michael@0: /* michael@0: * michael@0: * Copyright (c) 1996,1997 michael@0: * Silicon Graphics Computer Systems, Inc. michael@0: * michael@0: * Copyright (c) 1997 michael@0: * Moscow Center for SPARC Technology michael@0: * michael@0: * Copyright (c) 1999 michael@0: * Boris Fomitchev michael@0: * michael@0: * This material is provided "as is", with absolutely no warranty expressed michael@0: * or implied. Any use is at your own risk. michael@0: * michael@0: * Permission to use or copy this software for any purpose is hereby granted michael@0: * without fee, provided the above notices are retained on all copies. michael@0: * Permission to modify the code and to distribute modified code is granted, michael@0: * provided the above notices are retained, and a notice that the code was michael@0: * modified is included with the above copyright notice. michael@0: * michael@0: */ michael@0: michael@0: #include "stlport_prefix.h" michael@0: michael@0: #include michael@0: michael@0: #if defined (__GNUC__) && (defined (__CYGWIN__) || defined (__MINGW32__)) michael@0: # include michael@0: #endif michael@0: michael@0: #if defined (_STLP_PTHREADS) && !defined (_STLP_NO_THREADS) michael@0: # include michael@0: # include michael@0: #endif michael@0: michael@0: #include michael@0: michael@0: #include "lock_free_slist.h" michael@0: michael@0: #if defined (__WATCOMC__) michael@0: # pragma warning 13 9 michael@0: # pragma warning 367 9 michael@0: # pragma warning 368 9 michael@0: #endif michael@0: michael@0: #if defined (_STLP_SGI_THREADS) michael@0: // We test whether threads are in use before locking. michael@0: // Perhaps this should be moved into stl_threads.h, but that michael@0: // probably makes it harder to avoid the procedure call when michael@0: // it isn't needed. michael@0: extern "C" { michael@0: extern int __us_rsthread_malloc; michael@0: } michael@0: #endif michael@0: michael@0: // Specialised debug form of new operator which does not provide "false" michael@0: // memory leaks when run with debug CRT libraries. michael@0: #if defined (_STLP_MSVC) && (_STLP_MSVC >= 1020 && defined (_STLP_DEBUG_ALLOC)) && !defined (_STLP_WCE) michael@0: # include michael@0: inline char* __stlp_new_chunk(size_t __bytes) { michael@0: void *__chunk = _STLP_CHECK_NULL_ALLOC(::operator new(__bytes, __FILE__, __LINE__)); michael@0: return __STATIC_CAST(char*, __chunk); michael@0: } michael@0: inline void __stlp_delete_chunck(void* __p) { ::operator delete(__p, __FILE__, __LINE__); } michael@0: #else michael@0: # ifdef _STLP_NODE_ALLOC_USE_MALLOC michael@0: # include michael@0: inline char* __stlp_new_chunk(size_t __bytes) { michael@0: // do not use _STLP_CHECK_NULL_ALLOC, this macro is dedicated to new operator. michael@0: void *__chunk = _STLP_VENDOR_CSTD::malloc(__bytes); michael@0: if (__chunk == 0) { michael@0: _STLP_THROW_BAD_ALLOC; michael@0: } michael@0: return __STATIC_CAST(char*, __chunk); michael@0: } michael@0: inline void __stlp_delete_chunck(void* __p) { _STLP_VENDOR_CSTD::free(__p); } michael@0: # else michael@0: inline char* __stlp_new_chunk(size_t __bytes) michael@0: { return __STATIC_CAST(char*, _STLP_STD::__stl_new(__bytes)); } michael@0: inline void __stlp_delete_chunck(void* __p) { _STLP_STD::__stl_delete(__p); } michael@0: # endif michael@0: #endif michael@0: michael@0: /* This is an additional atomic operations to the ones already defined in michael@0: * stl/_threads.h, platform should try to support it to improve performance. michael@0: * __add_atomic_t _STLP_ATOMIC_ADD(volatile __add_atomic_t* __target, __add_atomic_t __val) : michael@0: * does *__target = *__target + __val and returns the old *__target value */ michael@0: typedef long __add_atomic_t; michael@0: typedef unsigned long __uadd_atomic_t; michael@0: michael@0: #if defined (__GNUC__) && defined (__i386__) michael@0: inline long _STLP_atomic_add_gcc_x86(long volatile* p, long addend) { michael@0: long result; michael@0: __asm__ __volatile__ michael@0: ("lock; xaddl %1, %0;" michael@0: :"=m" (*p), "=r" (result) michael@0: :"m" (*p), "1" (addend) michael@0: :"cc"); michael@0: return result + addend; michael@0: } michael@0: # define _STLP_ATOMIC_ADD(__dst, __val) _STLP_atomic_add_gcc_x86(__dst, __val) michael@0: #elif defined (_STLP_WIN32THREADS) michael@0: // The Win32 API function InterlockedExchangeAdd is not available on Windows 95. michael@0: # if !defined (_STLP_WIN95_LIKE) michael@0: # if defined (_STLP_NEW_PLATFORM_SDK) michael@0: # define _STLP_ATOMIC_ADD(__dst, __val) InterlockedExchangeAdd(__dst, __val) michael@0: # else michael@0: # define _STLP_ATOMIC_ADD(__dst, __val) InterlockedExchangeAdd(__CONST_CAST(__add_atomic_t*, __dst), __val) michael@0: # endif michael@0: # endif michael@0: #endif michael@0: michael@0: #if defined (__OS400__) michael@0: // dums 02/05/2007: is it really necessary ? michael@0: enum { _ALIGN = 16, _ALIGN_SHIFT = 4 }; michael@0: #else michael@0: enum { _ALIGN = 2 * sizeof(void*), _ALIGN_SHIFT = 2 + sizeof(void*) / 4 }; michael@0: #endif michael@0: michael@0: #define _S_FREELIST_INDEX(__bytes) ((__bytes - size_t(1)) >> (int)_ALIGN_SHIFT) michael@0: michael@0: _STLP_BEGIN_NAMESPACE michael@0: michael@0: // malloc_alloc out-of-memory handling michael@0: static __oom_handler_type __oom_handler = __STATIC_CAST(__oom_handler_type, 0); michael@0: michael@0: #ifdef _STLP_THREADS michael@0: _STLP_mutex __oom_handler_lock; michael@0: #endif michael@0: michael@0: void* _STLP_CALL __malloc_alloc::allocate(size_t __n) michael@0: { michael@0: void *__result = malloc(__n); michael@0: if ( 0 == __result ) { michael@0: __oom_handler_type __my_malloc_handler; michael@0: michael@0: for (;;) { michael@0: { michael@0: #ifdef _STLP_THREADS michael@0: _STLP_auto_lock _l( __oom_handler_lock ); michael@0: #endif michael@0: __my_malloc_handler = __oom_handler; michael@0: } michael@0: if ( 0 == __my_malloc_handler) { michael@0: _STLP_THROW_BAD_ALLOC; michael@0: } michael@0: (*__my_malloc_handler)(); michael@0: __result = malloc(__n); michael@0: if ( __result ) michael@0: return __result; michael@0: } michael@0: } michael@0: return __result; michael@0: } michael@0: michael@0: __oom_handler_type _STLP_CALL __malloc_alloc::set_malloc_handler(__oom_handler_type __f) michael@0: { michael@0: #ifdef _STLP_THREADS michael@0: _STLP_auto_lock _l( __oom_handler_lock ); michael@0: #endif michael@0: __oom_handler_type __old = __oom_handler; michael@0: __oom_handler = __f; michael@0: return __old; michael@0: } michael@0: michael@0: // ******************************************************* michael@0: // Default node allocator. michael@0: // With a reasonable compiler, this should be roughly as fast as the michael@0: // original STL class-specific allocators, but with less fragmentation. michael@0: // michael@0: // Important implementation properties: michael@0: // 1. If the client request an object of size > _MAX_BYTES, the resulting michael@0: // object will be obtained directly from malloc. michael@0: // 2. In all other cases, we allocate an object of size exactly michael@0: // _S_round_up(requested_size). Thus the client has enough size michael@0: // information that we can return the object to the proper free list michael@0: // without permanently losing part of the object. michael@0: // michael@0: michael@0: #define _STLP_NFREELISTS 16 michael@0: michael@0: #if defined (_STLP_LEAKS_PEDANTIC) && defined (_STLP_USE_DYNAMIC_LIB) michael@0: /* michael@0: * We can only do cleanup of the node allocator memory pool if we are michael@0: * sure that the STLport library is used as a shared one as it guaranties michael@0: * the unicity of the node allocator instance. Without that guaranty node michael@0: * allocator instances might exchange memory blocks making the implementation michael@0: * of a cleaning process much more complicated. michael@0: */ michael@0: # define _STLP_DO_CLEAN_NODE_ALLOC michael@0: #endif michael@0: michael@0: /* When STLport is used without multi threaded safety we use the node allocator michael@0: * implementation with locks as locks becomes no-op. The lock free implementation michael@0: * always use system specific atomic operations which are slower than 'normal' michael@0: * ones. michael@0: */ michael@0: #if defined (_STLP_THREADS) && \ michael@0: defined (_STLP_HAS_ATOMIC_FREELIST) && defined (_STLP_ATOMIC_ADD) michael@0: /* michael@0: * We have an implementation of the atomic freelist (_STLP_atomic_freelist) michael@0: * for this architecture and compiler. That means we can use the non-blocking michael@0: * implementation of the node-allocation engine.*/ michael@0: # define _STLP_USE_LOCK_FREE_IMPLEMENTATION michael@0: #endif michael@0: michael@0: #if !defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) michael@0: # if defined (_STLP_THREADS) michael@0: michael@0: class _Node_Alloc_Lock { michael@0: static _STLP_STATIC_MUTEX& _S_Mutex() { michael@0: static _STLP_STATIC_MUTEX mutex _STLP_MUTEX_INITIALIZER; michael@0: return mutex; michael@0: } michael@0: public: michael@0: _Node_Alloc_Lock() { michael@0: # if defined (_STLP_SGI_THREADS) michael@0: if (__us_rsthread_malloc) michael@0: # endif michael@0: _S_Mutex()._M_acquire_lock(); michael@0: } michael@0: michael@0: ~_Node_Alloc_Lock() { michael@0: # if defined (_STLP_SGI_THREADS) michael@0: if (__us_rsthread_malloc) michael@0: # endif michael@0: _S_Mutex()._M_release_lock(); michael@0: } michael@0: }; michael@0: michael@0: # else michael@0: michael@0: class _Node_Alloc_Lock { michael@0: public: michael@0: _Node_Alloc_Lock() { } michael@0: ~_Node_Alloc_Lock() { } michael@0: }; michael@0: michael@0: # endif michael@0: michael@0: struct _Node_alloc_obj { michael@0: _Node_alloc_obj * _M_next; michael@0: }; michael@0: #endif michael@0: michael@0: class __node_alloc_impl { michael@0: static inline size_t _STLP_CALL _S_round_up(size_t __bytes) michael@0: { return (((__bytes) + (size_t)_ALIGN-1) & ~((size_t)_ALIGN - 1)); } michael@0: michael@0: #if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) michael@0: typedef _STLP_atomic_freelist::item _Obj; michael@0: typedef _STLP_atomic_freelist _Freelist; michael@0: typedef _STLP_atomic_freelist _ChunkList; michael@0: michael@0: // Header of blocks of memory that have been allocated as part of michael@0: // a larger chunk but have not yet been chopped up into nodes. michael@0: struct _FreeBlockHeader : public _STLP_atomic_freelist::item { michael@0: char* _M_end; // pointer to end of free memory michael@0: }; michael@0: #else michael@0: typedef _Node_alloc_obj _Obj; michael@0: typedef _Obj* _STLP_VOLATILE _Freelist; michael@0: typedef _Obj* _ChunkList; michael@0: #endif michael@0: michael@0: private: michael@0: // Returns an object of size __n, and optionally adds to size __n free list. michael@0: static _Obj* _S_refill(size_t __n); michael@0: // Allocates a chunk for nobjs of size __p_size. nobjs may be reduced michael@0: // if it is inconvenient to allocate the requested number. michael@0: static char* _S_chunk_alloc(size_t __p_size, int& __nobjs); michael@0: // Chunk allocation state. michael@0: static _Freelist _S_free_list[_STLP_NFREELISTS]; michael@0: // Amount of total allocated memory michael@0: #if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) michael@0: static _STLP_VOLATILE __add_atomic_t _S_heap_size; michael@0: #else michael@0: static size_t _S_heap_size; michael@0: #endif michael@0: michael@0: #if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) michael@0: // List of blocks of free memory michael@0: static _STLP_atomic_freelist _S_free_mem_blocks; michael@0: #else michael@0: // Start of the current free memory buffer michael@0: static char* _S_start_free; michael@0: // End of the current free memory buffer michael@0: static char* _S_end_free; michael@0: #endif michael@0: michael@0: #if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: public: michael@0: // Methods to report alloc/dealloc calls to the counter system. michael@0: # if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) michael@0: typedef _STLP_VOLATILE __stl_atomic_t _AllocCounter; michael@0: # else michael@0: typedef __stl_atomic_t _AllocCounter; michael@0: # endif michael@0: static _AllocCounter& _STLP_CALL _S_alloc_counter(); michael@0: static void _S_alloc_call(); michael@0: static void _S_dealloc_call(); michael@0: michael@0: private: michael@0: // Free all the allocated chuncks of memory michael@0: static void _S_chunk_dealloc(); michael@0: // Beginning of the linked list of allocated chunks of memory michael@0: static _ChunkList _S_chunks; michael@0: #endif /* _STLP_DO_CLEAN_NODE_ALLOC */ michael@0: michael@0: public: michael@0: /* __n must be > 0 */ michael@0: static void* _M_allocate(size_t& __n); michael@0: /* __p may not be 0 */ michael@0: static void _M_deallocate(void *__p, size_t __n); michael@0: }; michael@0: michael@0: #if !defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) michael@0: void* __node_alloc_impl::_M_allocate(size_t& __n) { michael@0: __n = _S_round_up(__n); michael@0: _Obj * _STLP_VOLATILE * __my_free_list = _S_free_list + _S_FREELIST_INDEX(__n); michael@0: _Obj *__r; michael@0: michael@0: // Acquire the lock here with a constructor call. michael@0: // This ensures that it is released in exit or during stack michael@0: // unwinding. michael@0: _Node_Alloc_Lock __lock_instance; michael@0: michael@0: if ( (__r = *__my_free_list) != 0 ) { michael@0: *__my_free_list = __r->_M_next; michael@0: } else { michael@0: __r = _S_refill(__n); michael@0: } michael@0: # if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: _S_alloc_call(); michael@0: # endif michael@0: // lock is released here michael@0: return __r; michael@0: } michael@0: michael@0: void __node_alloc_impl::_M_deallocate(void *__p, size_t __n) { michael@0: _Obj * _STLP_VOLATILE * __my_free_list = _S_free_list + _S_FREELIST_INDEX(__n); michael@0: _Obj * __pobj = __STATIC_CAST(_Obj*, __p); michael@0: michael@0: // acquire lock michael@0: _Node_Alloc_Lock __lock_instance; michael@0: __pobj->_M_next = *__my_free_list; michael@0: *__my_free_list = __pobj; michael@0: michael@0: # if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: _S_dealloc_call(); michael@0: # endif michael@0: // lock is released here michael@0: } michael@0: michael@0: # if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: # define _STLP_OFFSET sizeof(_Obj) michael@0: # else michael@0: # define _STLP_OFFSET 0 michael@0: # endif michael@0: michael@0: /* We allocate memory in large chunks in order to avoid fragmenting */ michael@0: /* the malloc heap too much. */ michael@0: /* We assume that size is properly aligned. */ michael@0: /* We hold the allocation lock. */ michael@0: char* __node_alloc_impl::_S_chunk_alloc(size_t _p_size, int& __nobjs) { michael@0: char* __result; michael@0: size_t __total_bytes = _p_size * __nobjs; michael@0: size_t __bytes_left = _S_end_free - _S_start_free; michael@0: michael@0: if (__bytes_left > 0) { michael@0: if (__bytes_left >= __total_bytes) { michael@0: __result = _S_start_free; michael@0: _S_start_free += __total_bytes; michael@0: return __result; michael@0: } michael@0: michael@0: if (__bytes_left >= _p_size) { michael@0: __nobjs = (int)(__bytes_left / _p_size); michael@0: __total_bytes = _p_size * __nobjs; michael@0: __result = _S_start_free; michael@0: _S_start_free += __total_bytes; michael@0: return __result; michael@0: } michael@0: michael@0: // Try to make use of the left-over piece. michael@0: _Obj* _STLP_VOLATILE* __my_free_list = _S_free_list + _S_FREELIST_INDEX(__bytes_left); michael@0: __REINTERPRET_CAST(_Obj*, _S_start_free)->_M_next = *__my_free_list; michael@0: *__my_free_list = __REINTERPRET_CAST(_Obj*, _S_start_free); michael@0: _S_start_free = _S_end_free = 0; michael@0: } michael@0: michael@0: size_t __bytes_to_get = 2 * __total_bytes + _S_round_up(_S_heap_size) + _STLP_OFFSET; michael@0: michael@0: _STLP_TRY { michael@0: _S_start_free = __stlp_new_chunk(__bytes_to_get); michael@0: } michael@0: #if defined (_STLP_USE_EXCEPTIONS) michael@0: catch (const _STLP_STD::bad_alloc&) { michael@0: _Obj* _STLP_VOLATILE* __my_free_list; michael@0: _Obj* __p; michael@0: // Try to do with what we have. That can't hurt. michael@0: // We do not try smaller requests, since that tends michael@0: // to result in disaster on multi-process machines. michael@0: for (size_t __i = _p_size; __i <= (size_t)_MAX_BYTES; __i += (size_t)_ALIGN) { michael@0: __my_free_list = _S_free_list + _S_FREELIST_INDEX(__i); michael@0: __p = *__my_free_list; michael@0: if (0 != __p) { michael@0: *__my_free_list = __p -> _M_next; michael@0: _S_start_free = __REINTERPRET_CAST(char*, __p); michael@0: _S_end_free = _S_start_free + __i; michael@0: return _S_chunk_alloc(_p_size, __nobjs); michael@0: // Any leftover piece will eventually make it to the michael@0: // right free list. michael@0: } michael@0: } michael@0: __bytes_to_get = __total_bytes + _STLP_OFFSET; michael@0: _S_start_free = __stlp_new_chunk(__bytes_to_get); michael@0: } michael@0: #endif michael@0: michael@0: _S_heap_size += __bytes_to_get >> 4; michael@0: # if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: __REINTERPRET_CAST(_Obj*, _S_start_free)->_M_next = _S_chunks; michael@0: _S_chunks = __REINTERPRET_CAST(_Obj*, _S_start_free); michael@0: # endif michael@0: _S_end_free = _S_start_free + __bytes_to_get; michael@0: _S_start_free += _STLP_OFFSET; michael@0: return _S_chunk_alloc(_p_size, __nobjs); michael@0: } michael@0: michael@0: /* Returns an object of size __n, and optionally adds to size __n free list.