michael@0: michael@0: /* michael@0: * Copyright 2012 Google Inc. michael@0: * michael@0: * Use of this source code is governed by a BSD-style license that can be michael@0: * found in the LICENSE file. michael@0: */ michael@0: #include "SkBitmapProcState.h" michael@0: #include "SkBitmapProcState_filter.h" michael@0: #include "SkColorPriv.h" michael@0: #include "SkFilterProc.h" michael@0: #include "SkPaint.h" michael@0: #include "SkShader.h" // for tilemodes michael@0: #include "SkUtilsArm.h" michael@0: michael@0: // Required to ensure the table is part of the final binary. michael@0: extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; michael@0: extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[]; michael@0: michael@0: #define NAME_WRAP(x) x ## _neon michael@0: #include "SkBitmapProcState_filter_neon.h" michael@0: #include "SkBitmapProcState_procs.h" michael@0: michael@0: const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[] = { michael@0: S32_opaque_D32_nofilter_DXDY_neon, michael@0: S32_alpha_D32_nofilter_DXDY_neon, michael@0: S32_opaque_D32_nofilter_DX_neon, michael@0: S32_alpha_D32_nofilter_DX_neon, michael@0: S32_opaque_D32_filter_DXDY_neon, michael@0: S32_alpha_D32_filter_DXDY_neon, michael@0: S32_opaque_D32_filter_DX_neon, michael@0: S32_alpha_D32_filter_DX_neon, michael@0: michael@0: S16_opaque_D32_nofilter_DXDY_neon, michael@0: S16_alpha_D32_nofilter_DXDY_neon, michael@0: S16_opaque_D32_nofilter_DX_neon, michael@0: S16_alpha_D32_nofilter_DX_neon, michael@0: S16_opaque_D32_filter_DXDY_neon, michael@0: S16_alpha_D32_filter_DXDY_neon, michael@0: S16_opaque_D32_filter_DX_neon, michael@0: S16_alpha_D32_filter_DX_neon, michael@0: michael@0: SI8_opaque_D32_nofilter_DXDY_neon, michael@0: SI8_alpha_D32_nofilter_DXDY_neon, michael@0: SI8_opaque_D32_nofilter_DX_neon, michael@0: SI8_alpha_D32_nofilter_DX_neon, michael@0: SI8_opaque_D32_filter_DXDY_neon, michael@0: SI8_alpha_D32_filter_DXDY_neon, michael@0: SI8_opaque_D32_filter_DX_neon, michael@0: SI8_alpha_D32_filter_DX_neon, michael@0: michael@0: S4444_opaque_D32_nofilter_DXDY_neon, michael@0: S4444_alpha_D32_nofilter_DXDY_neon, michael@0: S4444_opaque_D32_nofilter_DX_neon, michael@0: S4444_alpha_D32_nofilter_DX_neon, michael@0: S4444_opaque_D32_filter_DXDY_neon, michael@0: S4444_alpha_D32_filter_DXDY_neon, michael@0: S4444_opaque_D32_filter_DX_neon, michael@0: S4444_alpha_D32_filter_DX_neon, michael@0: michael@0: // A8 treats alpha/opauqe the same (equally efficient) michael@0: SA8_alpha_D32_nofilter_DXDY_neon, michael@0: SA8_alpha_D32_nofilter_DXDY_neon, michael@0: SA8_alpha_D32_nofilter_DX_neon, michael@0: SA8_alpha_D32_nofilter_DX_neon, michael@0: SA8_alpha_D32_filter_DXDY_neon, michael@0: SA8_alpha_D32_filter_DXDY_neon, michael@0: SA8_alpha_D32_filter_DX_neon, michael@0: SA8_alpha_D32_filter_DX_neon michael@0: }; michael@0: michael@0: const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[] = { michael@0: S32_D16_nofilter_DXDY_neon, michael@0: S32_D16_nofilter_DX_neon, michael@0: S32_D16_filter_DXDY_neon, michael@0: S32_D16_filter_DX_neon, michael@0: michael@0: S16_D16_nofilter_DXDY_neon, michael@0: S16_D16_nofilter_DX_neon, michael@0: S16_D16_filter_DXDY_neon, michael@0: S16_D16_filter_DX_neon, michael@0: michael@0: SI8_D16_nofilter_DXDY_neon, michael@0: SI8_D16_nofilter_DX_neon, michael@0: SI8_D16_filter_DXDY_neon, michael@0: SI8_D16_filter_DX_neon, michael@0: michael@0: // Don't support 4444 -> 565 michael@0: NULL, NULL, NULL, NULL, michael@0: // Don't support A8 -> 565 michael@0: NULL, NULL, NULL, NULL michael@0: }; michael@0: michael@0: /////////////////////////////////////////////////////////////////////////////// michael@0: michael@0: #include michael@0: #include "SkConvolver.h" michael@0: michael@0: // Convolves horizontally along a single row. The row data is given in michael@0: // |srcData| and continues for the numValues() of the filter. michael@0: void convolveHorizontally_neon(const unsigned char* srcData, michael@0: const SkConvolutionFilter1D& filter, michael@0: unsigned char* outRow, michael@0: bool hasAlpha) { michael@0: // Loop over each pixel on this row in the output image. michael@0: int numValues = filter.numValues(); michael@0: for (int outX = 0; outX < numValues; outX++) { michael@0: uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); michael@0: uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); michael@0: uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); michael@0: uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); michael@0: // Get the filter that determines the current output pixel. michael@0: int filterOffset, filterLength; michael@0: const SkConvolutionFilter1D::ConvolutionFixed* filterValues = michael@0: filter.FilterForValue(outX, &filterOffset, &filterLength); michael@0: michael@0: // Compute the first pixel in this row that the filter affects. It will michael@0: // touch |filterLength| pixels (4 bytes each) after this. michael@0: const unsigned char* rowToFilter = &srcData[filterOffset * 4]; michael@0: michael@0: // Apply the filter to the row to get the destination pixel in |accum|. michael@0: int32x4_t accum = vdupq_n_s32(0); michael@0: for (int filterX = 0; filterX < filterLength >> 2; filterX++) { michael@0: // Load 4 coefficients michael@0: int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; michael@0: coeffs = vld1_s16(filterValues); michael@0: coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); michael@0: coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); michael@0: coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); michael@0: coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); michael@0: michael@0: // Load pixels and calc michael@0: uint8x16_t pixels = vld1q_u8(rowToFilter); michael@0: int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); michael@0: int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); michael@0: michael@0: int16x4_t p0_src = vget_low_s16(p01_16); michael@0: int16x4_t p1_src = vget_high_s16(p01_16); michael@0: int16x4_t p2_src = vget_low_s16(p23_16); michael@0: int16x4_t p3_src = vget_high_s16(p23_16); michael@0: michael@0: int32x4_t p0 = vmull_s16(p0_src, coeff0); michael@0: int32x4_t p1 = vmull_s16(p1_src, coeff1); michael@0: int32x4_t p2 = vmull_s16(p2_src, coeff2); michael@0: int32x4_t p3 = vmull_s16(p3_src, coeff3); michael@0: michael@0: accum += p0; michael@0: accum += p1; michael@0: accum += p2; michael@0: accum += p3; michael@0: michael@0: // Advance the pointers michael@0: rowToFilter += 16; michael@0: filterValues += 4; michael@0: } michael@0: int r = filterLength & 3; michael@0: if (r) { michael@0: const uint16_t mask[4][4] = { michael@0: {0, 0, 0, 0}, michael@0: {0xFFFF, 0, 0, 0}, michael@0: {0xFFFF, 0xFFFF, 0, 0}, michael@0: {0xFFFF, 0xFFFF, 0xFFFF, 0} michael@0: }; michael@0: uint16x4_t coeffs; michael@0: int16x4_t coeff0, coeff1, coeff2; michael@0: coeffs = vld1_u16(reinterpret_cast(filterValues)); michael@0: coeffs &= vld1_u16(&mask[r][0]); michael@0: coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0)); michael@0: coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1)); michael@0: coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2)); michael@0: michael@0: // Load pixels and calc michael@0: uint8x16_t pixels = vld1q_u8(rowToFilter); michael@0: int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); michael@0: int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); michael@0: int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0); michael@0: int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1); michael@0: int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2); michael@0: michael@0: accum += p0; michael@0: accum += p1; michael@0: accum += p2; michael@0: } michael@0: michael@0: // Bring this value back in range. All of the filter scaling factors michael@0: // are in fixed point with kShiftBits bits of fractional part. michael@0: accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); michael@0: michael@0: // Pack and store the new pixel. michael@0: int16x4_t accum16 = vqmovn_s32(accum); michael@0: uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16)); michael@0: vst1_lane_u32(reinterpret_cast(outRow), vreinterpret_u32_u8(accum8), 0); michael@0: outRow += 4; michael@0: } michael@0: } michael@0: michael@0: // Does vertical convolution to produce one output row. The filter values and michael@0: // length are given in the first two parameters. These are applied to each michael@0: // of the rows pointed to in the |sourceDataRows| array, with each row michael@0: // being |pixelWidth| wide. michael@0: // michael@0: // The output must have room for |pixelWidth * 4| bytes. michael@0: template michael@0: void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, michael@0: int filterLength, michael@0: unsigned char* const* sourceDataRows, michael@0: int pixelWidth, michael@0: unsigned char* outRow) { michael@0: int width = pixelWidth & ~3; michael@0: michael@0: int32x4_t accum0, accum1, accum2, accum3; michael@0: int16x4_t coeff16; michael@0: michael@0: // Output four pixels per iteration (16 bytes). michael@0: for (int outX = 0; outX < width; outX += 4) { michael@0: michael@0: // Accumulated result for each pixel. 