michael@0: /* michael@0: http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi michael@0: */ michael@0: michael@0: /* michael@0: Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2. michael@0: Then for degree elevation, the equations are: michael@0: michael@0: Q0 = P0 michael@0: Q1 = 1/3 P0 + 2/3 P1 michael@0: Q2 = 2/3 P1 + 1/3 P2 michael@0: Q3 = P2 michael@0: In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from michael@0: the equations above: michael@0: michael@0: P1 = 3/2 Q1 - 1/2 Q0 michael@0: P1 = 3/2 Q2 - 1/2 Q3 michael@0: If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since michael@0: it's likely not, your best bet is to average them. So, michael@0: michael@0: P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3 michael@0: michael@0: michael@0: SkDCubic defined by: P1/2 - anchor points, C1/C2 control points michael@0: |x| is the euclidean norm of x michael@0: mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the michael@0: control point at C = (3·C2 - P2 + 3·C1 - P1)/4 michael@0: michael@0: Algorithm michael@0: michael@0: pick an absolute precision (prec) michael@0: Compute the Tdiv as the root of (cubic) equation michael@0: sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec michael@0: if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a michael@0: quadratic, with a defect less than prec, by the mid-point approximation. michael@0: Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv) michael@0: 0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point michael@0: approximation michael@0: Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation michael@0: michael@0: confirmed by (maybe stolen from) michael@0: http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html michael@0: // maybe in turn derived from http://www.cccg.ca/proceedings/2004/36.pdf michael@0: // also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf michael@0: michael@0: */ michael@0: michael@0: #include "SkPathOpsCubic.h" michael@0: #include "SkPathOpsLine.h" michael@0: #include "SkPathOpsQuad.h" michael@0: #include "SkReduceOrder.h" michael@0: #include "SkTArray.h" michael@0: #include "SkTSort.h" michael@0: michael@0: #define USE_CUBIC_END_POINTS 1 michael@0: michael@0: static double calc_t_div(const SkDCubic& cubic, double precision, double start) { michael@0: const double adjust = sqrt(3.) / 36; michael@0: SkDCubic sub; michael@0: const SkDCubic* cPtr; michael@0: if (start == 0) { michael@0: cPtr = &cubic; michael@0: } else { michael@0: // OPTIMIZE: special-case half-split ? michael@0: sub = cubic.subDivide(start, 1); michael@0: cPtr = ⊂ michael@0: } michael@0: const SkDCubic& c = *cPtr; michael@0: double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX; michael@0: double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY; michael@0: double dist = sqrt(dx * dx + dy * dy); michael@0: double tDiv3 = precision / (adjust * dist); michael@0: double t = SkDCubeRoot(tDiv3); michael@0: if (start > 0) { michael@0: t = start + (1 - start) * t; michael@0: } michael@0: return t; michael@0: } michael@0: michael@0: SkDQuad SkDCubic::toQuad() const { michael@0: SkDQuad quad; michael@0: quad[0] = fPts[0]; michael@0: const SkDPoint fromC1 = {(3 * fPts[1].fX - fPts[0].fX) / 2, (3 * fPts[1].fY - fPts[0].fY) / 2}; michael@0: const SkDPoint fromC2 = {(3 * fPts[2].fX - fPts[3].fX) / 2, (3 * fPts[2].fY - fPts[3].fY) / 2}; michael@0: quad[1].fX = (fromC1.fX + fromC2.fX) / 2; michael@0: quad[1].fY = (fromC1.fY + fromC2.fY) / 2; michael@0: quad[2] = fPts[3]; michael@0: return quad; michael@0: } michael@0: michael@0: static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray* ts) { michael@0: double tDiv = calc_t_div(cubic, precision, 0); michael@0: if (tDiv >= 1) { michael@0: return true; michael@0: } michael@0: if (tDiv >= 0.5) { michael@0: ts->push_back(0.5); michael@0: return true; michael@0: } michael@0: return false; michael@0: } michael@0: michael@0: static void addTs(const SkDCubic& cubic, double precision, double start, double end, michael@0: SkTArray* ts) { michael@0: double tDiv = calc_t_div(cubic, precision, 0); michael@0: double parts = ceil(1.0 / tDiv); michael@0: for (double index = 0; index < parts; ++index) { michael@0: double newT = start + (index / parts) * (end - start); michael@0: if (newT > 0 && newT < 1) { michael@0: ts->push_back(newT); michael@0: } michael@0: } michael@0: } michael@0: michael@0: // flavor that returns T values only, deferring computing the quads until they are needed michael@0: // FIXME: when called from recursive intersect 2, this could take the original cubic michael@0: // and do a more precise job when calling chop at and sub divide by computing the fractional ts. michael@0: // it would still take the prechopped cubic for reduce order and find cubic inflections michael@0: void SkDCubic::toQuadraticTs(double precision, SkTArray* ts) const { michael@0: SkReduceOrder reducer; michael@0: int order = reducer.reduce(*this, SkReduceOrder::kAllow_Quadratics); michael@0: if (order < 3) { michael@0: return; michael@0: } michael@0: double inflectT[5]; michael@0: int inflections = findInflections(inflectT); michael@0: SkASSERT(inflections <= 2); michael@0: if (!endsAreExtremaInXOrY()) { michael@0: inflections += findMaxCurvature(&inflectT[inflections]); michael@0: SkASSERT(inflections <= 5); michael@0: } michael@0: SkTQSort(inflectT, &inflectT[inflections - 1]); michael@0: // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its michael@0: // own subroutine? michael@0: while (inflections && approximately_less_than_zero(inflectT[0])) { michael@0: memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections); michael@0: } michael@0: int start = 0; michael@0: int next = 1; michael@0: while (next < inflections) { michael@0: if (!approximately_equal(inflectT[start], inflectT[next])) { michael@0: ++start; michael@0: ++next; michael@0: continue; michael@0: } michael@0: memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start)); michael@0: } michael@0: michael@0: while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) { michael@0: --inflections; michael@0: } michael@0: SkDCubicPair pair; michael@0: if (inflections == 1) { michael@0: pair = chopAt(inflectT[0]); michael@0: int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics); michael@0: if (orderP1 < 2) { michael@0: --inflections; michael@0: } else { michael@0: int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics); michael@0: if (orderP2 < 2) { michael@0: --inflections; michael@0: } michael@0: } michael@0: } michael@0: if (inflections == 0 && add_simple_ts(*this, precision, ts)) { michael@0: return; michael@0: } michael@0: if (inflections == 1) { michael@0: pair = chopAt(inflectT[0]); michael@0: addTs(pair.first(), precision, 0, inflectT[0], ts); michael@0: addTs(pair.second(), precision, inflectT[0], 1, ts); michael@0: return; michael@0: } michael@0: if (inflections > 1) { michael@0: SkDCubic part = subDivide(0, inflectT[0]); michael@0: addTs(part, precision, 0, inflectT[0], ts); michael@0: int last = inflections - 1; michael@0: for (int idx = 0; idx < last; ++idx) { michael@0: part = subDivide(inflectT[idx], inflectT[idx + 1]); michael@0: addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts); michael@0: } michael@0: part = subDivide(inflectT[last], 1); michael@0: addTs(part, precision, inflectT[last], 1, ts); michael@0: return; michael@0: } michael@0: addTs(*this, precision, 0, 1, ts); michael@0: }