*/ michael@0: /* We assume that __n is properly aligned. */ michael@0: /* We hold the allocation lock. */ michael@0: _Node_alloc_obj* __node_alloc_impl::_S_refill(size_t __n) { michael@0: int __nobjs = 20; michael@0: char* __chunk = _S_chunk_alloc(__n, __nobjs); michael@0: michael@0: if (1 == __nobjs) return __REINTERPRET_CAST(_Obj*, __chunk); michael@0: michael@0: _Obj* _STLP_VOLATILE* __my_free_list = _S_free_list + _S_FREELIST_INDEX(__n); michael@0: _Obj* __result; michael@0: _Obj* __current_obj; michael@0: _Obj* __next_obj; michael@0: michael@0: /* Build free list in chunk */ michael@0: __result = __REINTERPRET_CAST(_Obj*, __chunk); michael@0: *__my_free_list = __next_obj = __REINTERPRET_CAST(_Obj*, __chunk + __n); michael@0: for (--__nobjs; --__nobjs; ) { michael@0: __current_obj = __next_obj; michael@0: __next_obj = __REINTERPRET_CAST(_Obj*, __REINTERPRET_CAST(char*, __next_obj) + __n); michael@0: __current_obj->_M_next = __next_obj; michael@0: } michael@0: __next_obj->_M_next = 0; michael@0: return __result; michael@0: } michael@0: michael@0: # if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: void __node_alloc_impl::_S_alloc_call() michael@0: { ++_S_alloc_counter(); } michael@0: michael@0: void __node_alloc_impl::_S_dealloc_call() { michael@0: __stl_atomic_t &counter = _S_alloc_counter(); michael@0: if (--counter == 0) michael@0: { _S_chunk_dealloc(); } michael@0: } michael@0: michael@0: /* We deallocate all the memory chunks */ michael@0: void __node_alloc_impl::_S_chunk_dealloc() { michael@0: _Obj *__pcur = _S_chunks, *__pnext; michael@0: while (__pcur != 0) { michael@0: __pnext = __pcur->_M_next; michael@0: __stlp_delete_chunck(__pcur); michael@0: __pcur = __pnext; michael@0: } michael@0: _S_chunks = 0; michael@0: _S_start_free = _S_end_free = 0; michael@0: _S_heap_size = 0; michael@0: memset(__REINTERPRET_CAST(char*, __CONST_CAST(_Obj**, &_S_free_list[0])), 0, _STLP_NFREELISTS * sizeof(_Obj*)); michael@0: } michael@0: # endif michael@0: michael@0: #else michael@0: michael@0: void* __node_alloc_impl::_M_allocate(size_t& __n) { michael@0: __n = _S_round_up(__n); michael@0: _Obj* __r = _S_free_list[_S_FREELIST_INDEX(__n)].pop(); michael@0: if (__r == 0) michael@0: { __r = _S_refill(__n); } michael@0: michael@0: # if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: _S_alloc_call(); michael@0: # endif michael@0: return __r; michael@0: } michael@0: michael@0: void __node_alloc_impl::_M_deallocate(void *__p, size_t __n) { michael@0: _S_free_list[_S_FREELIST_INDEX(__n)].push(__STATIC_CAST(_Obj*, __p)); michael@0: michael@0: # if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: _S_dealloc_call(); michael@0: # endif michael@0: } michael@0: michael@0: /* Returns an object of size __n, and optionally adds additional ones to */ michael@0: /* freelist of objects of size __n. */ michael@0: /* We assume that __n is properly aligned. */ michael@0: __node_alloc_impl::_Obj* __node_alloc_impl::_S_refill(size_t __n) { michael@0: int __nobjs = 20; michael@0: char* __chunk = _S_chunk_alloc(__n, __nobjs); michael@0: michael@0: if (__nobjs <= 1) michael@0: return __REINTERPRET_CAST(_Obj*, __chunk); michael@0: michael@0: // Push all new nodes (minus first one) onto freelist michael@0: _Obj* __result = __REINTERPRET_CAST(_Obj*, __chunk); michael@0: _Obj* __cur_item = __result; michael@0: _Freelist* __my_freelist = _S_free_list + _S_FREELIST_INDEX(__n); michael@0: for (--__nobjs; __nobjs != 0; --__nobjs) { michael@0: __cur_item = __REINTERPRET_CAST(_Obj*, __REINTERPRET_CAST(char*, __cur_item) + __n); michael@0: __my_freelist->push(__cur_item); michael@0: } michael@0: return __result; michael@0: } michael@0: michael@0: # if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: # define _STLP_OFFSET _ALIGN michael@0: # else michael@0: # define _STLP_OFFSET 0 michael@0: # endif michael@0: michael@0: /* We allocate memory in large chunks in order to avoid fragmenting */ michael@0: /* the malloc heap too much. */ michael@0: /* We assume that size is properly aligned. */ michael@0: char* __node_alloc_impl::_S_chunk_alloc(size_t _p_size, int& __nobjs) { michael@0: # if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: //We are going to add a small memory block to keep all the allocated blocks michael@0: //address, we need to do so respecting the memory alignment. The following michael@0: //static assert checks that the reserved block is big enough to store a pointer. michael@0: _STLP_STATIC_ASSERT(sizeof(_Obj) <= _ALIGN) michael@0: # endif michael@0: char* __result = 0; michael@0: __add_atomic_t __total_bytes = __STATIC_CAST(__add_atomic_t, _p_size) * __nobjs; michael@0: michael@0: _FreeBlockHeader* __block = __STATIC_CAST(_FreeBlockHeader*, _S_free_mem_blocks.pop()); michael@0: if (__block != 0) { michael@0: // We checked a block out and can now mess with it with impugnity. michael@0: // We'll put the remainder back into the list if we're done with it below. michael@0: char* __buf_start = __REINTERPRET_CAST(char*, __block); michael@0: __add_atomic_t __bytes_left = __block->_M_end - __buf_start; michael@0: michael@0: if ((__bytes_left < __total_bytes) && (__bytes_left >= __STATIC_CAST(__add_atomic_t, _p_size))) { michael@0: // There's enough left for at least one object, but not as much as we wanted michael@0: __result = __buf_start; michael@0: __nobjs = (int)(__bytes_left/_p_size); michael@0: __total_bytes = __STATIC_CAST(__add_atomic_t, _p_size) * __nobjs; michael@0: __bytes_left -= __total_bytes; michael@0: __buf_start += __total_bytes; michael@0: } michael@0: else if (__bytes_left >= __total_bytes) { michael@0: // The block has enough left to satisfy all that was asked for michael@0: __result = __buf_start; michael@0: __bytes_left -= __total_bytes; michael@0: __buf_start += __total_bytes; michael@0: } michael@0: michael@0: if (__bytes_left != 0) { michael@0: // There is still some memory left over in block after we satisfied our request. michael@0: if ((__result != 0) && (__bytes_left >= (__add_atomic_t)sizeof(_FreeBlockHeader))) { michael@0: // We