesture, &finishPreviousGesture, isTimeout);
4369 if (!sendEvents) {
4370 return;
4371 }
4372 if (finishPreviousGesture) {
4373 cancelPreviousGesture = false;
4374 }
4376 // Update the pointer presentation and spots.
4377 if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
4378 mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT);
4379 if (finishPreviousGesture || cancelPreviousGesture) {
4380 mPointerController->clearSpots();
4381 }
4382 mPointerController->setSpots(mPointerGesture.currentGestureCoords,
4383 mPointerGesture.currentGestureIdToIndex,
4384 mPointerGesture.currentGestureIdBits);
4385 } else {
4386 mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER);
4387 }
4389 // Show or hide the pointer if needed.
4390 switch (mPointerGesture.currentGestureMode) {
4391 case PointerGesture::NEUTRAL:
4392 case PointerGesture::QUIET:
4393 if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS
4394 && (mPointerGesture.lastGestureMode == PointerGesture::SWIPE
4395 || mPointerGesture.lastGestureMode == PointerGesture::FREEFORM)) {
4396 // Remind the user of where the pointer is after finishing a gesture with spots.
4397 mPointerController->unfade(PointerControllerInterface::TRANSITION_GRADUAL);
4398 }
4399 break;
4400 case PointerGesture::TAP:
4401 case PointerGesture::TAP_DRAG:
4402 case PointerGesture::BUTTON_CLICK_OR_DRAG:
4403 case PointerGesture::HOVER:
4404 case PointerGesture::PRESS:
4405 // Unfade the pointer when the current gesture manipulates the
4406 // area directly under the pointer.
4407 mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
4408 break;
4409 case PointerGesture::SWIPE:
4410 case PointerGesture::FREEFORM:
4411 // Fade the pointer when the current gesture manipulates a different
4412 // area and there are spots to guide the user experience.
4413 if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
4414 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
4415 } else {
4416 mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
4417 }
4418 break;
4419 }
4421 // Send events!
4422 int32_t metaState = getContext()->getGlobalMetaState();
4423 int32_t buttonState = mCurrentButtonState;
4425 // Update last coordinates of pointers that have moved so that we observe the new
4426 // pointer positions at the same time as other pointers that have just gone up.
4427 bool down = mPointerGesture.currentGestureMode == PointerGesture::TAP
4428 || mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG
4429 || mPointerGesture.currentGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG
4430 || mPointerGesture.currentGestureMode == PointerGesture::PRESS
4431 || mPointerGesture.currentGestureMode == PointerGesture::SWIPE
4432 || mPointerGesture.currentGestureMode == PointerGesture::FREEFORM;
4433 bool moveNeeded = false;
4434 if (down && !cancelPreviousGesture && !finishPreviousGesture
4435 && !mPointerGesture.lastGestureIdBits.isEmpty()
4436 && !mPointerGesture.currentGestureIdBits.isEmpty()) {
4437 BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value
4438 & mPointerGesture.lastGestureIdBits.value);
4439 moveNeeded = updateMovedPointers(mPointerGesture.currentGestureProperties,
4440 mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
4441 mPointerGesture.lastGestureProperties,
4442 mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
4443 movedGestureIdBits);
4444 if (buttonState != mLastButtonState) {
4445 moveNeeded = true;
4446 }
4447 }
4449 // Send motion events for all pointers that went up or were canceled.
4450 BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits);
4451 if (!dispatchedGestureIdBits.isEmpty()) {
4452 if (cancelPreviousGesture) {
4453 dispatchMotion(when, policyFlags, mSource,
4454 AMOTION_EVENT_ACTION_CANCEL, 0, metaState, buttonState,
4455 AMOTION_EVENT_EDGE_FLAG_NONE,
4456 mPointerGesture.lastGestureProperties,
4457 mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
4458 dispatchedGestureIdBits, -1,
4459 0, 0, mPointerGesture.downTime);
4461 dispatchedGestureIdBits.clear();
4462 } else {
4463 BitSet32 upGestureIdBits;
4464 if (finishPreviousGesture) {
4465 upGestureIdBits = dispatchedGestureIdBits;
4466 } else {
4467 upGestureIdBits.value = dispatchedGestureIdBits.value
4468 & ~mPointerGesture.currentGestureIdBits.value;
4469 }
4470 while (!upGestureIdBits.isEmpty()) {
4471 uint32_t id = upGestureIdBits.clearFirstMarkedBit();
4473 dispatchMotion(when, policyFlags, mSource,
4474 AMOTION_EVENT_ACTION_POINTER_UP, 0,
4475 metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
4476 mPointerGesture.lastGestureProperties,
4477 mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
4478 dispatchedGestureIdBits, id,
4479 0, 0, mPointerGesture.downTime);
4481 dispatchedGestureIdBits.clearBit(id);
4482 }
4483 }
4484 }
4486 // Send motion events for all pointers that moved.
4487 if (moveNeeded) {
4488 dispatchMotion(when, policyFlags, mSource,
4489 AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
4490 mPointerGesture.currentGestureProperties,
4491 mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
4492 dispatchedGestureIdBits, -1,
4493 0, 0, mPointerGesture.downTime);
4494 }
4496 // Send motion events for all pointers that went down.
4497 if (down) {
4498 BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value
4499 & ~dispatchedGestureIdBits.value);
4500 while (!downGestureIdBits.isEmpty()) {
4501 uint32_t id = downGestureIdBits.clearFirstMarkedBit();
4502 dispatchedGestureIdBits.markBit(id);
4504 if (dispatchedGestureIdBits.count() == 1) {
4505 mPointerGesture.downTime = when;
4506 }
4508 dispatchMotion(when, policyFlags, mSource,
4509 AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, 0,
4510 mPointerGesture.currentGestureProperties,
4511 mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
4512 dispatchedGestureIdBits, id,
4513 0, 0, mPointerGesture.downTime);
4514 }
4515 }
4517 // Send motion events for hover.
4518 if (mPointerGesture.currentGestureMode == PointerGesture::HOVER) {
4519 dispatchMotion(when, policyFlags, mSource,
4520 AMOTION_EVENT_ACTION_HOVER_MOVE, 0,
4521 metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
4522 mPointerGesture.currentGestureProperties,
4523 mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
4524 mPointerGesture.currentGestureIdBits, -1,
4525 0, 0, mPointerGesture.downTime);
4526 } else if (dispatchedGestureIdBits.isEmpty()
4527 && !mPointerGesture.lastGestureIdBits.isEmpty()) {
4528 // Synthesize a hover move event after all pointers go up to indicate that
4529 // the pointer is hovering again even if the user is not currently touching
4530 // the touch pad. This ensures that a view will receive a fresh hover enter
4531 // event after a tap.
4532 float x, y;
4533 mPointerController->getPosition(&x, &y);
4535 PointerProperties pointerProperties;
4536 pointerProperties.clear();
4537 pointerProperties.id = 0;
4538 pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
4540 PointerCoords pointerCoords;
4541 pointerCoords.clear();
4542 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x);
4543 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
4545 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags,
4546 AMOTION_EVENT_ACTION_HOVER_MOVE, 0,
4547 metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
4548 mViewport.displayId, 1, &pointerProperties, &pointerCoords,
4549 0, 0, mPointerGesture.downTime);
4550 getListener()->notifyMotion(&args);
4551 }
4553 // Update state.
4554 mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode;
4555 if (!down) {
4556 mPointerGesture.lastGestureIdBits.clear();
4557 } else {
4558 mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits;
4559 for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty(); ) {
4560 uint32_t id = idBits.clearFirstMarkedBit();
4561 uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
4562 mPointerGesture.lastGestureProperties[index].copyFrom(
4563 mPointerGesture.currentGestureProperties[index]);
4564 mPointerGesture.lastGestureCoords[index].copyFrom(
4565 mPointerGesture.currentGestureCoords[index]);
4566 mPointerGesture.lastGestureIdToIndex[id] = index;
4567 }
4568 }
4569 }
4571 void TouchInputMapper::abortPointerGestures(nsecs_t when, uint32_t policyFlags) {
4572 // Cancel previously dispatches pointers.
4573 if (!mPointerGesture.lastGestureIdBits.isEmpty()) {
4574 int32_t metaState = getContext()->getGlobalMetaState();
4575 int32_t buttonState = mCurrentButtonState;
4576 dispatchMotion(when, policyFlags, mSource,
4577 AMOTION_EVENT_ACTION_CANCEL, 0, metaState, buttonState,
4578 AMOTION_EVENT_EDGE_FLAG_NONE,
4579 mPointerGesture.lastGestureProperties,
4580 mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
4581 mPointerGesture.lastGestureIdBits, -1,
4582 0, 0, mPointerGesture.downTime);
4583 }
4585 // Reset the current pointer gesture.
4586 mPointerGesture.reset();
4587 mPointerVelocityControl.reset();
4589 // Remove any current spots.
4590 if (mPointerController != NULL) {
4591 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
4592 mPointerController->clearSpots();
4593 }
4594 }
4596 bool TouchInputMapper::preparePointerGestures(nsecs_t when,
4597 bool* outCancelPreviousGesture, bool* outFinishPreviousGesture, bool isTimeout) {
4598 *outCancelPreviousGesture = false;
4599 *outFinishPreviousGesture = false;
4601 // Handle TAP timeout.
4602 if (isTimeout) {
4603 #if DEBUG_GESTURES
4604 ALOGD("Gestures: Processing timeout");
4605 #endif
4607 if (mPointerGesture.lastGestureMode == PointerGesture::TAP) {
4608 if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) {
4609 // The tap/drag timeout has not yet expired.
4610 getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime
4611 + mConfig.pointerGestureTapDragInterval);
4612 } else {
4613 // The tap is finished.
4614 #if DEBUG_GESTURES
4615 ALOGD("Gestures: TAP finished");
4616 #endif
4617 *outFinishPreviousGesture = true;
4619 mPointerGesture.activeGestureId = -1;
4620 mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL;
4621 mPointerGesture.currentGestureIdBits.clear();
4623 mPointerVelocityControl.reset();
4624 return true;
4625 }
4626 }
4628 // We did not handle this timeout.
4629 return false;
4630 }
4632 const uint32_t currentFingerCount = mCurrentFingerIdBits.count();
4633 const uint32_t lastFingerCount = mLastFingerIdBits.count();
4635 // Update the velocity tracker.
4636 {
4637 VelocityTracker::Position positions[MAX_POINTERS];
4638 uint32_t count = 0;
4639 for (BitSet32 idBits(mCurrentFingerIdBits); !idBits.isEmpty(); count++) {
4640 uint32_t id = idBits.clearFirstMarkedBit();
4641 const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id);
4642 positions[count].x = pointer.x * mPointerXMovementScale;
4643 positions[count].y = pointer.y * mPointerYMovementScale;
4644 }
4645 mPointerGesture.velocityTracker.addMovement(when,
4646 mCurrentFingerIdBits, positions);
4647 }
4649 // Pick a new active touch id if needed.
4650 // Choose an arbitrary pointer that just went down, if there is one.
4651 // Otherwise choose an arbitrary remaining pointer.
4652 // This guarantees we always have an active touch id when there is at least one pointer.
4653 // We keep the same active touch id for as long as possible.