32 bits per RGBA channel. michael@0: accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0); michael@0: michael@0: // Convolve with one filter coefficient per iteration. michael@0: for (int filterY = 0; filterY < filterLength; filterY++) { michael@0: michael@0: // Duplicate the filter coefficient 4 times. michael@0: // [16] cj cj cj cj michael@0: coeff16 = vdup_n_s16(filterValues[filterY]); michael@0: michael@0: // Load four pixels (16 bytes) together. michael@0: // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 michael@0: uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]); michael@0: michael@0: int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); michael@0: int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); michael@0: int16x4_t src16_0 = vget_low_s16(src16_01); michael@0: int16x4_t src16_1 = vget_high_s16(src16_01); michael@0: int16x4_t src16_2 = vget_low_s16(src16_23); michael@0: int16x4_t src16_3 = vget_high_s16(src16_23); michael@0: michael@0: accum0 += vmull_s16(src16_0, coeff16); michael@0: accum1 += vmull_s16(src16_1, coeff16); michael@0: accum2 += vmull_s16(src16_2, coeff16); michael@0: accum3 += vmull_s16(src16_3, coeff16); michael@0: } michael@0: michael@0: // Shift right for fixed point implementation. michael@0: accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); michael@0: accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); michael@0: accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); michael@0: accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits); michael@0: michael@0: // Packing 32 bits |accum| to 16 bits per channel (signed saturation). michael@0: // [16] a1 b1 g1 r1 a0 b0 g0 r0 michael@0: int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); michael@0: // [16] a3 b3 g3 r3 a2 b2 g2 r2 michael@0: int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3)); michael@0: michael@0: // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). michael@0: // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 michael@0: uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); michael@0: michael@0: if (hasAlpha) { michael@0: // Compute the max(ri, gi, bi) for each pixel. michael@0: // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 michael@0: uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); michael@0: // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 michael@0: uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g michael@0: // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 michael@0: a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); michael@0: // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 michael@0: b = vmaxq_u8(a, b); // Max of r and g and b. michael@0: // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 michael@0: b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); michael@0: michael@0: // Make sure the value of alpha channel is always larger than maximum michael@0: // value of color channels. michael@0: accum8 = vmaxq_u8(b, accum8); michael@0: } else { michael@0: // Set value of alpha channels to 0xFF. michael@0: accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); michael@0: } michael@0: michael@0: // Store the convolution result (16 bytes) and advance the pixel pointers. michael@0: vst1q_u8(outRow, accum8); michael@0: outRow += 16; michael@0: } michael@0: michael@0: // Process the leftovers when the width of the output is not divisible michael@0: // by 4, that is at most 3 pixels. michael@0: int r = pixelWidth & 3; michael@0: if (r) { michael@0: michael@0: accum0 = accum1 = accum2 = vdupq_n_s32(0); michael@0: michael@0: for (int filterY = 0; filterY < filterLength; ++filterY) { michael@0: coeff16 = vdup_n_s16(filterValues[filterY]); michael@0: michael@0: // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 michael@0: uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]); michael@0: michael@0: int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); michael@0: int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); michael@0: int16x4_t src16_0 = vget_low_s16(src16_01); michael@0: int16x4_t src16_1 = vget_high_s16(src16_01); michael@0: int16x4_t src16_2 = vget_low_s16(src16_23); michael@0: michael@0: accum0 += vmull_s16(src16_0, coeff16); michael@0: accum1 += vmull_s16(src16_1, coeff16); michael@0: accum2 += vmull_s16(src16_2, coeff16); michael@0: } michael@0: michael@0: accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); michael@0: accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); michael@0: accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); michael@0: michael@0: int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); michael@0: int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2)); michael@0: michael@0: uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); michael@0: michael@0: if (hasAlpha) { michael@0: // Compute the max(ri, gi, bi) for each pixel. michael@0: // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 michael@0: uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); michael@0: // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 michael@0: uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g michael@0: // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 michael@0: a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); michael@0: // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 michael@0: b = vmaxq_u8(a, b); // Max of r and g and b. michael@0: // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 michael@0: b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); michael@0: michael@0: // Make sure the value of alpha channel is always larger than maximum michael@0: // value of color channels. michael@0: accum8 = vmaxq_u8(b, accum8); michael@0: } else { michael@0: // Set value of alpha channels to 0xFF. michael@0: accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); michael@0: } michael@0: michael@0: switch(r) { michael@0: case 1: michael@0: vst1q_lane_u32(reinterpret_cast(outRow), vreinterpretq_u32_u8(accum8), 0); michael@0: break; michael@0: case 2: michael@0: vst1_u32(reinterpret_cast(outRow), michael@0: vreinterpret_u32_u8(vget_low_u8(accum8))); michael@0: break; michael@0: case 3: michael@0: vst1_u32(reinterpret_cast(outRow), michael@0: vreinterpret_u32_u8(vget_low_u8(accum8))); michael@0: vst1q_lane_u32(reinterpret_cast(outRow+8), vreinterpretq_u32_u8(accum8), 2); michael@0: break; michael@0: } michael@0: } michael@0: } michael@0: michael@0: void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, michael@0: int filterLength, michael@0: unsigned char* const* sourceDataRows, michael@0: int pixelWidth, michael@0: unsigned char* outRow, michael@0: bool sourceHasAlpha) { michael@0: if (sourceHasAlpha) { michael@0: convolveVertically_neon(filterValues, filterLength, michael@0: sourceDataRows, pixelWidth, michael@0: outRow); michael@0: } else { michael@0: convolveVertically_neon(filterValues, filterLength, michael@0: sourceDataRows, pixelWidth, michael@0: outRow); michael@0: } michael@0: } michael@0: michael@0: // Convolves horizontally along four rows. The row data is given in michael@0: // |src_data| and continues for the num_values() of the filter. michael@0: // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please michael@0: // refer to that function for detailed comments. michael@0: void convolve4RowsHorizontally_neon(const unsigned char* srcData[4], michael@0: const SkConvolutionFilter1D& filter, michael@0: unsigned char* outRow[4]) { michael@0: michael@0: uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); michael@0: uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); michael@0: uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); michael@0: uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); michael@0: int num_values = filter.numValues(); michael@0: michael@0: int filterOffset, filterLength; michael@0: // |mask| will be used to decimate all extra filter coefficients that are michael@0: // loaded by SIMD when |filter_length| is not divisible by 4. michael@0: // mask[0] is not used in following algorithm. michael@0: const uint16_t mask[4][4] = { michael@0: {0, 0, 0, 0}, michael@0: {0xFFFF, 0, 0, 0}, michael@0: {0xFFFF, 0xFFFF, 0, 0}, michael@0: {0xFFFF, 0xFFFF, 0xFFFF, 0} michael@0: }; michael@0: michael@0: // Output one pixel each iteration, calculating all channels (RGBA) together. michael@0: for (int outX = 0; outX < num_values; outX++) { michael@0: michael@0: const SkConvolutionFilter1D::ConvolutionFixed* filterValues = michael@0: filter.FilterForValue(outX, &filterOffset, &filterLength); michael@0: michael@0: // four pixels in a column per iteration. michael@0: int32x4_t accum0 = vdupq_n_s32(0); michael@0: int32x4_t accum1 = vdupq_n_s32(0); michael@0: int32x4_t accum2 = vdupq_n_s32(0); michael@0: int32x4_t accum3 = vdupq_n_s32(0); michael@0: michael@0: int start = (filterOffset<<2); michael@0: michael@0: // We will load and accumulate with four coefficients per iteration. michael@0: for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) { michael@0: int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; michael@0: michael@0: coeffs = vld1_s16(filterValues); michael@0: coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); michael@0: coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); michael@0: coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); michael@0: coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); michael@0: michael@0: uint8x16_t pixels; michael@0: int16x8_t p01_16, p23_16; michael@0: int32x4_t p0, p1, p2, p3; michael@0: michael@0: michael@0: #define ITERATION(src, accum) \ michael@0: pixels = vld1q_u8(src); \ michael@0: p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \ michael@0: p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \ michael@0: p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \ michael@0: p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \ michael@0: p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \ michael@0: p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \ michael@0: accum += p0; \ michael@0: accum += p1; \ michael@0: accum += p2; \ michael@0: accum += p3 michael@0: michael@0: ITERATION(srcData[0] + start, accum0); michael@0: ITERATION(srcData[1] + start, accum1); michael@0: ITERATION(srcData[2] + start, accum2); michael@0: ITERATION(srcData[3] + start, accum3); michael@0: michael@0: start += 16; michael@0: filterValues += 4; michael@0: } michael@0: michael@0: int r = filterLength & 3; michael@0: if (r) { michael@0: int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; michael@0: coeffs = vld1_s16(filterValues); michael@0: coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0])); michael@0: coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); michael@0: coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); michael@0: coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); michael@0: coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); michael@0: michael@0: uint8x16_t pixels; michael@0: int16x8_t p01_16, p23_16; michael@0: int32x4_t p0, p1, p2, p3; michael@0: michael@0: ITERATION(srcData[0] + start, accum0); michael@0: ITERATION(srcData[1] + start, accum1); michael@0: ITERATION(srcData[2] + start, accum2); michael@0: ITERATION(srcData[3] + start, accum3); michael@0: } michael@0: michael@0: int16x4_t accum16; michael@0: uint8x8_t res0, res1, res2, res3; michael@0: michael@0: #define PACK_RESULT(accum, res) \ michael@0: accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \ michael@0: accum16 = vqmovn_s32(accum); \ michael@0: res = vqmovun_s16(vcombine_s16(accum16, accum16)); michael@0: michael@0: PACK_RESULT(accum0, res0); michael@0: PACK_RESULT(accum1, res1); michael@0: PACK_RESULT(accum2, res2); michael@0: PACK_RESULT(accum3, res3); michael@0: michael@0: vst1_lane_u32(reinterpret_cast(outRow[0]), vreinterpret_u32_u8(res0), 0); michael@0: vst1_lane_u32(reinterpret_cast(outRow[1]), vreinterpret_u32_u8(res1), 0); michael@0: vst1_lane_u32(reinterpret_cast(outRow[2]), vreinterpret_u32_u8(res2), 0); michael@0: vst1_lane_u32(reinterpret_cast(outRow[3]), vreinterpret_u32_u8(res3), 0); michael@0: outRow[0] += 4; michael@0: outRow[1] += 4; michael@0: outRow[2] += 4; michael@0: outRow[3] += 4; michael@0: } michael@0: } michael@0: michael@0: void applySIMDPadding_neon(SkConvolutionFilter1D *filter) { michael@0: // Padding |paddingCount| of more dummy coefficients after the coefficients michael@0: // of last filter to prevent SIMD instructions which load 8 or 16 bytes michael@0: // together to access invalid memory areas. We are not trying to align the michael@0: // coefficients right now due to the opaqueness of implementation. michael@0: // This has to be done after all |AddFilter| calls. michael@0: for (int i = 0; i < 8; ++i) { michael@0: filter->addFilterValue(static_cast(0)); michael@0: } michael@0: } michael@0: michael@0: void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) { michael@0: procs->fExtraHorizontalReads = 3; michael@0: procs->fConvolveVertically = &convolveVertically_neon; michael@0: procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon; michael@0: procs->fConvolveHorizontally = &convolveHorizontally_neon; michael@0: procs->fApplySIMDPadding = &applySIMDPadding_neon; michael@0: }