were able to allocate at least one object and there is still enough michael@0: // left to put remainder back into list. michael@0: _FreeBlockHeader* __newblock = __REINTERPRET_CAST(_FreeBlockHeader*, __buf_start); michael@0: __newblock->_M_end = __block->_M_end; michael@0: _S_free_mem_blocks.push(__newblock); michael@0: } michael@0: else { michael@0: // We were not able to allocate enough for at least one object. michael@0: // Shove into freelist of nearest (rounded-down!) size. michael@0: size_t __rounded_down = _S_round_up(__bytes_left + 1) - (size_t)_ALIGN; michael@0: if (__rounded_down > 0) michael@0: _S_free_list[_S_FREELIST_INDEX(__rounded_down)].push((_Obj*)__buf_start); michael@0: } michael@0: } michael@0: if (__result != 0) michael@0: return __result; michael@0: } michael@0: michael@0: // We couldn't satisfy it from the list of free blocks, get new memory. michael@0: __add_atomic_t __bytes_to_get = 2 * __total_bytes + michael@0: __STATIC_CAST(__add_atomic_t, michael@0: _S_round_up(__STATIC_CAST(__uadd_atomic_t, _STLP_ATOMIC_ADD(&_S_heap_size, 0)))) + michael@0: _STLP_OFFSET; michael@0: _STLP_TRY { michael@0: __result = __stlp_new_chunk(__bytes_to_get); michael@0: } michael@0: #if defined (_STLP_USE_EXCEPTIONS) michael@0: catch (const bad_alloc&) { michael@0: // Allocation failed; try to canibalize from freelist of a larger object size. michael@0: for (size_t __i = _p_size; __i <= (size_t)_MAX_BYTES; __i += (size_t)_ALIGN) { michael@0: _Obj* __p = _S_free_list[_S_FREELIST_INDEX(__i)].pop(); michael@0: if (0 != __p) { michael@0: if (__i < sizeof(_FreeBlockHeader)) { michael@0: // Not enough to put into list of free blocks, divvy it up here. michael@0: // Use as much as possible for this request and shove remainder into freelist. michael@0: __nobjs = (int)(__i/_p_size); michael@0: __total_bytes = __nobjs * __STATIC_CAST(__add_atomic_t, _p_size); michael@0: size_t __bytes_left = __i - __total_bytes; michael@0: size_t __rounded_down = _S_round_up(__bytes_left+1) - (size_t)_ALIGN; michael@0: if (__rounded_down > 0) { michael@0: _S_free_list[_S_FREELIST_INDEX(__rounded_down)].push(__REINTERPRET_CAST(_Obj*, __REINTERPRET_CAST(char*, __p) + __total_bytes)); michael@0: } michael@0: return __REINTERPRET_CAST(char*, __p); michael@0: } michael@0: else { michael@0: // Add node to list of available blocks and recursively allocate from it. michael@0: _FreeBlockHeader* __newblock = (_FreeBlockHeader*)__p; michael@0: __newblock->_M_end = __REINTERPRET_CAST(char*, __p) + __i; michael@0: _S_free_mem_blocks.push(__newblock); michael@0: return _S_chunk_alloc(_p_size, __nobjs); michael@0: } michael@0: } michael@0: } michael@0: michael@0: // We were not able to find something in a freelist, try to allocate a smaller amount. michael@0: __bytes_to_get = __total_bytes + _STLP_OFFSET; michael@0: __result = __stlp_new_chunk(__bytes_to_get); michael@0: michael@0: // This should either throw an exception or remedy the situation. michael@0: // Thus we assume it succeeded. michael@0: } michael@0: #endif michael@0: // Alignment check michael@0: _STLP_VERBOSE_ASSERT(((__REINTERPRET_CAST(size_t, __result) & __STATIC_CAST(size_t, _ALIGN - 1)) == 0), michael@0: _StlMsg_DBA_DELETED_TWICE) michael@0: _STLP_ATOMIC_ADD(&_S_heap_size, __bytes_to_get >> 4); michael@0: michael@0: # if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: // We have to track the allocated memory chunks for release on exit. michael@0: _S_chunks.push(__REINTERPRET_CAST(_Obj*, __result)); michael@0: __result += _ALIGN; michael@0: __bytes_to_get -= _ALIGN; michael@0: # endif michael@0: michael@0: if (__bytes_to_get > __total_bytes) { michael@0: // Push excess memory allocated in this chunk into list of free memory blocks michael@0: _FreeBlockHeader* __freeblock = __REINTERPRET_CAST(_FreeBlockHeader*, __result + __total_bytes); michael@0: __freeblock->_M_end = __result + __bytes_to_get; michael@0: _S_free_mem_blocks.push(__freeblock); michael@0: } michael@0: return __result; michael@0: } michael@0: michael@0: # if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: void __node_alloc_impl::_S_alloc_call() michael@0: { _STLP_ATOMIC_INCREMENT(&_S_alloc_counter()); } michael@0: michael@0: void __node_alloc_impl::_S_dealloc_call() { michael@0: _STLP_VOLATILE __stl_atomic_t *pcounter = &_S_alloc_counter(); michael@0: if (_STLP_ATOMIC_DECREMENT(pcounter) == 0) michael@0: _S_chunk_dealloc(); michael@0: } michael@0: michael@0: /* We deallocate all the memory chunks */ michael@0: void __node_alloc_impl::_S_chunk_dealloc() { michael@0: // Note: The _Node_alloc_helper class ensures that this function michael@0: // will only be called when the (shared) library is unloaded or the michael@0: // process is shutdown. It's thus not possible that another thread michael@0: // is currently trying to allocate a node (we're not thread-safe here). michael@0: // michael@0: michael@0: // Clear the free blocks and all freelistst. This makes sure that if michael@0: // for some reason more memory is allocated again during shutdown michael@0: // (it'd also be really nasty to leave references to deallocated memory). michael@0: _S_free_mem_blocks.clear(); michael@0: _S_heap_size = 0; michael@0: michael@0: for (size_t __i = 0; __i < _STLP_NFREELISTS; ++__i) { michael@0: _S_free_list[__i].clear(); michael@0: } michael@0: michael@0: // Detach list of chunks and free them all michael@0: _Obj* __chunk = _S_chunks.clear(); michael@0: while (__chunk != 0) { michael@0: _Obj* __next = __chunk->_M_next; michael@0: __stlp_delete_chunck(__chunk); michael@0: __chunk = __next; michael@0: } michael@0: } michael@0: # endif michael@0: michael@0: #endif michael@0: michael@0: #if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: struct __node_alloc_cleaner { michael@0: ~__node_alloc_cleaner() michael@0: { __node_alloc_impl::_S_dealloc_call(); } michael@0: }; michael@0: michael@0: # if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) michael@0: _STLP_VOLATILE __stl_atomic_t& _STLP_CALL michael@0: # else michael@0: __stl_atomic_t& _STLP_CALL michael@0: # endif michael@0: __node_alloc_impl::_S_alloc_counter() { michael@0: static _AllocCounter _S_counter = 1; michael@0: static __node_alloc_cleaner _S_node_alloc_cleaner; michael@0: return _S_counter; michael@0: } michael@0: #endif michael@0: michael@0: #if !defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) michael@0: _Node_alloc_obj * _STLP_VOLATILE michael@0: __node_alloc_impl::_S_free_list[_STLP_NFREELISTS] michael@0: = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; michael@0: // The 16 zeros are necessary to make version 4.1 of the SunPro michael@0: // compiler happy. Otherwise it appears to allocate too little michael@0: // space for the array. michael@0: #else michael@0: _STLP_atomic_freelist __node_alloc_impl::_S_free_list[_STLP_NFREELISTS]; michael@0: _STLP_atomic_freelist __node_alloc_impl::_S_free_mem_blocks; michael@0: #endif michael@0: michael@0: #if !defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) michael@0: char *__node_alloc_impl::_S_start_free = 0; michael@0: char *__node_alloc_impl::_S_end_free = 0; michael@0: #endif michael@0: michael@0: #if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) michael@0: _STLP_VOLATILE __add_atomic_t michael@0: #else michael@0: size_t michael@0: #endif michael@0: __node_alloc_impl::_S_heap_size = 0; michael@0: michael@0: #if defined (_STLP_DO_CLEAN_NODE_ALLOC) michael@0: # if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) michael@0: _STLP_atomic_freelist __node_alloc_impl::_S_chunks; michael@0: # else michael@0: _Node_alloc_obj* __node_alloc_impl::_S_chunks = 0; michael@0: # endif michael@0: #endif michael@0: michael@0: void * _STLP_CALL __node_alloc::_M_allocate(size_t& __n) michael@0: { return __node_alloc_impl::_M_allocate(__n); } michael@0: michael@0: void _STLP_CALL __node_alloc::_M_deallocate(void *__p, size_t __n) michael@0: { __node_alloc_impl::_M_deallocate(__p, __n); } michael@0: michael@0: #if defined (_STLP_PTHREADS) && !defined (_STLP_NO_THREADS) michael@0: michael@0: # define _STLP_DATA_ALIGNMENT 8 michael@0: michael@0: _STLP_MOVE_TO_PRIV_NAMESPACE michael@0: michael@0: // ******************************************************* michael@0: // __perthread_alloc implementation michael@0: union _Pthread_alloc_obj { michael@0: union _Pthread_alloc_obj * __free_list_link; michael@0: char __client_data[_STLP_DATA_ALIGNMENT]; /* The client sees this. */ michael@0: }; michael@0: michael@0: // Pthread allocators don't appear to the client to have meaningful michael@0: // instances. We do in fact need to associate some state with each michael@0: // thread. That state is represented by _Pthread_alloc_per_thread_state. michael@0: michael@0: struct _Pthread_alloc_per_thread_state { michael@0: typedef _Pthread_alloc_obj __obj; michael@0: enum { _S_NFREELISTS = _MAX_BYTES / _STLP_DATA_ALIGNMENT }; michael@0: michael@0: // Free list link for list of available per thread structures. michael@0: // When one of these becomes available for reuse due to thread michael@0: // termination, any objects in its free list remain associated michael@0: // with it. The whole structure may then be used by a newly michael@0: // created thread. michael@0: _Pthread_alloc_per_thread_state() : __next(0) michael@0: { memset((void *)__CONST_CAST(_Pthread_alloc_obj**, __free_list), 0, (size_t)_S_NFREELISTS * sizeof(__obj *)); } michael@0: // Returns an object of size __n, and possibly adds to size n free list. michael@0: void *_M_refill(size_t __n); michael@0: michael@0: _Pthread_alloc_obj* volatile __free_list[_S_NFREELISTS]; michael@0: _Pthread_alloc_per_thread_state *__next; michael@0: // this data member is only to be used by per_thread_allocator, which returns memory to the originating thread. michael@0: _STLP_mutex _M_lock; michael@0: }; michael@0: michael@0: // Pthread-specific allocator. michael@0: class _Pthread_alloc_impl { michael@0: public: // but only for internal use: michael@0: typedef _Pthread_alloc_per_thread_state __state_type; michael@0: typedef char value_type; michael@0: michael@0: // Allocates a chunk for nobjs of size size. nobjs may be reduced michael@0: // if it is inconvenient to allocate the requested number. michael@0: static char *_S_chunk_alloc(size_t __size, size_t &__nobjs, __state_type*); michael@0: michael@0: enum {_S_ALIGN = _STLP_DATA_ALIGNMENT}; michael@0: michael@0: static size_t _S_round_up(size_t __bytes) michael@0: { return (((__bytes) + (int)_S_ALIGN - 1) & ~((int)_S_ALIGN - 1)); } michael@0: static size_t _S_freelist_index(size_t __bytes) michael@0: { return (((__bytes) + (int)_S_ALIGN - 1) / (int)_S_ALIGN - 1); } michael@0: michael@0: private: michael@0: // Chunk allocation state. And other shared state. michael@0: // Protected by _S_chunk_allocator_lock. michael@0: static _STLP_STATIC_MUTEX _S_chunk_allocator_lock; michael@0: static char *_S_start_free; michael@0: static char *_S_end_free; michael@0: static size_t _S_heap_size; michael@0: static __state_type *_S_free_per_thread_states; michael@0: static pthread_key_t _S_key; michael@0: static bool _S_key_initialized; michael@0: // Pthread key under which per thread state is stored. michael@0: // Allocator instances that are currently unclaimed by any thread. michael@0: static void _S_destructor(void *instance); michael@0: // Function to be called on thread exit to reclaim per thread michael@0: // state. michael@0: static __state_type *_S_new_per_thread_state(); michael@0: public: michael@0: // Return a recycled or new per thread state. michael@0: static __state_type *_S_get_per_thread_state(); michael@0: private: michael@0: // ensure that the current thread has an associated michael@0: // per thread state. michael@0: class _M_lock; michael@0: friend class _M_lock; michael@0: class _M_lock { michael@0: public: michael@0: _M_lock () { _S_chunk_allocator_lock._M_acquire_lock(); } michael@0: ~_M_lock () { _S_chunk_allocator_lock._M_release_lock(); } michael@0: }; michael@0: michael@0: public: michael@0: michael@0: /* n must be > 0 */ michael@0: static void * allocate(size_t& __n); michael@0: michael@0: /* p may not be 0 */ michael@0: static void deallocate(void *__p, size_t __n); michael@0: michael@0: // boris : versions for per_thread_allocator michael@0: /* n must be > 0 */ michael@0: static void * allocate(size_t& __n, __state_type* __a); michael@0: michael@0: /* p may not be 0 */ michael@0: static void deallocate(void *__p, size_t __n, __state_type* __a); michael@0: michael@0: static void * reallocate(void *__p, size_t __old_sz, size_t& __new_sz); michael@0: }; michael@0: michael@0: /* Returns an object of size n, and optionally adds to size n free list.