4654 bool activeTouchChanged = false;
4655 int32_t lastActiveTouchId = mPointerGesture.activeTouchId;
4656 int32_t activeTouchId = lastActiveTouchId;
4657 if (activeTouchId < 0) {
4658 if (!mCurrentFingerIdBits.isEmpty()) {
4659 activeTouchChanged = true;
4660 activeTouchId = mPointerGesture.activeTouchId =
4661 mCurrentFingerIdBits.firstMarkedBit();
4662 mPointerGesture.firstTouchTime = when;
4663 }
4664 } else if (!mCurrentFingerIdBits.hasBit(activeTouchId)) {
4665 activeTouchChanged = true;
4666 if (!mCurrentFingerIdBits.isEmpty()) {
4667 activeTouchId = mPointerGesture.activeTouchId =
4668 mCurrentFingerIdBits.firstMarkedBit();
4669 } else {
4670 activeTouchId = mPointerGesture.activeTouchId = -1;
4671 }
4672 }
4674 // Determine whether we are in quiet time.
4675 bool isQuietTime = false;
4676 if (activeTouchId < 0) {
4677 mPointerGesture.resetQuietTime();
4678 } else {
4679 isQuietTime = when < mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval;
4680 if (!isQuietTime) {
4681 if ((mPointerGesture.lastGestureMode == PointerGesture::PRESS
4682 || mPointerGesture.lastGestureMode == PointerGesture::SWIPE
4683 || mPointerGesture.lastGestureMode == PointerGesture::FREEFORM)
4684 && currentFingerCount < 2) {
4685 // Enter quiet time when exiting swipe or freeform state.
4686 // This is to prevent accidentally entering the hover state and flinging the
4687 // pointer when finishing a swipe and there is still one pointer left onscreen.
4688 isQuietTime = true;
4689 } else if (mPointerGesture.lastGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG
4690 && currentFingerCount >= 2
4691 && !isPointerDown(mCurrentButtonState)) {
4692 // Enter quiet time when releasing the button and there are still two or more
4693 // fingers down. This may indicate that one finger was used to press the button
4694 // but it has not gone up yet.
4695 isQuietTime = true;
4696 }
4697 if (isQuietTime) {
4698 mPointerGesture.quietTime = when;
4699 }
4700 }
4701 }
4703 // Switch states based on button and pointer state.
4704 if (isQuietTime) {
4705 // Case 1: Quiet time. (QUIET)
4706 #if DEBUG_GESTURES
4707 ALOGD("Gestures: QUIET for next %0.3fms", (mPointerGesture.quietTime
4708 + mConfig.pointerGestureQuietInterval - when) * 0.000001f);
4709 #endif
4710 if (mPointerGesture.lastGestureMode != PointerGesture::QUIET) {
4711 *outFinishPreviousGesture = true;
4712 }
4714 mPointerGesture.activeGestureId = -1;
4715 mPointerGesture.currentGestureMode = PointerGesture::QUIET;
4716 mPointerGesture.currentGestureIdBits.clear();
4718 mPointerVelocityControl.reset();
4719 } else if (isPointerDown(mCurrentButtonState)) {
4720 // Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG)
4721 // The pointer follows the active touch point.
4722 // Emit DOWN, MOVE, UP events at the pointer location.
4723 //
4724 // Only the active touch matters; other fingers are ignored. This policy helps
4725 // to handle the case where the user places a second finger on the touch pad
4726 // to apply the necessary force to depress an integrated button below the surface.
4727 // We don't want the second finger to be delivered to applications.
4728 //
4729 // For this to work well, we need to make sure to track the pointer that is really
4730 // active. If the user first puts one finger down to click then adds another
4731 // finger to drag then the active pointer should switch to the finger that is
4732 // being dragged.
4733 #if DEBUG_GESTURES
4734 ALOGD("Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, "
4735 "currentFingerCount=%d", activeTouchId, currentFingerCount);
4736 #endif
4737 // Reset state when just starting.
4738 if (mPointerGesture.lastGestureMode != PointerGesture::BUTTON_CLICK_OR_DRAG) {
4739 *outFinishPreviousGesture = true;
4740 mPointerGesture.activeGestureId = 0;
4741 }
4743 // Switch pointers if needed.
4744 // Find the fastest pointer and follow it.
4745 if (activeTouchId >= 0 && currentFingerCount > 1) {
4746 int32_t bestId = -1;
4747 float bestSpeed = mConfig.pointerGestureDragMinSwitchSpeed;
4748 for (BitSet32 idBits(mCurrentFingerIdBits); !idBits.isEmpty(); ) {
4749 uint32_t id = idBits.clearFirstMarkedBit();
4750 float vx, vy;
4751 if (mPointerGesture.velocityTracker.getVelocity(id, &vx, &vy)) {
4752 float speed = hypotf(vx, vy);
4753 if (speed > bestSpeed) {
4754 bestId = id;
4755 bestSpeed = speed;
4756 }
4757 }
4758 }
4759 if (bestId >= 0 && bestId != activeTouchId) {
4760 mPointerGesture.activeTouchId = activeTouchId = bestId;
4761 activeTouchChanged = true;
4762 #if DEBUG_GESTURES
4763 ALOGD("Gestures: BUTTON_CLICK_OR_DRAG switched pointers, "
4764 "bestId=%d, bestSpeed=%0.3f", bestId, bestSpeed);
4765 #endif
4766 }
4767 }
4769 if (activeTouchId >= 0 && mLastFingerIdBits.hasBit(activeTouchId)) {
4770 const RawPointerData::Pointer& currentPointer =
4771 mCurrentRawPointerData.pointerForId(activeTouchId);
4772 const RawPointerData::Pointer& lastPointer =
4773 mLastRawPointerData.pointerForId(activeTouchId);
4774 float deltaX = (currentPointer.x - lastPointer.x) * mPointerXMovementScale;
4775 float deltaY = (currentPointer.y - lastPointer.y) * mPointerYMovementScale;
4777 rotateDelta(mSurfaceOrientation, &deltaX, &deltaY);
4778 mPointerVelocityControl.move(when, &deltaX, &deltaY);
4780 // Move the pointer using a relative motion.
4781 // When using spots, the click will occur at the position of the anchor
4782 // spot and all other spots will move there.
4783 mPointerController->move(deltaX, deltaY);
4784 } else {
4785 mPointerVelocityControl.reset();
4786 }
4788 float x, y;
4789 mPointerController->getPosition(&x, &y);
4791 mPointerGesture.currentGestureMode = PointerGesture::BUTTON_CLICK_OR_DRAG;
4792 mPointerGesture.currentGestureIdBits.clear();
4793 mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
4794 mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
4795 mPointerGesture.currentGestureProperties[0].clear();
4796 mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
4797 mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
4798 mPointerGesture.currentGestureCoords[0].clear();
4799 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
4800 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
4801 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
4802 } else if (currentFingerCount == 0) {
4803 // Case 3. No fingers down and button is not pressed. (NEUTRAL)
4804 if (mPointerGesture.lastGestureMode != PointerGesture::NEUTRAL) {
4805 *outFinishPreviousGesture = true;
4806 }
4808 // Watch for taps coming out of HOVER or TAP_DRAG mode.
4809 // Checking for taps after TAP_DRAG allows us to detect double-taps.
4810 bool tapped = false;
4811 if ((mPointerGesture.lastGestureMode == PointerGesture::HOVER
4812 || mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG)
4813 && lastFingerCount == 1) {
4814 if (when <= mPointerGesture.tapDownTime + mConfig.pointerGestureTapInterval) {
4815 float x, y;
4816 mPointerController->getPosition(&x, &y);
4817 if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop
4818 && fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) {
4819 #if DEBUG_GESTURES
4820 ALOGD("Gestures: TAP");
4821 #endif
4823 mPointerGesture.tapUpTime = when;
4824 getContext()->requestTimeoutAtTime(when
4825 + mConfig.pointerGestureTapDragInterval);
4827 mPointerGesture.activeGestureId = 0;
4828 mPointerGesture.currentGestureMode = PointerGesture::TAP;
4829 mPointerGesture.currentGestureIdBits.clear();
4830 mPointerGesture.currentGestureIdBits.markBit(
4831 mPointerGesture.activeGestureId);
4832 mPointerGesture.currentGestureIdToIndex[
4833 mPointerGesture.activeGestureId] = 0;
4834 mPointerGesture.currentGestureProperties[0].clear();
4835 mPointerGesture.currentGestureProperties[0].id =
4836 mPointerGesture.activeGestureId;
4837 mPointerGesture.currentGestureProperties[0].toolType =
4838 AMOTION_EVENT_TOOL_TYPE_FINGER;
4839 mPointerGesture.currentGestureCoords[0].clear();
4840 mPointerGesture.currentGestureCoords[0].setAxisValue(
4841 AMOTION_EVENT_AXIS_X, mPointerGesture.tapX);
4842 mPointerGesture.currentGestureCoords[0].setAxisValue(
4843 AMOTION_EVENT_AXIS_Y, mPointerGesture.tapY);
4844 mPointerGesture.currentGestureCoords[0].setAxisValue(
4845 AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
4847 tapped = true;
4848 } else {
4849 #if DEBUG_GESTURES
4850 ALOGD("Gestures: Not a TAP, deltaX=%f, deltaY=%f",
4851 x - mPointerGesture.tapX,
4852 y - mPointerGesture.tapY);
4853 #endif
4854 }
4855 } else {
4856 #if DEBUG_GESTURES
4857 ALOGD("Gestures: Not a TAP, %0.3fms since down",
4858 (when - mPointerGesture.tapDownTime) * 0.000001f);
4859 #endif
4860 }
4861 }
4863 mPointerVelocityControl.reset();
4865 if (!tapped) {
4866 #if DEBUG_GESTURES
4867 ALOGD("Gestures: NEUTRAL");
4868 #endif
4869 mPointerGesture.activeGestureId = -1;
4870 mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL;
4871 mPointerGesture.currentGestureIdBits.clear();
4872 }
4873 } else if (currentFingerCount == 1) {
4874 // Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG)
4875 // The pointer follows the active touch point.
4876 // When in HOVER, emit HOVER_MOVE events at the pointer location.
4877 // When in TAP_DRAG, emit MOVE events at the pointer location.
4878 ALOG_ASSERT(activeTouchId >= 0);
4880 mPointerGesture.currentGestureMode = PointerGesture::HOVER;
4881 if (mPointerGesture.lastGestureMode == PointerGesture::TAP) {
4882 if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) {
4883 float x, y;
4884 mPointerController->getPosition(&x, &y);
4885 if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop
4886 && fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) {
4887 mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG;
4888 } else {
4889 #if DEBUG_GESTURES
4890 ALOGD("Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f",
4891 x - mPointerGesture.tapX,
4892 y - mPointerGesture.tapY);
4893 #endif
4894 }
4895 } else {
4896 #if DEBUG_GESTURES
4897 ALOGD("Gestures: Not a TAP_DRAG, %0.3fms time since up",
4898 (when - mPointerGesture.tapUpTime) * 0.000001f);
4899 #endif
4900 }
4901 } else if (mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) {
4902 mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG;
4903 }
4905 if (mLastFingerIdBits.hasBit(activeTouchId)) {
4906 const RawPointerData::Pointer& currentPointer =
4907 mCurrentRawPointerData.pointerForId(activeTouchId);
4908 const RawPointerData::Pointer& lastPointer =
4909 mLastRawPointerData.pointerForId(activeTouchId);
4910 float deltaX = (currentPointer.x - lastPointer.x)
4911 * mPointerXMovementScale;
4912 float deltaY = (currentPointer.y - lastPointer.y)
4913 * mPointerYMovementScale;
4915 rotateDelta(mSurfaceOrientation, &deltaX, &deltaY);
4916 mPointerVelocityControl.move(when, &deltaX, &deltaY);
4918 // Move the pointer using a relative motion.
4919 // When using spots, the hover or drag will occur at the position of the anchor spot.
4920 mPointerController->move(deltaX, deltaY);
4921 } else {
4922 mPointerVelocityControl.reset();
4923 }
4925 bool down;
4926 if (mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG) {
4927 #if DEBUG_GESTURES
4928 ALOGD("Gestures: TAP_DRAG");
4929 #endif
4930 down = true;
4931 } else {
4932 #if DEBUG_GESTURES
4933 ALOGD("Gestures: HOVER");
4934 #endif
4935 if (mPointerGesture.lastGestureMode != PointerGesture::HOVER) {
4936 *outFinishPreviousGesture = true;
4937 }
4938 mPointerGesture.activeGestureId = 0;
4939 down = false;
4940 }
4942 float x, y;
4943 mPointerController->getPosition(&x, &y);
4945 mPointerGesture.currentGestureIdBits.clear();
4946 mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
4947 mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
4948 mPointerGesture.currentGestureProperties[0].clear();
4949 mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
4950 mPointerGesture.currentGestureProperties[0].toolType =
4951 AMOTION_EVENT_TOOL_TYPE_FINGER;
4952 mPointerGesture.currentGestureCoords[0].clear();
4953 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
4954 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
4955 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE,
4956 down ? 1.0f : 0.0f);
4958 if (lastFingerCount == 0 && currentFingerCount != 0) {
4959 mPointerGesture.resetTap();
4960 mPointerGesture.tapDownTime = when;
4961 mPointerGesture.tapX = x;
4962 mPointerGesture.tapY = y;
4963 }
4964 } else {
4965 // Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM)
4966 // We need to provide feedback for each finger that goes down so we cannot wait
4967 // for the fingers to move before deciding what to do.
4968 //
4969 // The ambiguous case is deciding what to do when there are two fingers down but they
4970 // have not moved enough to determine whether they are part of a drag or part of a
4971 // freeform gesture, or just a press or long-press at the pointer location.
4972 //
4973 // When there are two fingers we start with the PRESS hypothesis and we generate a
4974 // down at the pointer location.
4975 //
4976 // When the two fingers move enough or when additional fingers are added, we make
4977 // a decision to transition into SWIPE or FREEFORM mode accordingly.
4978 ALOG_ASSERT(activeTouchId >= 0);
4980 bool settled = when >= mPointerGesture.firstTouchTime
4981 + mConfig.pointerGestureMultitouchSettleInterval;
4982 if (mPointerGesture.lastGestureMode != PointerGesture::PRESS
4983 && mPointerGesture.lastGestureMode != PointerGesture::SWIPE
4984 && mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) {
4985 *outFinishPreviousGesture = true;
4986 } else if (!settled && currentFingerCount > lastFingerCount) {
4987 // Additional pointers have gone down but not yet settled.
4988 // Reset the gesture.
4989 #if DEBUG_GESTURES
4990 ALOGD("Gestures: Resetting gesture since additional pointers went down for MULTITOUCH, "
4991 "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime
4992 + mConfig.pointerGestureMultitouchSettleInterval - when)
4993 * 0.000001f);
4994 #endif
4995 *outCancelPreviousGesture = true;
4996 } else {
4997 // Continue previous gesture.
4998 mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode;
4999 }
5001 if (*outFinishPreviousGesture || *outCancelPreviousGesture) {
5002 mPointerGesture.currentGestureMode = PointerGesture::PRESS;
5003 mPointerGesture.activeGestureId = 0;
5004 mPointerGesture.referenceIdBits.clear();
5005 mPointerVelocityControl.reset();
5007 // Use the centroid and pointer location as the reference points for the gesture.
5008 #if DEBUG_GESTURES
5009 ALOGD("Gestures: Using centroid as reference for MULTITOUCH, "
5010 "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime
5011 + mConfig.pointerGestureMultitouchSettleInterval - when)
5012 * 0.000001f);
5013 #endif
5014 mCurrentRawPointerData.getCentroidOfTouchingPointers(
5015 &mPointerGesture.referenceTouchX,
5016 &mPointerGesture.referenceTouchY);
5017 mPointerController->getPosition(&mPointerGesture.referenceGestureX,
5018 &mPointerGesture.referenceGestureY);
5019 }
5021 // Clear the reference deltas for fingers not yet included in the reference calculation.
5022 for (BitSet32 idBits(mCurrentFingerIdBits.value
5023 & ~mPointerGesture.referenceIdBits.value); !idBits.isEmpty(); ) {
5024 uint32_t id = idBits.clearFirstMarkedBit();
5025 mPointerGesture.referenceDeltas[id].dx = 0;
5026 mPointerGesture.referenceDeltas[id].dy = 0;
5027 }
5028 mPointerGesture.referenceIdBits = mCurrentFingerIdBits;
5030 // Add delta for all fingers and calculate a common movement delta.
5031 float commonDeltaX = 0, commonDeltaY = 0;
5032 BitSet32 commonIdBits(mLastFingerIdBits.value
5033 & mCurrentFingerIdBits.value);
5034 for (BitSet32 idBits(commonIdBits); !idBits.isEmpty(); ) {
5035 bool first = (idBits == commonIdBits);
5036 uint32_t id = idBits.clearFirstMarkedBit();
5037 const RawPointerData::Pointer& cpd = mCurrentRawPointerData.pointerForId(id);
5038 const RawPointerData::Pointer& lpd = mLastRawPointerData.pointerForId(id);
5039 PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id];
5040 delta.dx += cpd.x - lpd.x;
5041 delta.dy += cpd.y - lpd.y;
5043 if (first) {
5044 commonDeltaX = delta.dx;
5045 commonDeltaY = delta.dy;
5046 } else {
5047 commonDeltaX = calculateCommonVector(commonDeltaX, delta.dx);
5048 commonDeltaY = calculateCommonVector(commonDeltaY, delta.dy);
5049 }
5050 }
5052 // Consider transitions from PRESS to SWIPE or MULTITOUCH.
5053 if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) {
5054 float dist[MAX_POINTER_ID + 1];
5055 int32_t distOverThreshold = 0;
5056 for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) {
5057 uint32_t id = idBits.clearFirstMarkedBit();
5058 PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id];
5059 dist[id] = hypotf(delta.dx * mPointerXZoomScale,
5060 delta.dy * mPointerYZoomScale);
5061 if (dist[id] > mConfig.pointerGestureMultitouchMinDistance) {
5062 distOverThreshold += 1;
5063 }
5064 }
5066 // Only transition when at least two pointers have moved further than
5067 // the minimum distance threshold.
5068 if (distOverThreshold >= 2) {
5069 if (currentFingerCount > 2) {
5070 // There are more than two pointers, switch to FREEFORM.
5071 #if DEBUG_GESTURES
5072 ALOGD("Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2",
5073 currentFingerCount);
5074 #endif
5075 *outCancelPreviousGesture = true;
5076 mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
5077 } else {
5078 // There are exactly two pointers.
5079 BitSet32 idBits(mCurrentFingerIdBits);
5080 uint32_t id1 = idBits.clearFirstMarkedBit();
5081 uint32_t id2 = idBits.firstMarkedBit();
5082 const RawPointerData::Pointer& p1 = mCurrentRawPointerData.pointerForId(id1);
5083 const RawPointerData::Pointer& p2 = mCurrentRawPointerData.pointerForId(id2);
5084 float mutualDistance = distance(p1.x, p1.y, p2.x, p2.y);
5085 if (mutualDistance > mPointerGestureMaxSwipeWidth) {
5086 // There are two pointers but they are too far apart for a SWIPE,
5087 // switch to FREEFORM.
5088 #if DEBUG_GESTURES
5089 ALOGD("Gestures: PRESS transitioned to FREEFORM, distance %0.3f > %0.3f",
5090 mutualDistance, mPointerGestureMaxSwipeWidth);
5091 #endif
5092 *outCancelPreviousGesture = true;
5093 mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
5094 } else {
5095 // There are two pointers. Wait for both pointers to start moving
5096 // before deciding whether this is a SWIPE or FREEFORM gesture.
5097 float dist1 = dist[id1];
5098 float dist2 = dist[id2];
5099 if (dist1 >= mConfig.pointerGestureMultitouchMinDistance
5100 && dist2 >= mConfig.pointerGestureMultitouchMinDistance) {
5101 // Calculate the dot product of the displacement vectors.
5102 // When the vectors are oriented in approximately the same direction,
5103 // the angle betweeen them is near zero and the cosine of the angle
5104 // approches 1.0. Recall that dot(v1, v2) = cos(angle) * mag(v1) * mag(v2).
5105 PointerGesture::Delta& delta1 = mPointerGesture.referenceDeltas[id1];
5106 PointerGesture::Delta& delta2 = mPointerGesture.referenceDeltas[id2];
5107 float dx1 = delta1.dx * mPointerXZoomScale;
5108 float dy1 = delta1.dy * mPointerYZoomScale;
5109 float dx2 = delta2.dx * mPointerXZoomScale;
5110 float dy2 = delta2.dy * mPointerYZoomScale;
5111 float dot = dx1 * dx2 + dy1 * dy2;
5112 float cosine = dot / (dist1 * dist2); // denominator always > 0
5113 if (cosine >= mConfig.pointerGestureSwipeTransitionAngleCosine) {
5114 // Pointers are moving in the same direction. Switch to SWIPE.
5115 #if DEBUG_GESTURES
5116 ALOGD("Gestures: PRESS transitioned to SWIPE, "
5117 "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, "
5118 "cosine %0.3f >= %0.3f",
5119 dist1, mConfig.pointerGestureMultitouchMinDistance,
5120 dist2, mConfig.pointerGestureMultitouchMinDistance,
5121 cosine, mConfig.pointerGestureSwipeTransitionAngleCosine);
5122 #endif
5123 mPointerGesture.currentGestureMode = PointerGesture::SWIPE;
5124 } else {
5125 // Pointers are moving in different directions. Switch to FREEFORM.
5126 #if DEBUG_GESTURES
5127 ALOGD("Gestures: PRESS transitioned to FREEFORM, "
5128 "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, "
5129 "cosine %0.3f < %0.3f",
5130 dist1, mConfig.pointerGestureMultitouchMinDistance,
5131 dist2, mConfig.pointerGestureMultitouchMinDistance,
5132 cosine, mConfig.pointerGestureSwipeTransitionAngleCosine);
5133 #endif
5134 *outCancelPreviousGesture = true;
5135 mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
5136 }
5137 }
5138 }
5139 }
5140 }
5141 } else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) {
5142 // Switch from SWIPE to FREEFORM if additional pointers go down.
5143 // Cancel previous gesture.
5144 if (currentFingerCount > 2) {
5145 #if DEBUG_GESTURES
5146 ALOGD("Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2",
5147 currentFingerCount);
5148 #endif
5149 *outCancelPreviousGesture = true;
5150 mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
5151 }
5152 }
5154 // Move the reference points based on the overall group motion of the fingers
5155 // except in PRESS mode while waiting for a transition to occur.