*/ michael@0: /* We assume that n is properly aligned. */ michael@0: /* We hold the allocation lock. */ michael@0: void *_Pthread_alloc_per_thread_state::_M_refill(size_t __n) { michael@0: typedef _Pthread_alloc_obj __obj; michael@0: size_t __nobjs = 128; michael@0: char * __chunk = _Pthread_alloc_impl::_S_chunk_alloc(__n, __nobjs, this); michael@0: __obj * volatile * __my_free_list; michael@0: __obj * __result; michael@0: __obj * __current_obj, * __next_obj; michael@0: size_t __i; michael@0: michael@0: if (1 == __nobjs) { michael@0: return __chunk; michael@0: } michael@0: michael@0: __my_free_list = __free_list + _Pthread_alloc_impl::_S_freelist_index(__n); michael@0: michael@0: /* Build free list in chunk */ michael@0: __result = (__obj *)__chunk; michael@0: *__my_free_list = __next_obj = (__obj *)(__chunk + __n); michael@0: for (__i = 1; ; ++__i) { michael@0: __current_obj = __next_obj; michael@0: __next_obj = (__obj *)((char *)__next_obj + __n); michael@0: if (__nobjs - 1 == __i) { michael@0: __current_obj -> __free_list_link = 0; michael@0: break; michael@0: } else { michael@0: __current_obj -> __free_list_link = __next_obj; michael@0: } michael@0: } michael@0: return __result; michael@0: } michael@0: michael@0: void _Pthread_alloc_impl::_S_destructor(void *__instance) { michael@0: _M_lock __lock_instance; // Need to acquire lock here. michael@0: _Pthread_alloc_per_thread_state* __s = (_Pthread_alloc_per_thread_state*)__instance; michael@0: __s -> __next = _S_free_per_thread_states; michael@0: _S_free_per_thread_states = __s; michael@0: } michael@0: michael@0: _Pthread_alloc_per_thread_state* _Pthread_alloc_impl::_S_new_per_thread_state() { michael@0: /* lock already held here. */ michael@0: if (0 != _S_free_per_thread_states) { michael@0: _Pthread_alloc_per_thread_state *__result = _S_free_per_thread_states; michael@0: _S_free_per_thread_states = _S_free_per_thread_states -> __next; michael@0: return __result; michael@0: } michael@0: else { michael@0: return new _Pthread_alloc_per_thread_state; michael@0: } michael@0: } michael@0: michael@0: _Pthread_alloc_per_thread_state* _Pthread_alloc_impl::_S_get_per_thread_state() { michael@0: int __ret_code; michael@0: __state_type* __result; michael@0: michael@0: if (_S_key_initialized && (__result = (__state_type*) pthread_getspecific(_S_key))) michael@0: return __result; michael@0: michael@0: /*REFERENCED*/ michael@0: _M_lock __lock_instance; // Need to acquire lock here. michael@0: if (!_S_key_initialized) { michael@0: if (pthread_key_create(&_S_key, _S_destructor)) { michael@0: _STLP_THROW_BAD_ALLOC; // failed michael@0: } michael@0: _S_key_initialized = true; michael@0: } michael@0: michael@0: __result = _S_new_per_thread_state(); michael@0: __ret_code = pthread_setspecific(_S_key, __result); michael@0: if (__ret_code) { michael@0: if (__ret_code == ENOMEM) { michael@0: _STLP_THROW_BAD_ALLOC; michael@0: } else { michael@0: // EINVAL michael@0: _STLP_ABORT(); michael@0: } michael@0: } michael@0: return __result; michael@0: } michael@0: michael@0: /* We allocate memory in large chunks in order to avoid fragmenting */ michael@0: /* the malloc heap too much. */ michael@0: /* We assume that size is properly aligned. */ michael@0: char *_Pthread_alloc_impl::_S_chunk_alloc(size_t __p_size, size_t &__nobjs, _Pthread_alloc_per_thread_state *__a) { michael@0: typedef _Pthread_alloc_obj __obj; michael@0: { michael@0: char * __result; michael@0: size_t __total_bytes; michael@0: size_t __bytes_left; michael@0: /*REFERENCED*/ michael@0: _M_lock __lock_instance; // Acquire lock for this routine michael@0: michael@0: __total_bytes = __p_size * __nobjs; michael@0: __bytes_left = _S_end_free - _S_start_free; michael@0: if (__bytes_left >= __total_bytes) { michael@0: __result = _S_start_free; michael@0: _S_start_free += __total_bytes; michael@0: return __result; michael@0: } else if (__bytes_left >= __p_size) { michael@0: __nobjs = __bytes_left/__p_size; michael@0: __total_bytes = __p_size * __nobjs; michael@0: __result = _S_start_free; michael@0: _S_start_free += __total_bytes; michael@0: return __result; michael@0: } else { michael@0: size_t __bytes_to_get = 2 * __total_bytes + _S_round_up(_S_heap_size); michael@0: // Try to make use of the left-over piece. michael@0: if (__bytes_left > 0) { michael@0: __obj * volatile * __my_free_list = __a->__free_list + _S_freelist_index(__bytes_left); michael@0: ((__obj *)_S_start_free) -> __free_list_link = *__my_free_list; michael@0: *__my_free_list = (__obj *)_S_start_free; michael@0: } michael@0: # ifdef _SGI_SOURCE michael@0: // Try to get memory that's aligned on something like a michael@0: // cache line boundary, so as to avoid parceling out michael@0: // parts of the same line to different threads and thus michael@0: // possibly different processors. michael@0: { michael@0: const int __cache_line_size = 128; // probable upper bound michael@0: __bytes_to_get &= ~(__cache_line_size-1); michael@0: _S_start_free = (char *)memalign(__cache_line_size, __bytes_to_get); michael@0: if (0 == _S_start_free) { michael@0: _S_start_free = (char *)__malloc_alloc::allocate(__bytes_to_get); michael@0: } michael@0: } michael@0: # else /* !SGI_SOURCE */ michael@0: _S_start_free = (char *)__malloc_alloc::allocate(__bytes_to_get); michael@0: # endif michael@0: _S_heap_size += __bytes_to_get >> 4; michael@0: _S_end_free = _S_start_free + __bytes_to_get; michael@0: } michael@0: } michael@0: // lock is released here michael@0: return _S_chunk_alloc(__p_size, __nobjs, __a); michael@0: } michael@0: michael@0: michael@0: /* n must be > 0 */ michael@0: void *_Pthread_alloc_impl::allocate(size_t& __n) { michael@0: typedef _Pthread_alloc_obj __obj; michael@0: __obj * volatile * __my_free_list; michael@0: __obj * __result; michael@0: __state_type* __a; michael@0: michael@0: if (__n > _MAX_BYTES) { michael@0: return __malloc_alloc::allocate(__n); michael@0: } michael@0: michael@0: __n = _S_round_up(__n); michael@0: __a = _S_get_per_thread_state(); michael@0: michael@0: __my_free_list = __a->__free_list + _S_freelist_index(__n); michael@0: __result = *__my_free_list; michael@0: if (__result == 0) { michael@0: void *__r = __a->_M_refill(__n); michael@0: return __r; michael@0: } michael@0: *__my_free_list = __result->__free_list_link; michael@0: return __result; michael@0: }; michael@0: michael@0: /* p may not be 0 */ michael@0: void _Pthread_alloc_impl::deallocate(void *__p, size_t __n) { michael@0: typedef _Pthread_alloc_obj __obj; michael@0: __obj *__q = (__obj *)__p; michael@0: __obj * volatile * __my_free_list; michael@0: __state_type* __a; michael@0: michael@0: if (__n > _MAX_BYTES) { michael@0: __malloc_alloc::deallocate(__p, __n); michael@0: return; michael@0: } michael@0: michael@0: __a = _S_get_per_thread_state(); michael@0: michael@0: __my_free_list = __a->__free_list + _S_freelist_index(__n); michael@0: __q -> __free_list_link = *__my_free_list; michael@0: *__my_free_list = __q; michael@0: } michael@0: michael@0: // boris : versions for per_thread_allocator michael@0: /* n must be > 0 */ michael@0: void *_Pthread_alloc_impl::allocate(size_t& __n, __state_type* __a) { michael@0: typedef _Pthread_alloc_obj __obj; michael@0: __obj * volatile * __my_free_list; michael@0: __obj * __result; michael@0: michael@0: if (__n > _MAX_BYTES) { michael@0: return __malloc_alloc::allocate(__n); michael@0: } michael@0: __n = _S_round_up(__n); michael@0: michael@0: // boris : here, we have to lock per thread state, as we may be getting memory from michael@0: // different thread pool. michael@0: _STLP_auto_lock __lock(__a->_M_lock); michael@0: michael@0: __my_free_list = __a->__free_list + _S_freelist_index(__n); michael@0: __result = *__my_free_list; michael@0: if (__result == 0) { michael@0: void *__r = __a->_M_refill(__n); michael@0: return __r; michael@0: } michael@0: *__my_free_list = __result->__free_list_link; michael@0: return __result; michael@0: }; michael@0: michael@0: /* p may not be 0 */ michael@0: void _Pthread_alloc_impl::deallocate(void *__p, size_t __n, __state_type* __a) { michael@0: typedef _Pthread_alloc_obj __obj; michael@0: __obj *__q = (__obj *)__p; michael@0: __obj * volatile * __my_free_list; michael@0: michael@0: if (__n > _MAX_BYTES) { michael@0: __malloc_alloc::deallocate(__p, __n); michael@0: return; michael@0: } michael@0: michael@0: // boris : here, we have to lock per thread state, as we may be returning memory from michael@0: // different thread. michael@0: _STLP_auto_lock __lock(__a->_M_lock); michael@0: michael@0: __my_free_list = __a->__free_list + _S_freelist_index(__n); michael@0: __q -> __free_list_link = *__my_free_list; michael@0: *__my_free_list = __q; michael@0: } michael@0: michael@0: void *_Pthread_alloc_impl::reallocate(void *__p, size_t __old_sz, size_t& __new_sz) { michael@0: void * __result; michael@0: size_t __copy_sz; michael@0: michael@0: if (__old_sz > _MAX_BYTES && __new_sz > _MAX_BYTES) { michael@0: return realloc(__p, __new_sz); michael@0: } michael@0: michael@0: if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) return __p; michael@0: __result = allocate(__new_sz); michael@0: __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz; michael@0: memcpy(__result, __p, __copy_sz); michael@0: deallocate(__p, __old_sz); michael@0: return __result; michael@0: } michael@0: michael@0: _Pthread_alloc_per_thread_state* _Pthread_alloc_impl::_S_free_per_thread_states = 0; michael@0: pthread_key_t _Pthread_alloc_impl::_S_key = 0; michael@0: _STLP_STATIC_MUTEX _Pthread_alloc_impl::_S_chunk_allocator_lock _STLP_MUTEX_INITIALIZER; michael@0: bool _Pthread_alloc_impl::_S_key_initialized = false; michael@0: char *_Pthread_alloc_impl::_S_start_free = 0; michael@0: char *_Pthread_alloc_impl::_S_end_free = 0; michael@0: size_t _Pthread_alloc_impl::_S_heap_size = 0; michael@0: michael@0: void * _STLP_CALL _Pthread_alloc::allocate(size_t& __n) michael@0: { return _Pthread_alloc_impl::allocate(__n); } michael@0: void _STLP_CALL _Pthread_alloc::deallocate(void *__p, size_t __n) michael@0: { _Pthread_alloc_impl::deallocate(__p, __n); } michael@0: void * _STLP_CALL _Pthread_alloc::allocate(size_t& __n, __state_type* __a) michael@0: { return _Pthread_alloc_impl::allocate(__n, __a); } michael@0: void _STLP_CALL _Pthread_alloc::deallocate(void *__p, size_t __n, __state_type* __a) michael@0: { _Pthread_alloc_impl::deallocate(__p, __n, __a); } michael@0: void * _STLP_CALL _Pthread_alloc::reallocate(void *__p, size_t __old_sz, size_t& __new_sz) michael@0: { return _Pthread_alloc_impl::reallocate(__p, __old_sz, __new_sz); } michael@0: _Pthread_alloc_per_thread_state* _STLP_CALL _Pthread_alloc::_S_get_per_thread_state() michael@0: { return _Pthread_alloc_impl::_S_get_per_thread_state(); } michael@0: michael@0: _STLP_MOVE_TO_STD_NAMESPACE michael@0: michael@0: #endif michael@0: michael@0: _STLP_END_NAMESPACE michael@0: michael@0: #undef _S_FREELIST_INDEX