5156 if (mPointerGesture.currentGestureMode != PointerGesture::PRESS
5157 && (commonDeltaX || commonDeltaY)) {
5158 for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) {
5159 uint32_t id = idBits.clearFirstMarkedBit();
5160 PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id];
5161 delta.dx = 0;
5162 delta.dy = 0;
5163 }
5165 mPointerGesture.referenceTouchX += commonDeltaX;
5166 mPointerGesture.referenceTouchY += commonDeltaY;
5168 commonDeltaX *= mPointerXMovementScale;
5169 commonDeltaY *= mPointerYMovementScale;
5171 rotateDelta(mSurfaceOrientation, &commonDeltaX, &commonDeltaY);
5172 mPointerVelocityControl.move(when, &commonDeltaX, &commonDeltaY);
5174 mPointerGesture.referenceGestureX += commonDeltaX;
5175 mPointerGesture.referenceGestureY += commonDeltaY;
5176 }
5178 // Report gestures.
5179 if (mPointerGesture.currentGestureMode == PointerGesture::PRESS
5180 || mPointerGesture.currentGestureMode == PointerGesture::SWIPE) {
5181 // PRESS or SWIPE mode.
5182 #if DEBUG_GESTURES
5183 ALOGD("Gestures: PRESS or SWIPE activeTouchId=%d,"
5184 "activeGestureId=%d, currentTouchPointerCount=%d",
5185 activeTouchId, mPointerGesture.activeGestureId, currentFingerCount);
5186 #endif
5187 ALOG_ASSERT(mPointerGesture.activeGestureId >= 0);
5189 mPointerGesture.currentGestureIdBits.clear();
5190 mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
5191 mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
5192 mPointerGesture.currentGestureProperties[0].clear();
5193 mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
5194 mPointerGesture.currentGestureProperties[0].toolType =
5195 AMOTION_EVENT_TOOL_TYPE_FINGER;
5196 mPointerGesture.currentGestureCoords[0].clear();
5197 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X,
5198 mPointerGesture.referenceGestureX);
5199 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y,
5200 mPointerGesture.referenceGestureY);
5201 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
5202 } else if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) {
5203 // FREEFORM mode.
5204 #if DEBUG_GESTURES
5205 ALOGD("Gestures: FREEFORM activeTouchId=%d,"
5206 "activeGestureId=%d, currentTouchPointerCount=%d",
5207 activeTouchId, mPointerGesture.activeGestureId, currentFingerCount);
5208 #endif
5209 ALOG_ASSERT(mPointerGesture.activeGestureId >= 0);
5211 mPointerGesture.currentGestureIdBits.clear();
5213 BitSet32 mappedTouchIdBits;
5214 BitSet32 usedGestureIdBits;
5215 if (mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) {
5216 // Initially, assign the active gesture id to the active touch point
5217 // if there is one. No other touch id bits are mapped yet.
5218 if (!*outCancelPreviousGesture) {
5219 mappedTouchIdBits.markBit(activeTouchId);
5220 usedGestureIdBits.markBit(mPointerGesture.activeGestureId);
5221 mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] =
5222 mPointerGesture.activeGestureId;
5223 } else {
5224 mPointerGesture.activeGestureId = -1;
5225 }
5226 } else {
5227 // Otherwise, assume we mapped all touches from the previous frame.
5228 // Reuse all mappings that are still applicable.
5229 mappedTouchIdBits.value = mLastFingerIdBits.value
5230 & mCurrentFingerIdBits.value;
5231 usedGestureIdBits = mPointerGesture.lastGestureIdBits;
5233 // Check whether we need to choose a new active gesture id because the
5234 // current went went up.
5235 for (BitSet32 upTouchIdBits(mLastFingerIdBits.value
5236 & ~mCurrentFingerIdBits.value);
5237 !upTouchIdBits.isEmpty(); ) {
5238 uint32_t upTouchId = upTouchIdBits.clearFirstMarkedBit();
5239 uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId];
5240 if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) {
5241 mPointerGesture.activeGestureId = -1;
5242 break;
5243 }
5244 }
5245 }
5247 #if DEBUG_GESTURES
5248 ALOGD("Gestures: FREEFORM follow up "
5249 "mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, "
5250 "activeGestureId=%d",
5251 mappedTouchIdBits.value, usedGestureIdBits.value,
5252 mPointerGesture.activeGestureId);
5253 #endif
5255 BitSet32 idBits(mCurrentFingerIdBits);
5256 for (uint32_t i = 0; i < currentFingerCount; i++) {
5257 uint32_t touchId = idBits.clearFirstMarkedBit();
5258 uint32_t gestureId;
5259 if (!mappedTouchIdBits.hasBit(touchId)) {
5260 gestureId = usedGestureIdBits.markFirstUnmarkedBit();
5261 mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId;
5262 #if DEBUG_GESTURES
5263 ALOGD("Gestures: FREEFORM "
5264 "new mapping for touch id %d -> gesture id %d",
5265 touchId, gestureId);
5266 #endif
5267 } else {
5268 gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId];
5269 #if DEBUG_GESTURES
5270 ALOGD("Gestures: FREEFORM "
5271 "existing mapping for touch id %d -> gesture id %d",
5272 touchId, gestureId);
5273 #endif
5274 }
5275 mPointerGesture.currentGestureIdBits.markBit(gestureId);
5276 mPointerGesture.currentGestureIdToIndex[gestureId] = i;
5278 const RawPointerData::Pointer& pointer =
5279 mCurrentRawPointerData.pointerForId(touchId);
5280 float deltaX = (pointer.x - mPointerGesture.referenceTouchX)
5281 * mPointerXZoomScale;
5282 float deltaY = (pointer.y - mPointerGesture.referenceTouchY)
5283 * mPointerYZoomScale;
5284 rotateDelta(mSurfaceOrientation, &deltaX, &deltaY);
5286 mPointerGesture.currentGestureProperties[i].clear();
5287 mPointerGesture.currentGestureProperties[i].id = gestureId;
5288 mPointerGesture.currentGestureProperties[i].toolType =
5289 AMOTION_EVENT_TOOL_TYPE_FINGER;
5290 mPointerGesture.currentGestureCoords[i].clear();
5291 mPointerGesture.currentGestureCoords[i].setAxisValue(
5292 AMOTION_EVENT_AXIS_X, mPointerGesture.referenceGestureX + deltaX);
5293 mPointerGesture.currentGestureCoords[i].setAxisValue(
5294 AMOTION_EVENT_AXIS_Y, mPointerGesture.referenceGestureY + deltaY);
5295 mPointerGesture.currentGestureCoords[i].setAxisValue(
5296 AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
5297 }
5299 if (mPointerGesture.activeGestureId < 0) {
5300 mPointerGesture.activeGestureId =
5301 mPointerGesture.currentGestureIdBits.firstMarkedBit();
5302 #if DEBUG_GESTURES
5303 ALOGD("Gestures: FREEFORM new "
5304 "activeGestureId=%d", mPointerGesture.activeGestureId);
5305 #endif
5306 }
5307 }
5308 }
5310 mPointerController->setButtonState(mCurrentButtonState);
5312 #if DEBUG_GESTURES
5313 ALOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, "
5314 "currentGestureMode=%d, currentGestureIdBits=0x%08x, "
5315 "lastGestureMode=%d, lastGestureIdBits=0x%08x",
5316 toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture),
5317 mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value,
5318 mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value);
5319 for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty(); ) {
5320 uint32_t id = idBits.clearFirstMarkedBit();
5321 uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
5322 const PointerProperties& properties = mPointerGesture.currentGestureProperties[index];
5323 const PointerCoords& coords = mPointerGesture.currentGestureCoords[index];
5324 ALOGD(" currentGesture[%d]: index=%d, toolType=%d, "
5325 "x=%0.3f, y=%0.3f, pressure=%0.3f",
5326 id, index, properties.toolType,
5327 coords.getAxisValue(AMOTION_EVENT_AXIS_X),
5328 coords.getAxisValue(AMOTION_EVENT_AXIS_Y),
5329 coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
5330 }
5331 for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty(); ) {
5332 uint32_t id = idBits.clearFirstMarkedBit();
5333 uint32_t index = mPointerGesture.lastGestureIdToIndex[id];
5334 const PointerProperties& properties = mPointerGesture.lastGestureProperties[index];
5335 const PointerCoords& coords = mPointerGesture.lastGestureCoords[index];
5336 ALOGD(" lastGesture[%d]: index=%d, toolType=%d, "
5337 "x=%0.3f, y=%0.3f, pressure=%0.3f",
5338 id, index, properties.toolType,
5339 coords.getAxisValue(AMOTION_EVENT_AXIS_X),
5340 coords.getAxisValue(AMOTION_EVENT_AXIS_Y),
5341 coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
5342 }
5343 #endif
5344 return true;
5345 }
5347 void TouchInputMapper::dispatchPointerStylus(nsecs_t when, uint32_t policyFlags) {
5348 mPointerSimple.currentCoords.clear();
5349 mPointerSimple.currentProperties.clear();
5351 bool down, hovering;
5352 if (!mCurrentStylusIdBits.isEmpty()) {
5353 uint32_t id = mCurrentStylusIdBits.firstMarkedBit();
5354 uint32_t index = mCurrentCookedPointerData.idToIndex[id];
5355 float x = mCurrentCookedPointerData.pointerCoords[index].getX();
5356 float y = mCurrentCookedPointerData.pointerCoords[index].getY();
5357 mPointerController->setPosition(x, y);
5359 hovering = mCurrentCookedPointerData.hoveringIdBits.hasBit(id);
5360 down = !hovering;
5362 mPointerController->getPosition(&x, &y);
5363 mPointerSimple.currentCoords.copyFrom(mCurrentCookedPointerData.pointerCoords[index]);
5364 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x);
5365 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
5366 mPointerSimple.currentProperties.id = 0;
5367 mPointerSimple.currentProperties.toolType =
5368 mCurrentCookedPointerData.pointerProperties[index].toolType;
5369 } else {
5370 down = false;
5371 hovering = false;
5372 }
5374 dispatchPointerSimple(when, policyFlags, down, hovering);
5375 }
5377 void TouchInputMapper::abortPointerStylus(nsecs_t when, uint32_t policyFlags) {
5378 abortPointerSimple(when, policyFlags);
5379 }
5381 void TouchInputMapper::dispatchPointerMouse(nsecs_t when, uint32_t policyFlags) {
5382 mPointerSimple.currentCoords.clear();
5383 mPointerSimple.currentProperties.clear();
5385 bool down, hovering;
5386 if (!mCurrentMouseIdBits.isEmpty()) {
5387 uint32_t id = mCurrentMouseIdBits.firstMarkedBit();
5388 uint32_t currentIndex = mCurrentRawPointerData.idToIndex[id];
5389 if (mLastMouseIdBits.hasBit(id)) {
5390 uint32_t lastIndex = mCurrentRawPointerData.idToIndex[id];
5391 float deltaX = (mCurrentRawPointerData.pointers[currentIndex].x
5392 - mLastRawPointerData.pointers[lastIndex].x)
5393 * mPointerXMovementScale;
5394 float deltaY = (mCurrentRawPointerData.pointers[currentIndex].y
5395 - mLastRawPointerData.pointers[lastIndex].y)
5396 * mPointerYMovementScale;
5398 rotateDelta(mSurfaceOrientation, &deltaX, &deltaY);
5399 mPointerVelocityControl.move(when, &deltaX, &deltaY);
5401 mPointerController->move(deltaX, deltaY);
5402 } else {
5403 mPointerVelocityControl.reset();
5404 }
5406 down = isPointerDown(mCurrentButtonState);
5407 hovering = !down;
5409 float x, y;
5410 mPointerController->getPosition(&x, &y);
5411 mPointerSimple.currentCoords.copyFrom(
5412 mCurrentCookedPointerData.pointerCoords[currentIndex]);
5413 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x);
5414 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
5415 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE,
5416 hovering ? 0.0f : 1.0f);
5417 mPointerSimple.currentProperties.id = 0;
5418 mPointerSimple.currentProperties.toolType =
5419 mCurrentCookedPointerData.pointerProperties[currentIndex].toolType;
5420 } else {
5421 mPointerVelocityControl.reset();
5423 down = false;
5424 hovering = false;
5425 }
5427 dispatchPointerSimple(when, policyFlags, down, hovering);
5428 }
5430 void TouchInputMapper::abortPointerMouse(nsecs_t when, uint32_t policyFlags) {
5431 abortPointerSimple(when, policyFlags);
5433 mPointerVelocityControl.reset();
5434 }
5436 void TouchInputMapper::dispatchPointerSimple(nsecs_t when, uint32_t policyFlags,
5437 bool down, bool hovering) {
5438 int32_t metaState = getContext()->getGlobalMetaState();
5440 if (mPointerController != NULL) {
5441 if (down || hovering) {
5442 mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER);
5443 mPointerController->clearSpots();
5444 mPointerController->setButtonState(mCurrentButtonState);
5445 mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
5446 } else if (!down && !hovering && (mPointerSimple.down || mPointerSimple.hovering)) {
5447 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
5448 }
5449 }
5451 if (mPointerSimple.down && !down) {
5452 mPointerSimple.down = false;
5454 // Send up.
5455 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags,
5456 AMOTION_EVENT_ACTION_UP, 0, metaState, mLastButtonState, 0,
5457 mViewport.displayId,
5458 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords,
5459 mOrientedXPrecision, mOrientedYPrecision,
5460 mPointerSimple.downTime);
5461 getListener()->notifyMotion(&args);
5462 }
5464 if (mPointerSimple.hovering && !hovering) {
5465 mPointerSimple.hovering = false;
5467 // Send hover exit.
5468 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags,
5469 AMOTION_EVENT_ACTION_HOVER_EXIT, 0, metaState, mLastButtonState, 0,
5470 mViewport.displayId,
5471 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords,
5472 mOrientedXPrecision, mOrientedYPrecision,
5473 mPointerSimple.downTime);
5474 getListener()->notifyMotion(&args);
5475 }
5477 if (down) {
5478 if (!mPointerSimple.down) {
5479 mPointerSimple.down = true;
5480 mPointerSimple.downTime = when;
5482 // Send down.
5483 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags,
5484 AMOTION_EVENT_ACTION_DOWN, 0, metaState, mCurrentButtonState, 0,
5485 mViewport.displayId,
5486 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords,
5487 mOrientedXPrecision, mOrientedYPrecision,
5488 mPointerSimple.downTime);
5489 getListener()->notifyMotion(&args);
5490 }
5492 // Send move.
5493 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags,
5494 AMOTION_EVENT_ACTION_MOVE, 0, metaState, mCurrentButtonState, 0,
5495 mViewport.displayId,
5496 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords,
5497 mOrientedXPrecision, mOrientedYPrecision,
5498 mPointerSimple.downTime);
5499 getListener()->notifyMotion(&args);
5500 }
5502 if (hovering) {
5503 if (!mPointerSimple.hovering) {
5504 mPointerSimple.hovering = true;
5506 // Send hover enter.
5507 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags,
5508 AMOTION_EVENT_ACTION_HOVER_ENTER, 0, metaState, mCurrentButtonState, 0,
5509 mViewport.displayId,
5510 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords,
5511 mOrientedXPrecision, mOrientedYPrecision,
5512 mPointerSimple.downTime);
5513 getListener()->notifyMotion(&args);
5514 }
5516 // Send hover move.
5517 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags,
5518 AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, mCurrentButtonState, 0,
5519 mViewport.displayId,
5520 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords,
5521 mOrientedXPrecision, mOrientedYPrecision,
5522 mPointerSimple.downTime);
5523 getListener()->notifyMotion(&args);
5524 }
5526 if (mCurrentRawVScroll || mCurrentRawHScroll) {
5527 float vscroll = mCurrentRawVScroll;
5528 float hscroll = mCurrentRawHScroll;
5529 mWheelYVelocityControl.move(when, NULL, &vscroll);
5530 mWheelXVelocityControl.move(when, &hscroll, NULL);
5532 // Send scroll.
5533 PointerCoords pointerCoords;
5534 pointerCoords.copyFrom(mPointerSimple.currentCoords);
5535 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll);
5536 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll);
5538 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags,
5539 AMOTION_EVENT_ACTION_SCROLL, 0, metaState, mCurrentButtonState, 0,
5540 mViewport.displayId,
5541 1, &mPointerSimple.currentProperties, &pointerCoords,
5542 mOrientedXPrecision, mOrientedYPrecision,
5543 mPointerSimple.downTime);
5544 getListener()->notifyMotion(&args);
5545 }
5547 // Save state.
5548 if (down || hovering) {
5549 mPointerSimple.lastCoords.copyFrom(mPointerSimple.currentCoords);
5550 mPointerSimple.lastProperties.copyFrom(mPointerSimple.currentProperties);
5551 } else {
5552 mPointerSimple.reset();
5553 }
5554 }
5556 void TouchInputMapper::abortPointerSimple(nsecs_t when, uint32_t policyFlags) {
5557 mPointerSimple.currentCoords.clear();
5558 mPointerSimple.currentProperties.clear();
5560 dispatchPointerSimple(when, policyFlags, false, false);
5561 }
5563 void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source,
5564 int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags,
5565 const PointerProperties* properties, const PointerCoords* coords,
5566 const uint32_t* idToIndex, BitSet32 idBits,
5567 int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime) {
5568 PointerCoords pointerCoords[MAX_POINTERS];
5569 PointerProperties pointerProperties[MAX_POINTERS];
5570 uint32_t pointerCount = 0;
5571 while (!idBits.isEmpty()) {
5572 uint32_t id = idBits.clearFirstMarkedBit();
5573 uint32_t index = idToIndex[id];
5574 pointerProperties[pointerCount].copyFrom(properties[index]);
5575 pointerCoords[pointerCount].copyFrom(coords[index]);
5577 if (changedId >= 0 && id == uint32_t(changedId)) {
5578 action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
5579 }
5581 pointerCount += 1;
5582 }
5584 ALOG_ASSERT(pointerCount != 0);
5586 if (changedId >= 0 && pointerCount == 1) {
5587 // Replace initial down and final up action.
5588 // We can compare the action without masking off the changed pointer index
5589 // because we know the index is 0.
5590 if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) {
5591 action = AMOTION_EVENT_ACTION_DOWN;
5592 } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) {
5593 action = AMOTION_EVENT_ACTION_UP;
5594 } else {
5595 // Can't happen.
5596 ALOG_ASSERT(false);
5597 }
5598 }
5600 NotifyMotionArgs args(when, getDeviceId(), source, policyFlags,
5601 action, flags, metaState, buttonState, edgeFlags,
5602 mViewport.displayId, pointerCount, pointerProperties, pointerCoords,
5603 xPrecision, yPrecision, downTime);
5604 getListener()->notifyMotion(&args);
5605 }
5607 bool TouchInputMapper::updateMovedPointers(const PointerProperties* inProperties,
5608 const PointerCoords* inCoords, const uint32_t* inIdToIndex,
5609 PointerProperties* outProperties, PointerCoords* outCoords, const uint32_t* outIdToIndex,
5610 BitSet32 idBits) const {
5611 bool changed = false;
5612 while (!idBits.isEmpty()) {
5613 uint32_t id = idBits.clearFirstMarkedBit();
5614 uint32_t inIndex = inIdToIndex[id];
5615 uint32_t outIndex = outIdToIndex[id];
5617 const PointerProperties& curInProperties = inProperties[inIndex];
5618 const PointerCoords& curInCoords = inCoords[inIndex];
5619 PointerProperties& curOutProperties = outProperties[outIndex];
5620 PointerCoords& curOutCoords = outCoords[outIndex];
5622 if (curInProperties != curOutProperties) {
5623 curOutProperties.copyFrom(curInProperties);
5624 changed = true;
5625 }
5627 if (curInCoords != curOutCoords) {
5628 curOutCoords.copyFrom(curInCoords);
5629 changed = true;
5630 }
5631 }
5632 return changed;
5633 }
5635 void TouchInputMapper::fadePointer() {
5636 if (mPointerController != NULL) {
5637 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
5638 }
5639 }
5641 bool TouchInputMapper::isPointInsideSurface(int32_t x, int32_t y) {
5642 return x >= mRawPointerAxes.x.minValue && x <= mRawPointerAxes.x.maxValue
5643 && y >= mRawPointerAxes.y.minValue && y <= mRawPointerAxes.y.maxValue;
5644 }
5646 const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHit(
5647 int32_t x, int32_t y) {
5648 size_t numVirtualKeys = mVirtualKeys.size();
5649 for (size_t i = 0; i < numVirtualKeys; i++) {
5650 const VirtualKey& virtualKey = mVirtualKeys[i];
5652 #if DEBUG_VIRTUAL_KEYS
5653 ALOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, "
5654 "left=%d, top=%d, right=%d, bottom=%d",
5655 x, y,
5656 virtualKey.keyCode, virtualKey.scanCode,
5657 virtualKey.hitLeft, virtualKey.hitTop,
5658 virtualKey.hitRight, virtualKey.hitBottom);
5659 #endif
5661 if (virtualKey.isHit(x, y)) {
5662 return & virtualKey;
5663 }
5664 }
5666 return NULL;
5667 }
5669 void TouchInputMapper::assignPointerIds() {
5670 uint32_t currentPointerCount = mCurrentRawPointerData.pointerCount;
5671 uint32_t lastPointerCount = mLastRawPointerData.pointerCount;
5673 mCurrentRawPointerData.clearIdBits();
5675 if (currentPointerCount == 0) {
5676 // No pointers to assign.
5677 return;
5678 }
5680 if (lastPointerCount == 0) {
5681 // All pointers are new.
5682 for (uint32_t i = 0; i < currentPointerCount; i++) {
5683 uint32_t id = i;
5684 mCurrentRawPointerData.pointers[i].id = id;
5685 mCurrentRawPointerData.idToIndex[id] = i;
5686 mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(i));
5687 }
5688 return;
5689 }
5691 if (currentPointerCount == 1 && lastPointerCount == 1
5692 && mCurrentRawPointerData.pointers[0].toolType
5693 == mLastRawPointerData.pointers[0].toolType) {
5694 // Only one pointer and no change in count so it must have the same id as before.
5695 uint32_t id = mLastRawPointerData.pointers[0].id;
5696 mCurrentRawPointerData.pointers[0].id = id;
5697 mCurrentRawPointerData.idToIndex[id] = 0;
5698 mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(0));
5699 return;
5700 }
5702 // General case.
5703 // We build a heap of squared euclidean distances between current and last pointers
5704 // associated with the current and last pointer indices. Then, we find the best
5705 // match (by distance) for each current pointer.
5706 // The pointers must have the same tool type but it is possible for them to
5707 // transition from hovering to touching or vice-versa while retaining the same id.
5708 PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS];
5710 uint32_t heapSize = 0;
5711 for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount;
5712 currentPointerIndex++) {
5713 for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount;
5714 lastPointerIndex++) {
5715 const RawPointerData::Pointer& currentPointer =
5716 mCurrentRawPointerData.pointers[currentPointerIndex];
5717 const RawPointerData::Pointer& lastPointer =
5718 mLastRawPointerData.pointers[lastPointerIndex];
5719 if (currentPointer.toolType == lastPointer.toolType) {
5720 int64_t deltaX = currentPointer.x - lastPointer.x;
5721 int64_t deltaY = currentPointer.y - lastPointer.y;
5723 uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
5725 // Insert new element into the heap (sift up).
5726 heap[heapSize].currentPointerIndex = currentPointerIndex;
5727 heap[heapSize].lastPointerIndex = lastPointerIndex;
5728 heap[heapSize].distance = distance;
5729 heapSize += 1;
5730 }
5731 }
5732 }
5734 // Heapify
5735 for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) {
5736 startIndex -= 1;
5737 for (uint32_t parentIndex = startIndex; ;) {
5738 uint32_t childIndex = parentIndex * 2 + 1;
5739 if (childIndex >= heapSize) {
5740 break;
5741 }
5743 if (childIndex + 1 < heapSize
5744 && heap[childIndex + 1].distance < heap[childIndex].distance) {
5745 childIndex += 1;
5746 }
5748 if (heap[parentIndex].distance <= heap[childIndex].distance) {
5749 break;
5750 }
5752 swap(heap[parentIndex], heap[childIndex]);
5753 parentIndex = childIndex;
5754 }
5755 }
5757 #if DEBUG_POINTER_ASSIGNMENT
5758 ALOGD("assignPointerIds - initial distance min-heap: size=%d", heapSize);
5759 for (size_t i = 0; i < heapSize; i++) {
5760 ALOGD(" heap[%d]: cur=%d, last=%d, distance=%lld",
5761 i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
5762 heap[i].distance);
5763 }
5764 #endif
5766 // Pull matches out by increasing order of distance.
5767 // To avoid reassigning pointers that have already been matched, the loop keeps track
5768 // of which last and current pointers have been matched using the matchedXXXBits variables.
5769 // It also tracks the used pointer id bits.
5770 BitSet32 matchedLastBits(0);
5771 BitSet32 matchedCurrentBits(0);
5772 BitSet32 usedIdBits(0);
5773 bool first = true;
5774 for (uint32_t i = min(currentPointerCount, lastPointerCount); heapSize > 0 && i > 0; i--) {
5775 while (heapSize > 0) {
5776 if (first) {
5777 // The first time through the loop, we just consume the root element of
5778 // the heap (the one with smallest distance).
5779 first = false;
5780 } else {
5781 // Previous iterations consumed the root element of the heap.
5782 // Pop root element off of the heap (sift down).
5783 heap[0] = heap[heapSize];
5784 for (uint32_t parentIndex = 0; ;) {
5785 uint32_t childIndex = parentIndex * 2 + 1;
5786 if (childIndex >= heapSize) {
5787 break;
5788 }
5790 if (childIndex + 1 < heapSize
5791 && heap[childIndex + 1].distance < heap[childIndex].distance) {
5792 childIndex += 1;
5793 }
5795 if (heap[parentIndex].distance <= heap[childIndex].distance) {
5796 break;
5797 }
5799 swap(heap[parentIndex], heap[childIndex]);
5800 parentIndex = childIndex;
5801 }
5803 #if DEBUG_POINTER_ASSIGNMENT
5804 ALOGD("assignPointerIds - reduced distance min-heap: size=%d", heapSize);
5805 for (size_t i = 0; i < heapSize; i++) {
5806 ALOGD(" heap[%d]: cur=%d, last=%d, distance=%lld",
5807 i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
5808 heap[i].distance);
5809 }
5810 #endif
5811 }
5813 heapSize -= 1;
5815 uint32_t currentPointerIndex = heap[0].currentPointerIndex;
5816 if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched
5818 uint32_t lastPointerIndex = heap[0].lastPointerIndex;
5819 if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched
5821 matchedCurrentBits.markBit(currentPointerIndex);
5822 matchedLastBits.markBit(lastPointerIndex);
5824 uint32_t id = mLastRawPointerData.pointers[lastPointerIndex].id;
5825 mCurrentRawPointerData.pointers[currentPointerIndex].id = id;
5826 mCurrentRawPointerData.idToIndex[id] = currentPointerIndex;
5827 mCurrentRawPointerData.markIdBit(id,
5828 mCurrentRawPointerData.isHovering(currentPointerIndex));
5829 usedIdBits.markBit(id);
5831 #if DEBUG_POINTER_ASSIGNMENT
5832 ALOGD("assignPointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld",
5833 lastPointerIndex, currentPointerIndex, id, heap[0].distance);
5834 #endif
5835 break;
5836 }
5837 }
5839 // Assign fresh ids to pointers that were not matched in the process.
5840 for (uint32_t i = currentPointerCount - matchedCurrentBits.count(); i != 0; i--) {
5841 uint32_t currentPointerIndex = matchedCurrentBits.markFirstUnmarkedBit();
5842 uint32_t id = usedIdBits.markFirstUnmarkedBit();
5844 mCurrentRawPointerData.pointers[currentPointerIndex].id = id;
5845 mCurrentRawPointerData.idToIndex[id] = currentPointerIndex;
5846 mCurrentRawPointerData.markIdBit(id,
5847 mCurrentRawPointerData.isHovering(currentPointerIndex));
5849 #if DEBUG_POINTER_ASSIGNMENT
5850 ALOGD("assignPointerIds - assigned: cur=%d, id=%d",
5851 currentPointerIndex, id);
5852 #endif
5853 }
5854 }
5856 int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
5857 if (mCurrentVirtualKey.down && mCurrentVirtualKey.keyCode == keyCode) {
5858 return AKEY_STATE_VIRTUAL;
5859 }
5861 size_t numVirtualKeys = mVirtualKeys.size();
5862 for (size_t i = 0; i < numVirtualKeys; i++) {
5863 const VirtualKey& virtualKey = mVirtualKeys[i];
5864 if (virtualKey.keyCode == keyCode) {
5865 return AKEY_STATE_UP;
5866 }
5867 }
5869 return AKEY_STATE_UNKNOWN;
5870 }
5872 int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
5873 if (mCurrentVirtualKey.down && mCurrentVirtualKey.scanCode == scanCode) {
5874 return AKEY_STATE_VIRTUAL;
5875 }
5877 size_t numVirtualKeys = mVirtualKeys.size();
5878 for (size_t i = 0; i < numVirtualKeys; i++) {
5879 const VirtualKey& virtualKey = mVirtualKeys[i];
5880 if (virtualKey.scanCode == scanCode) {
5881 return AKEY_STATE_UP;
5882 }
5883 }
5885 return AKEY_STATE_UNKNOWN;
5886 }
5888 bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
5889 const int32_t* keyCodes, uint8_t* outFlags) {
5890 size_t numVirtualKeys = mVirtualKeys.size();
5891 for (size_t i = 0; i < numVirtualKeys; i++) {
5892 const VirtualKey& virtualKey = mVirtualKeys[i];
5894 for (size_t i = 0; i < numCodes; i++) {
5895 if (virtualKey.keyCode == keyCodes[i]) {
5896 outFlags[i] = 1;
5897 }
5898 }
5899 }
5901 return true;
5902 }
5905 // --- SingleTouchInputMapper ---
5907 SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) :
5908 TouchInputMapper(device) {
5909 }
5911 SingleTouchInputMapper::~SingleTouchInputMapper() {
5912 }
5914 void SingleTouchInputMapper::reset(nsecs_t when) {
5915 mSingleTouchMotionAccumulator.reset(getDevice());
5917 TouchInputMapper::reset(when);
5918 }
5920 void SingleTouchInputMapper::process(const RawEvent* rawEvent) {
5921 TouchInputMapper::process(rawEvent);
5923 mSingleTouchMotionAccumulator.process(rawEvent);
5924 }
5926 void SingleTouchInputMapper::syncTouch(nsecs_t when, bool* outHavePointerIds) {
5927 if (mTouchButtonAccumulator.isToolActive()) {
5928 mCurrentRawPointerData.pointerCount = 1;
5929 mCurrentRawPointerData.idToIndex[0] = 0;
5931 bool isHovering = mTouchButtonAccumulator.getToolType() != AMOTION_EVENT_TOOL_TYPE_MOUSE
5932 && (mTouchButtonAccumulator.isHovering()
5933 || (mRawPointerAxes.pressure.valid
5934 && mSingleTouchMotionAccumulator.getAbsolutePressure() <= 0));
5935 mCurrentRawPointerData.markIdBit(0, isHovering);
5937 RawPointerData::Pointer& outPointer = mCurrentRawPointerData.pointers[0];
5938 outPointer.id = 0;
5939 outPointer.x = mSingleTouchMotionAccumulator.getAbsoluteX();
5940 outPointer.y = mSingleTouchMotionAccumulator.getAbsoluteY();
5941 outPointer.pressure = mSingleTouchMotionAccumulator.getAbsolutePressure();
5942 outPointer.touchMajor = 0;
5943 outPointer.touchMinor = 0;
5944 outPointer.toolMajor = mSingleTouchMotionAccumulator.getAbsoluteToolWidth();
5945 outPointer.toolMinor = mSingleTouchMotionAccumulator.getAbsoluteToolWidth();
5946 outPointer.orientation = 0;
5947 outPointer.distance = mSingleTouchMotionAccumulator.getAbsoluteDistance();
5948 outPointer.tiltX = mSingleTouchMotionAccumulator.getAbsoluteTiltX();
5949 outPointer.tiltY = mSingleTouchMotionAccumulator.getAbsoluteTiltY();
5950 outPointer.toolType = mTouchButtonAccumulator.getToolType();
5951 if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
5952 outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
5953 }
5954 outPointer.isHovering = isHovering;
5955 }
5956 }
5958 void SingleTouchInputMapper::configureRawPointerAxes() {
5959 TouchInputMapper::configureRawPointerAxes();
5961 getAbsoluteAxisInfo(ABS_X, &mRawPointerAxes.x);
5962 getAbsoluteAxisInfo(ABS_Y, &mRawPointerAxes.y);
5963 getAbsoluteAxisInfo(ABS_PRESSURE, &mRawPointerAxes.pressure);
5964 getAbsoluteAxisInfo(ABS_TOOL_WIDTH, &mRawPointerAxes.toolMajor);
5965 getAbsoluteAxisInfo(ABS_DISTANCE, &mRawPointerAxes.distance);
5966 getAbsoluteAxisInfo(ABS_TILT_X, &mRawPointerAxes.tiltX);
5967 getAbsoluteAxisInfo(ABS_TILT_Y, &mRawPointerAxes.tiltY);
5968 }
5970 bool SingleTouchInputMapper::hasStylus() const {
5971 return mTouchButtonAccumulator.hasStylus();
5972 }
5975 // --- MultiTouchInputMapper ---
5977 MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) :
5978 TouchInputMapper(device) {
5979 }
5981 MultiTouchInputMapper::~MultiTouchInputMapper() {
5982 }
5984 void MultiTouchInputMapper::reset(nsecs_t when) {
5985 mMultiTouchMotionAccumulator.reset(getDevice());
5987 mPointerIdBits.clear();
5989 TouchInputMapper::reset(when);
5990 }
5992 void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
5993 TouchInputMapper::process(rawEvent);
5995 mMultiTouchMotionAccumulator.process(rawEvent);
5996 }
5998 void MultiTouchInputMapper::syncTouch(nsecs_t when, bool* outHavePointerIds) {
5999 size_t inCount = mMultiTouchMotionAccumulator.getSlotCount();
6000 size_t outCount = 0;
6001 BitSet32 newPointerIdBits;
6003 for (size_t inIndex = 0; inIndex < inCount; inIndex++) {
6004 const MultiTouchMotionAccumulator::Slot* inSlot =
6005 mMultiTouchMotionAccumulator.getSlot(inIndex);
6006 if (!inSlot->isInUse()) {
6007 continue;
6008 }
6010 if (outCount >= MAX_POINTERS) {
6011 #if DEBUG_POINTERS
6012 ALOGD("MultiTouch device %s emitted more than maximum of %d pointers; "
6013 "ignoring the rest.",
6014 getDeviceName().string(), MAX_POINTERS);
6015 #endif
6016 break; // too many fingers!
6017 }
6019 RawPointerData::Pointer& outPointer = mCurrentRawPointerData.pointers[outCount];
6020 outPointer.x = inSlot->getX();
6021 outPointer.y = inSlot->getY();
6022 outPointer.pressure = inSlot->getPressure();
6023 outPointer.touchMajor = inSlot->getTouchMajor();
6024 outPointer.touchMinor = inSlot->getTouchMinor();
6025 outPointer.toolMajor = inSlot->getToolMajor();
6026 outPointer.toolMinor = inSlot->getToolMinor();
6027 outPointer.orientation = inSlot->getOrientation();
6028 outPointer.distance = inSlot->getDistance();
6029 outPointer.tiltX = 0;
6030 outPointer.tiltY = 0;
6032 outPointer.toolType = inSlot->getToolType();
6033 if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
6034 outPointer.toolType = mTouchButtonAccumulator.getToolType();
6035 if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
6036 outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
6037 }
6038 }
6040 bool isHovering = mTouchButtonAccumulator.getToolType() != AMOTION_EVENT_TOOL_TYPE_MOUSE
6041 && (mTouchButtonAccumulator.isHovering()
6042 || (mRawPointerAxes.pressure.valid && inSlot->getPressure() <= 0));
6043 outPointer.isHovering = isHovering;
6045 // Assign pointer id using tracking id if available.
6046 if (*outHavePointerIds) {
6047 int32_t trackingId = inSlot->getTrackingId();
6048 int32_t id = -1;
6049 if (trackingId >= 0) {
6050 for (BitSet32 idBits(mPointerIdBits); !idBits.isEmpty(); ) {
6051 uint32_t n = idBits.clearFirstMarkedBit();
6052 if (mPointerTrackingIdMap[n] == trackingId) {
6053 id = n;
6054 }
6055 }
6057 if (id < 0 && !mPointerIdBits.isFull()) {
6058 id = mPointerIdBits.markFirstUnmarkedBit();
6059 mPointerTrackingIdMap[id] = trackingId;
6060 }
6061 }
6062 if (id < 0) {
6063 *outHavePointerIds = false;
6064 mCurrentRawPointerData.clearIdBits();
6065 newPointerIdBits.clear();
6066 } else {
6067 outPointer.id = id;
6068 mCurrentRawPointerData.idToIndex[id] = outCount;
6069 mCurrentRawPointerData.markIdBit(id, isHovering);
6070 newPointerIdBits.markBit(id);
6071 }
6072 }
6074 outCount += 1;
6075 }
6077 mCurrentRawPointerData.pointerCount = outCount;
6078 mPointerIdBits = newPointerIdBits;
6080 mMultiTouchMotionAccumulator.finishSync();
6081 }
6083 void MultiTouchInputMapper::configureRawPointerAxes() {
6084 TouchInputMapper::configureRawPointerAxes();
6086 getAbsoluteAxisInfo(ABS_MT_POSITION_X, &mRawPointerAxes.x);
6087 getAbsoluteAxisInfo(ABS_MT_POSITION_Y, &mRawPointerAxes.y);
6088 getAbsoluteAxisInfo(ABS_MT_TOUCH_MAJOR, &mRawPointerAxes.touchMajor);
6089 getAbsoluteAxisInfo(ABS_MT_TOUCH_MINOR, &mRawPointerAxes.touchMinor);
6090 getAbsoluteAxisInfo(ABS_MT_WIDTH_MAJOR, &mRawPointerAxes.toolMajor);
6091 getAbsoluteAxisInfo(ABS_MT_WIDTH_MINOR, &mRawPointerAxes.toolMinor);
6092 getAbsoluteAxisInfo(ABS_MT_ORIENTATION, &mRawPointerAxes.orientation);
6093 getAbsoluteAxisInfo(ABS_MT_PRESSURE, &mRawPointerAxes.pressure);
6094 getAbsoluteAxisInfo(ABS_MT_DISTANCE, &mRawPointerAxes.distance);
6095 getAbsoluteAxisInfo(ABS_MT_TRACKING_ID, &mRawPointerAxes.trackingId);
6096 getAbsoluteAxisInfo(ABS_MT_SLOT, &mRawPointerAxes.slot);
6098 if (mRawPointerAxes.trackingId.valid
6099 && mRawPointerAxes.slot.valid
6100 && mRawPointerAxes.slot.minValue == 0 && mRawPointerAxes.slot.maxValue > 0) {
6101 size_t slotCount = mRawPointerAxes.slot.maxValue + 1;
6102 if (slotCount > MAX_SLOTS) {
6103 ALOGW("MultiTouch Device %s reported %d slots but the framework "
6104 "only supports a maximum of %d slots at this time.",
6105 getDeviceName().string(), slotCount, MAX_SLOTS);
6106 slotCount = MAX_SLOTS;
6107 }
6108 mMultiTouchMotionAccumulator.configure(getDevice(),
6109 slotCount, true /*usingSlotsProtocol*/);
6110 } else {
6111 mMultiTouchMotionAccumulator.configure(getDevice(),
6112 MAX_POINTERS, false /*usingSlotsProtocol*/);
6113 }
6114 }
6116 bool MultiTouchInputMapper::hasStylus() const {
6117 return mMultiTouchMotionAccumulator.hasStylus()
6118 || mTouchButtonAccumulator.hasStylus();
6119 }
6122 // --- JoystickInputMapper ---
6124 JoystickInputMapper::JoystickInputMapper(InputDevice* device) :
6125 InputMapper(device) {
6126 }
6128 JoystickInputMapper::~JoystickInputMapper() {
6129 }
6131 uint32_t JoystickInputMapper::getSources() {
6132 return AINPUT_SOURCE_JOYSTICK;
6133 }
6135 void JoystickInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
6136 InputMapper::populateDeviceInfo(info);
6138 for (size_t i = 0; i < mAxes.size(); i++) {
6139 const Axis& axis = mAxes.valueAt(i);
6140 addMotionRange(axis.axisInfo.axis, axis, info);
6142 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
6143 addMotionRange(axis.axisInfo.highAxis, axis, info);
6145 }
6146 }
6147 }
6149 void JoystickInputMapper::addMotionRange(int32_t axisId, const Axis& axis,
6150 InputDeviceInfo* info) {
6151 info->addMotionRange(axisId, AINPUT_SOURCE_JOYSTICK,
6152 axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution);
6153 /* In order to ease the transition for developers from using the old axes
6154 * to the newer, more semantically correct axes, we'll continue to register
6155 * the old axes as duplicates of their corresponding new ones. */
6156 int32_t compatAxis = getCompatAxis(axisId);
6157 if (compatAxis >= 0) {
6158 info->addMotionRange(compatAxis, AINPUT_SOURCE_JOYSTICK,
6159 axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution);
6160 }
6161 }
6163 /* A mapping from axes the joystick actually has to the axes that should be
6164 * artificially created for compatibility purposes.
6165 * Returns -1 if no compatibility axis is needed. */
6166 int32_t JoystickInputMapper::getCompatAxis(int32_t axis) {
6167 switch(axis) {
6168 case AMOTION_EVENT_AXIS_LTRIGGER:
6169 return AMOTION_EVENT_AXIS_BRAKE;
6170 case AMOTION_EVENT_AXIS_RTRIGGER:
6171 return AMOTION_EVENT_AXIS_GAS;
6172 }
6173 return -1;
6174 }
6176 void JoystickInputMapper::dump(String8& dump) {
6177 dump.append(INDENT2 "Joystick Input Mapper:\n");
6179 dump.append(INDENT3 "Axes:\n");
6180 size_t numAxes = mAxes.size();
6181 for (size_t i = 0; i < numAxes; i++) {
6182 const Axis& axis = mAxes.valueAt(i);
6183 const char* label = getAxisLabel(axis.axisInfo.axis);
6184 if (label) {
6185 dump.appendFormat(INDENT4 "%s", label);
6186 } else {
6187 dump.appendFormat(INDENT4 "%d", axis.axisInfo.axis);
6188 }
6189 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
6190 label = getAxisLabel(axis.axisInfo.highAxis);
6191 if (label) {
6192 dump.appendFormat(" / %s (split at %d)", label, axis.axisInfo.splitValue);
6193 } else {
6194 dump.appendFormat(" / %d (split at %d)", axis.axisInfo.highAxis,
6195 axis.axisInfo.splitValue);
6196 }
6197 } else if (axis.axisInfo.mode == AxisInfo::MODE_INVERT) {
6198 dump.append(" (invert)");
6199 }
6201 dump.appendFormat(": min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f, resolution=%0.5f\n",
6202 axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution);
6203 dump.appendFormat(INDENT4 " scale=%0.5f, offset=%0.5f, "
6204 "highScale=%0.5f, highOffset=%0.5f\n",
6205 axis.scale, axis.offset, axis.highScale, axis.highOffset);
6206 dump.appendFormat(INDENT4 " rawAxis=%d, rawMin=%d, rawMax=%d, "
6207 "rawFlat=%d, rawFuzz=%d, rawResolution=%d\n",
6208 mAxes.keyAt(i), axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue,
6209 axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz, axis.rawAxisInfo.resolution);
6210 }
6211 }
6213 void JoystickInputMapper::configure(nsecs_t when,
6214 const InputReaderConfiguration* config, uint32_t changes) {
6215 InputMapper::configure(when, config, changes);
6217 if (!changes) { // first time only
6218 // Collect all axes.
6219 for (int32_t abs = 0; abs <= ABS_MAX; abs++) {
6220 if (!(getAbsAxisUsage(abs, getDevice()->getClasses())
6221 & INPUT_DEVICE_CLASS_JOYSTICK)) {
6222 continue; // axis must be claimed by a different device
6223 }
6225 RawAbsoluteAxisInfo rawAxisInfo;
6226 getAbsoluteAxisInfo(abs, &rawAxisInfo);
6227 if (rawAxisInfo.valid) {
6228 // Map axis.
6229 AxisInfo axisInfo;
6230 bool explicitlyMapped = !getEventHub()->mapAxis(getDeviceId(), abs, &axisInfo);
6231 if (!explicitlyMapped) {
6232 // Axis is not explicitly mapped, will choose a generic axis later.
6233 axisInfo.mode = AxisInfo::MODE_NORMAL;
6234 axisInfo.axis = -1;
6235 }
6237 // Apply flat override.
6238 int32_t rawFlat = axisInfo.flatOverride < 0
6239 ? rawAxisInfo.flat : axisInfo.flatOverride;
6241 // Calculate scaling factors and limits.
6242 Axis axis;
6243 if (axisInfo.mode == AxisInfo::MODE_SPLIT) {
6244 float scale = 1.0f / (axisInfo.splitValue - rawAxisInfo.minValue);
6245 float highScale = 1.0f / (rawAxisInfo.maxValue - axisInfo.splitValue);
6246 axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
6247 scale, 0.0f, highScale, 0.0f,
6248 0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale,
6249 rawAxisInfo.resolution * scale);
6250 } else if (isCenteredAxis(axisInfo.axis)) {
6251 float scale = 2.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
6252 float offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale;
6253 axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
6254 scale, offset, scale, offset,
6255 -1.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale,
6256 rawAxisInfo.resolution * scale);
6257 } else {
6258 float scale = 1.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
6259 axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
6260 scale, 0.0f, scale, 0.0f,
6261 0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale,
6262 rawAxisInfo.resolution * scale);
6263 }
6265 // To eliminate noise while the joystick is at rest, filter out small variations
6266 // in axis values up front.
6267 axis.filter = axis.flat * 0.25f;
6269 mAxes.add(abs, axis);
6270 }
6271 }
6273 // If there are too many axes, start dropping them.
6274 // Prefer to keep explicitly mapped axes.
6275 if (mAxes.size() > PointerCoords::MAX_AXES) {
6276 ALOGI("Joystick '%s' has %d axes but the framework only supports a maximum of %d.",
6277 getDeviceName().string(), mAxes.size(), PointerCoords::MAX_AXES);
6278 pruneAxes(true);
6279 pruneAxes(false);
6280 }
6282 // Assign generic axis ids to remaining axes.
6283 int32_t nextGenericAxisId = AMOTION_EVENT_AXIS_GENERIC_1;
6284 size_t numAxes = mAxes.size();
6285 for (size_t i = 0; i < numAxes; i++) {
6286 Axis& axis = mAxes.editValueAt(i);
6287 if (axis.axisInfo.axis < 0) {
6288 while (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16
6289 && haveAxis(nextGenericAxisId)) {
6290 nextGenericAxisId += 1;
6291 }
6293 if (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16) {
6294 axis.axisInfo.axis = nextGenericAxisId;
6295 nextGenericAxisId += 1;
6296 } else {
6297 ALOGI("Ignoring joystick '%s' axis %d because all of the generic axis ids "
6298 "have already been assigned to other axes.",
6299 getDeviceName().string(), mAxes.keyAt(i));
6300 mAxes.removeItemsAt(i--);
6301 numAxes -= 1;
6302 }
6303 }
6304 }
6305 }
6306 }
6308 bool JoystickInputMapper::haveAxis(int32_t axisId) {
6309 size_t numAxes = mAxes.size();
6310 for (size_t i = 0; i < numAxes; i++) {
6311 const Axis& axis = mAxes.valueAt(i);
6312 if (axis.axisInfo.axis == axisId
6313 || (axis.axisInfo.mode == AxisInfo::MODE_SPLIT
6314 && axis.axisInfo.highAxis == axisId)) {
6315 return true;
6316 }
6317 }
6318 return false;
6319 }
6321 void JoystickInputMapper::pruneAxes(bool ignoreExplicitlyMappedAxes) {
6322 size_t i = mAxes.size();
6323 while (mAxes.size() > PointerCoords::MAX_AXES && i-- > 0) {
6324 if (ignoreExplicitlyMappedAxes && mAxes.valueAt(i).explicitlyMapped) {
6325 continue;
6326 }
6327 ALOGI("Discarding joystick '%s' axis %d because there are too many axes.",
6328 getDeviceName().string(), mAxes.keyAt(i));
6329 mAxes.removeItemsAt(i);
6330 }
6331 }
6333 bool JoystickInputMapper::isCenteredAxis(int32_t axis) {
6334 switch (axis) {
6335 case AMOTION_EVENT_AXIS_X:
6336 case AMOTION_EVENT_AXIS_Y:
6337 case AMOTION_EVENT_AXIS_Z:
6338 case AMOTION_EVENT_AXIS_RX:
6339 case AMOTION_EVENT_AXIS_RY:
6340 case AMOTION_EVENT_AXIS_RZ:
6341 case AMOTION_EVENT_AXIS_HAT_X:
6342 case AMOTION_EVENT_AXIS_HAT_Y:
6343 case AMOTION_EVENT_AXIS_ORIENTATION:
6344 case AMOTION_EVENT_AXIS_RUDDER:
6345 case AMOTION_EVENT_AXIS_WHEEL:
6346 return true;
6347 default:
6348 return false;
6349 }
6350 }
6352 void JoystickInputMapper::reset(nsecs_t when) {
6353 // Recenter all axes.
6354 size_t numAxes = mAxes.size();
6355 for (size_t i = 0; i < numAxes; i++) {
6356 Axis& axis = mAxes.editValueAt(i);
6357 axis.resetValue();
6358 }
6360 InputMapper::reset(when);
6361 }
6363 void JoystickInputMapper::process(const RawEvent* rawEvent) {
6364 switch (rawEvent->type) {
6365 case EV_ABS: {
6366 ssize_t index = mAxes.indexOfKey(rawEvent->code);
6367 if (index >= 0) {
6368 Axis& axis = mAxes.editValueAt(index);
6369 float newValue, highNewValue;
6370 switch (axis.axisInfo.mode) {
6371 case AxisInfo::MODE_INVERT:
6372 newValue = (axis.rawAxisInfo.maxValue - rawEvent->value)
6373 * axis.scale + axis.offset;
6374 highNewValue = 0.0f;
6375 break;
6376 case AxisInfo::MODE_SPLIT:
6377 if (rawEvent->value < axis.axisInfo.splitValue) {
6378 newValue = (axis.axisInfo.splitValue - rawEvent->value)
6379 * axis.scale + axis.offset;
6380 highNewValue = 0.0f;
6381 } else if (rawEvent->value > axis.axisInfo.splitValue) {
6382 newValue = 0.0f;
6383 highNewValue = (rawEvent->value - axis.axisInfo.splitValue)
6384 * axis.highScale + axis.highOffset;
6385 } else {
6386 newValue = 0.0f;
6387 highNewValue = 0.0f;
6388 }
6389 break;
6390 default:
6391 newValue = rawEvent->value * axis.scale + axis.offset;
6392 highNewValue = 0.0f;
6393 break;
6394 }
6395 axis.newValue = newValue;
6396 axis.highNewValue = highNewValue;
6397 }
6398 break;
6399 }
6401 case EV_SYN:
6402 switch (rawEvent->code) {
6403 case SYN_REPORT:
6404 sync(rawEvent->when, false /*force*/);
6405 break;
6406 }
6407 break;
6408 }
6409 }
6411 void JoystickInputMapper::sync(nsecs_t when, bool force) {
6412 if (!filterAxes(force)) {
6413 return;
6414 }
6416 int32_t metaState = mContext->getGlobalMetaState();
6417 int32_t buttonState = 0;
6419 PointerProperties pointerProperties;
6420 pointerProperties.clear();
6421 pointerProperties.id = 0;
6422 pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_UNKNOWN;
6424 PointerCoords pointerCoords;
6425 pointerCoords.clear();
6427 size_t numAxes = mAxes.size();
6428 for (size_t i = 0; i < numAxes; i++) {
6429 const Axis& axis = mAxes.valueAt(i);
6430 setPointerCoordsAxisValue(&pointerCoords, axis.axisInfo.axis, axis.currentValue);
6431 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
6432 setPointerCoordsAxisValue(&pointerCoords, axis.axisInfo.highAxis,
6433 axis.highCurrentValue);
6434 }
6435 }
6437 // Moving a joystick axis should not wake the device because joysticks can
6438 // be fairly noisy even when not in use. On the other hand, pushing a gamepad
6439 // button will likely wake the device.
6440 // TODO: Use the input device configuration to control this behavior more finely.
6441 uint32_t policyFlags = 0;
6443 NotifyMotionArgs args(when, getDeviceId(), AINPUT_SOURCE_JOYSTICK, policyFlags,
6444 AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
6445 ADISPLAY_ID_NONE, 1, &pointerProperties, &pointerCoords, 0, 0, 0);
6446 getListener()->notifyMotion(&args);
6447 }
6449 void JoystickInputMapper::setPointerCoordsAxisValue(PointerCoords* pointerCoords,
6450 int32_t axis, float value) {
6451 pointerCoords->setAxisValue(axis, value);
6452 /* In order to ease the transition for developers from using the old axes
6453 * to the newer, more semantically correct axes, we'll continue to produce
6454 * values for the old axes as mirrors of the value of their corresponding
6455 * new axes. */
6456 int32_t compatAxis = getCompatAxis(axis);
6457 if (compatAxis >= 0) {
6458 pointerCoords->setAxisValue(compatAxis, value);
6459 }
6460 }
6462 bool JoystickInputMapper::filterAxes(bool force) {
6463 bool atLeastOneSignificantChange = force;
6464 size_t numAxes = mAxes.size();
6465 for (size_t i = 0; i < numAxes; i++) {
6466 Axis& axis = mAxes.editValueAt(i);
6467 if (force || hasValueChangedSignificantly(axis.filter,
6468 axis.newValue, axis.currentValue, axis.min, axis.max)) {
6469 axis.currentValue = axis.newValue;
6470 atLeastOneSignificantChange = true;
6471 }
6472 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
6473 if (force || hasValueChangedSignificantly(axis.filter,
6474 axis.highNewValue, axis.highCurrentValue, axis.min, axis.max)) {
6475 axis.highCurrentValue = axis.highNewValue;
6476 atLeastOneSignificantChange = true;
6477 }
6478 }
6479 }
6480 return atLeastOneSignificantChange;
6481 }
6483 bool JoystickInputMapper::hasValueChangedSignificantly(
6484 float filter, float newValue, float currentValue, float min, float max) {
6485 if (newValue != currentValue) {
6486 // Filter out small changes in value unless the value is converging on the axis
6487 // bounds or center point. This is intended to reduce the amount of information
6488 // sent to applications by particularly noisy joysticks (such as PS3).
6489 if (fabs(newValue - currentValue) > filter
6490 || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, min)
6491 || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, max)
6492 || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, 0)) {
6493 return true;
6494 }
6495 }
6496 return false;
6497 }
6499 bool JoystickInputMapper::hasMovedNearerToValueWithinFilteredRange(
6500 float filter, float newValue, float currentValue, float thresholdValue) {
6501 float newDistance = fabs(newValue - thresholdValue);
6502 if (newDistance < filter) {
6503 float oldDistance = fabs(currentValue - thresholdValue);
6504 if (newDistance < oldDistance) {
6505 return true;
6506 }
6507 }
6508 return false;
6509 }
6511 } // namespace android