michael@0: /* michael@0: * Copyright 2012 Google Inc. michael@0: * michael@0: * Use of this source code is governed by a BSD-style license that can be michael@0: * found in the LICENSE file. michael@0: */ michael@0: #include "SkLineParameters.h" michael@0: #include "SkPathOpsCubic.h" michael@0: #include "SkPathOpsLine.h" michael@0: #include "SkPathOpsQuad.h" michael@0: #include "SkPathOpsRect.h" michael@0: michael@0: const int SkDCubic::gPrecisionUnit = 256; // FIXME: test different values in test framework michael@0: michael@0: // FIXME: cache keep the bounds and/or precision with the caller? michael@0: double SkDCubic::calcPrecision() const { michael@0: SkDRect dRect; michael@0: dRect.setBounds(*this); // OPTIMIZATION: just use setRawBounds ? michael@0: double width = dRect.fRight - dRect.fLeft; michael@0: double height = dRect.fBottom - dRect.fTop; michael@0: return (width > height ? width : height) / gPrecisionUnit; michael@0: } michael@0: michael@0: bool SkDCubic::clockwise() const { michael@0: double sum = (fPts[0].fX - fPts[3].fX) * (fPts[0].fY + fPts[3].fY); michael@0: for (int idx = 0; idx < 3; ++idx) { michael@0: sum += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY); michael@0: } michael@0: return sum <= 0; michael@0: } michael@0: michael@0: void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) { michael@0: *A = src[6]; // d michael@0: *B = src[4] * 3; // 3*c michael@0: *C = src[2] * 3; // 3*b michael@0: *D = src[0]; // a michael@0: *A -= *D - *C + *B; // A = -a + 3*b - 3*c + d michael@0: *B += 3 * *D - 2 * *C; // B = 3*a - 6*b + 3*c michael@0: *C -= 3 * *D; // C = -3*a + 3*b michael@0: } michael@0: michael@0: bool SkDCubic::controlsContainedByEnds() const { michael@0: SkDVector startTan = fPts[1] - fPts[0]; michael@0: if (startTan.fX == 0 && startTan.fY == 0) { michael@0: startTan = fPts[2] - fPts[0]; michael@0: } michael@0: SkDVector endTan = fPts[2] - fPts[3]; michael@0: if (endTan.fX == 0 && endTan.fY == 0) { michael@0: endTan = fPts[1] - fPts[3]; michael@0: } michael@0: if (startTan.dot(endTan) >= 0) { michael@0: return false; michael@0: } michael@0: SkDLine startEdge = {{fPts[0], fPts[0]}}; michael@0: startEdge[1].fX -= startTan.fY; michael@0: startEdge[1].fY += startTan.fX; michael@0: SkDLine endEdge = {{fPts[3], fPts[3]}}; michael@0: endEdge[1].fX -= endTan.fY; michael@0: endEdge[1].fY += endTan.fX; michael@0: double leftStart1 = startEdge.isLeft(fPts[1]); michael@0: if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) { michael@0: return false; michael@0: } michael@0: double leftEnd1 = endEdge.isLeft(fPts[1]); michael@0: if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) { michael@0: return false; michael@0: } michael@0: return leftStart1 * leftEnd1 >= 0; michael@0: } michael@0: michael@0: bool SkDCubic::endsAreExtremaInXOrY() const { michael@0: return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX) michael@0: && between(fPts[0].fX, fPts[2].fX, fPts[3].fX)) michael@0: || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY) michael@0: && between(fPts[0].fY, fPts[2].fY, fPts[3].fY)); michael@0: } michael@0: michael@0: bool SkDCubic::isLinear(int startIndex, int endIndex) const { michael@0: SkLineParameters lineParameters; michael@0: lineParameters.cubicEndPoints(*this, startIndex, endIndex); michael@0: // FIXME: maybe it's possible to avoid this and compare non-normalized michael@0: lineParameters.normalize(); michael@0: double distance = lineParameters.controlPtDistance(*this, 1); michael@0: if (!approximately_zero(distance)) { michael@0: return false; michael@0: } michael@0: distance = lineParameters.controlPtDistance(*this, 2); michael@0: return approximately_zero(distance); michael@0: } michael@0: michael@0: bool SkDCubic::monotonicInY() const { michael@0: return between(fPts[0].fY, fPts[1].fY, fPts[3].fY) michael@0: && between(fPts[0].fY, fPts[2].fY, fPts[3].fY); michael@0: } michael@0: michael@0: bool SkDCubic::serpentine() const { michael@0: if (!controlsContainedByEnds()) { michael@0: return false; michael@0: } michael@0: double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY); michael@0: for (int idx = 0; idx < 2; ++idx) { michael@0: wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY); michael@0: } michael@0: double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY); michael@0: for (int idx = 1; idx < 3; ++idx) { michael@0: waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY); michael@0: } michael@0: return wiggle * waggle < 0; michael@0: } michael@0: michael@0: // cubic roots michael@0: michael@0: static const double PI = 3.141592653589793; michael@0: michael@0: // from SkGeometry.cpp (and Numeric Solutions, 5.6) michael@0: int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) { michael@0: double s[3]; michael@0: int realRoots = RootsReal(A, B, C, D, s); michael@0: int foundRoots = SkDQuad::AddValidTs(s, realRoots, t); michael@0: return foundRoots; michael@0: } michael@0: michael@0: int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) { michael@0: #ifdef SK_DEBUG michael@0: // create a string mathematica understands michael@0: // GDB set print repe 15 # if repeated digits is a bother michael@0: // set print elements 400 # if line doesn't fit michael@0: char str[1024]; michael@0: sk_bzero(str, sizeof(str)); michael@0: SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", michael@0: A, B, C, D); michael@0: SkPathOpsDebug::MathematicaIze(str, sizeof(str)); michael@0: #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA michael@0: SkDebugf("%s\n", str); michael@0: #endif michael@0: #endif michael@0: if (approximately_zero(A) michael@0: && approximately_zero_when_compared_to(A, B) michael@0: && approximately_zero_when_compared_to(A, C) michael@0: && approximately_zero_when_compared_to(A, D)) { // we're just a quadratic michael@0: return SkDQuad::RootsReal(B, C, D, s); michael@0: } michael@0: if (approximately_zero_when_compared_to(D, A) michael@0: && approximately_zero_when_compared_to(D, B) michael@0: && approximately_zero_when_compared_to(D, C)) { // 0 is one root michael@0: int num = SkDQuad::RootsReal(A, B, C, s); michael@0: for (int i = 0; i < num; ++i) { michael@0: if (approximately_zero(s[i])) { michael@0: return num; michael@0: } michael@0: } michael@0: s[num++] = 0; michael@0: return num; michael@0: } michael@0: if (approximately_zero(A + B + C + D)) { // 1 is one root michael@0: int num = SkDQuad::RootsReal(A, A + B, -D, s); michael@0: for (int i = 0; i < num; ++i) { michael@0: if (AlmostDequalUlps(s[i], 1)) { michael@0: return num; michael@0: } michael@0: } michael@0: s[num++] = 1; michael@0: return num; michael@0: } michael@0: double a, b, c; michael@0: { michael@0: double invA = 1 / A; michael@0: a = B * invA; michael@0: b = C * invA; michael@0: c = D * invA; michael@0: } michael@0: double a2 = a * a; michael@0: double Q = (a2 - b * 3) / 9; michael@0: double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; michael@0: double R2 = R * R; michael@0: double Q3 = Q * Q * Q; michael@0: double R2MinusQ3 = R2 - Q3; michael@0: double adiv3 = a / 3; michael@0: double r; michael@0: double* roots = s; michael@0: if (R2MinusQ3 < 0) { // we have 3 real roots michael@0: double theta = acos(R / sqrt(Q3)); michael@0: double neg2RootQ = -2 * sqrt(Q); michael@0: michael@0: r = neg2RootQ * cos(theta / 3) - adiv3; michael@0: *roots++ = r; michael@0: michael@0: r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; michael@0: if (!AlmostDequalUlps(s[0], r)) { michael@0: *roots++ = r; michael@0: } michael@0: r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; michael@0: if (!AlmostDequalUlps(s[0], r) && (roots - s == 1 || !AlmostDequalUlps(s[1], r))) { michael@0: *roots++ = r; michael@0: } michael@0: } else { // we have 1 real root michael@0: double sqrtR2MinusQ3 = sqrt(R2MinusQ3); michael@0: double A = fabs(R) + sqrtR2MinusQ3; michael@0: A = SkDCubeRoot(A); michael@0: if (R > 0) { michael@0: A = -A; michael@0: } michael@0: if (A != 0) { michael@0: A += Q / A; michael@0: } michael@0: r = A - adiv3; michael@0: *roots++ = r; michael@0: if (AlmostDequalUlps(R2, Q3)) { michael@0: r = -A / 2 - adiv3; michael@0: if (!AlmostDequalUlps(s[0], r)) { michael@0: *roots++ = r; michael@0: } michael@0: } michael@0: } michael@0: return static_cast(roots - s); michael@0: } michael@0: michael@0: // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf michael@0: // c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3 michael@0: // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2 michael@0: // = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2 michael@0: static double derivative_at_t(const double* src, double t) { michael@0: double one_t = 1 - t; michael@0: double a = src[0]; michael@0: double b = src[2]; michael@0: double c = src[4]; michael@0: double d = src[6]; michael@0: return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t); michael@0: } michael@0: michael@0: // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t? michael@0: SkDVector SkDCubic::dxdyAtT(double t) const { michael@0: SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) }; michael@0: return result; michael@0: } michael@0: michael@0: // OPTIMIZE? share code with formulate_F1DotF2 michael@0: int SkDCubic::findInflections(double tValues[]) const { michael@0: double Ax = fPts[1].fX - fPts[0].fX; michael@0: double Ay = fPts[1].fY - fPts[0].fY; michael@0: double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX; michael@0: double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY; michael@0: double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX; michael@0: double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY; michael@0: return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues); michael@0: } michael@0: michael@0: static void formulate_F1DotF2(const double src[], double coeff[4]) { michael@0: double a = src[2] - src[0]; michael@0: double b = src[4] - 2 * src[2] + src[0]; michael@0: double c = src[6] + 3 * (src[2] - src[4]) - src[0]; michael@0: coeff[0] = c * c; michael@0: coeff[1] = 3 * b * c; michael@0: coeff[2] = 2 * b * b + c * a; michael@0: coeff[3] = a * b; michael@0: } michael@0: michael@0: /** SkDCubic'(t) = At^2 + Bt + C, where michael@0: A = 3(-a + 3(b - c) + d) michael@0: B = 6(a - 2b + c) michael@0: C = 3(b - a) michael@0: Solve for t, keeping only those that fit between 0 < t < 1 michael@0: */ michael@0: int SkDCubic::FindExtrema(double a, double b, double c, double d, double tValues[2]) { michael@0: // we divide A,B,C by 3 to simplify michael@0: double A = d - a + 3*(b - c); michael@0: double B = 2*(a - b - b + c); michael@0: double C = b - a; michael@0: michael@0: return SkDQuad::RootsValidT(A, B, C, tValues); michael@0: } michael@0: michael@0: /* from SkGeometry.cpp michael@0: Looking for F' dot F'' == 0 michael@0: michael@0: A = b - a michael@0: B = c - 2b + a michael@0: C = d - 3c + 3b - a michael@0: michael@0: F' = 3Ct^2 + 6Bt + 3A michael@0: F'' = 6Ct + 6B michael@0: michael@0: F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB michael@0: */ michael@0: int SkDCubic::findMaxCurvature(double tValues[]) const { michael@0: double coeffX[4], coeffY[4]; michael@0: int i; michael@0: formulate_F1DotF2(&fPts[0].fX, coeffX); michael@0: formulate_F1DotF2(&fPts[0].fY, coeffY); michael@0: for (i = 0; i < 4; i++) { michael@0: coeffX[i] = coeffX[i] + coeffY[i]; michael@0: } michael@0: return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues); michael@0: } michael@0: michael@0: SkDPoint SkDCubic::top(double startT, double endT) const { michael@0: SkDCubic sub = subDivide(startT, endT); michael@0: SkDPoint topPt = sub[0]; michael@0: if (topPt.fY > sub[3].fY || (topPt.fY == sub[3].fY && topPt.fX > sub[3].fX)) { michael@0: topPt = sub[3]; michael@0: } michael@0: double extremeTs[2]; michael@0: if (!sub.monotonicInY()) { michael@0: int roots = FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, sub[3].fY, extremeTs); michael@0: for (int index = 0; index < roots; ++index) { michael@0: double t = startT + (endT - startT) * extremeTs[index]; michael@0: SkDPoint mid = ptAtT(t); michael@0: if (topPt.fY > mid.fY || (topPt.fY == mid.fY && topPt.fX > mid.fX)) { michael@0: topPt = mid; michael@0: } michael@0: } michael@0: } michael@0: return topPt; michael@0: } michael@0: michael@0: SkDPoint SkDCubic::ptAtT(double t) const { michael@0: if (0 == t) { michael@0: return fPts[0]; michael@0: } michael@0: if (1 == t) { michael@0: return fPts[3]; michael@0: } michael@0: double one_t = 1 - t; michael@0: double one_t2 = one_t * one_t; michael@0: double a = one_t2 * one_t; michael@0: double b = 3 * one_t2 * t; michael@0: double t2 = t * t; michael@0: double c = 3 * one_t * t2; michael@0: double d = t2 * t; michael@0: SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX, michael@0: a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY}; michael@0: return result; michael@0: } michael@0: michael@0: /* michael@0: Given a cubic c, t1, and t2, find a small cubic segment. michael@0: michael@0: The new cubic is defined as points A, B, C, and D, where michael@0: s1 = 1 - t1 michael@0: s2 = 1 - t2 michael@0: A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1 michael@0: D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2 michael@0: michael@0: We don't have B or C. So We define two equations to isolate them. michael@0: First, compute two reference T values 1/3 and 2/3 from t1 to t2: michael@0: michael@0: c(at (2*t1 + t2)/3) == E michael@0: c(at (t1 + 2*t2)/3) == F michael@0: michael@0: Next, compute where those values must be if we know the values of B and C: michael@0: michael@0: _12 = A*2/3 + B*1/3 michael@0: 12_ = A*1/3 + B*2/3 michael@0: _23 = B*2/3 + C*1/3 michael@0: 23_ = B*1/3 + C*2/3 michael@0: _34 = C*2/3 + D*1/3 michael@0: 34_ = C*1/3 + D*2/3 michael@0: _123 = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9 michael@0: 123_ = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9 michael@0: _234 = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9 michael@0: 234_ = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9 michael@0: _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3 michael@0: = A*8/27 + B*12/27 + C*6/27 + D*1/27 michael@0: = E michael@0: 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3 michael@0: = A*1/27 + B*6/27 + C*12/27 + D*8/27 michael@0: = F michael@0: E*27 = A*8 + B*12 + C*6 + D michael@0: F*27 = A + B*6 + C*12 + D*8 michael@0: michael@0: Group the known values on one side: michael@0: michael@0: M = E*27 - A*8 - D = B*12 + C* 6 michael@0: N = F*27 - A - D*8 = B* 6 + C*12 michael@0: M*2 - N = B*18 michael@0: N*2 - M = C*18 michael@0: B = (M*2 - N)/18 michael@0: C = (N*2 - M)/18 michael@0: */ michael@0: michael@0: static double interp_cubic_coords(const double* src, double t) { michael@0: double ab = SkDInterp(src[0], src[2], t); michael@0: double bc = SkDInterp(src[2], src[4], t); michael@0: double cd = SkDInterp(src[4], src[6], t); michael@0: double abc = SkDInterp(ab, bc, t); michael@0: double bcd = SkDInterp(bc, cd, t); michael@0: double abcd = SkDInterp(abc, bcd, t); michael@0: return abcd; michael@0: } michael@0: michael@0: SkDCubic SkDCubic::subDivide(double t1, double t2) const { michael@0: if (t1 == 0 || t2 == 1) { michael@0: if (t1 == 0 && t2 == 1) { michael@0: return *this; michael@0: } michael@0: SkDCubicPair pair = chopAt(t1 == 0 ? t2 : t1); michael@0: SkDCubic dst = t1 == 0 ? pair.first() : pair.second(); michael@0: return dst; michael@0: } michael@0: SkDCubic dst; michael@0: double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1); michael@0: double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1); michael@0: double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3); michael@0: double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3); michael@0: double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3); michael@0: double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3); michael@0: double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2); michael@0: double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2); michael@0: double mx = ex * 27 - ax * 8 - dx; michael@0: double my = ey * 27 - ay * 8 - dy; michael@0: double nx = fx * 27 - ax - dx * 8; michael@0: double ny = fy * 27 - ay - dy * 8; michael@0: /* bx = */ dst[1].fX = (mx * 2 - nx) / 18; michael@0: /* by = */ dst[1].fY = (my * 2 - ny) / 18; michael@0: /* cx = */ dst[2].fX = (nx * 2 - mx) / 18; michael@0: /* cy = */ dst[2].fY = (ny * 2 - my) / 18; michael@0: // FIXME: call align() ? michael@0: return dst; michael@0: } michael@0: michael@0: void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const { michael@0: if (fPts[endIndex].fX == fPts[ctrlIndex].fX) { michael@0: dstPt->fX = fPts[endIndex].fX; michael@0: } michael@0: if (fPts[endIndex].fY == fPts[ctrlIndex].fY) { michael@0: dstPt->fY = fPts[endIndex].fY; michael@0: } michael@0: } michael@0: michael@0: void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d, michael@0: double t1, double t2, SkDPoint dst[2]) const { michael@0: SkASSERT(t1 != t2); michael@0: #if 0 michael@0: double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3); michael@0: double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3); michael@0: double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3); michael@0: double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3); michael@0: double mx = ex * 27 - a.fX * 8 - d.fX; michael@0: double my = ey * 27 - a.fY * 8 - d.fY; michael@0: double nx = fx * 27 - a.fX - d.fX * 8; michael@0: double ny = fy * 27 - a.fY - d.fY * 8; michael@0: /* bx = */ dst[0].fX = (mx * 2 - nx) / 18; michael@0: /* by = */ dst[0].fY = (my * 2 - ny) / 18; michael@0: /* cx = */ dst[1].fX = (nx * 2 - mx) / 18; michael@0: /* cy = */ dst[1].fY = (ny * 2 - my) / 18; michael@0: #else michael@0: // this approach assumes that the control points computed directly are accurate enough michael@0: SkDCubic sub = subDivide(t1, t2); michael@0: dst[0] = sub[1] + (a - sub[0]); michael@0: dst[1] = sub[2] + (d - sub[3]); michael@0: #endif michael@0: if (t1 == 0 || t2 == 0) { michael@0: align(0, 1, t1 == 0 ? &dst[0] : &dst[1]); michael@0: } michael@0: if (t1 == 1 || t2 == 1) { michael@0: align(3, 2, t1 == 1 ? &dst[0] : &dst[1]); michael@0: } michael@0: if (precisely_subdivide_equal(dst[0].fX, a.fX)) { michael@0: dst[0].fX = a.fX; michael@0: } michael@0: if (precisely_subdivide_equal(dst[0].fY, a.fY)) { michael@0: dst[0].fY = a.fY; michael@0: } michael@0: if (precisely_subdivide_equal(dst[1].fX, d.fX)) { michael@0: dst[1].fX = d.fX; michael@0: } michael@0: if (precisely_subdivide_equal(dst[1].fY, d.fY)) { michael@0: dst[1].fY = d.fY; michael@0: } michael@0: } michael@0: michael@0: /* classic one t subdivision */ michael@0: static void interp_cubic_coords(const double* src, double* dst, double t) { michael@0: double ab = SkDInterp(src[0], src[2], t); michael@0: double bc = SkDInterp(src[2], src[4], t); michael@0: double cd = SkDInterp(src[4], src[6], t); michael@0: double abc = SkDInterp(ab, bc, t); michael@0: double bcd = SkDInterp(bc, cd, t); michael@0: double abcd = SkDInterp(abc, bcd, t); michael@0: michael@0: dst[0] = src[0]; michael@0: dst[2] = ab; michael@0: dst[4] = abc; michael@0: dst[6] = abcd; michael@0: dst[8] = bcd; michael@0: dst[10] = cd; michael@0: dst[12] = src[6]; michael@0: } michael@0: michael@0: SkDCubicPair SkDCubic::chopAt(double t) const { michael@0: SkDCubicPair dst; michael@0: if (t == 0.5) { michael@0: dst.pts[0] = fPts[0]; michael@0: dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2; michael@0: dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2; michael@0: dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4; michael@0: dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4; michael@0: dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8; michael@0: dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8; michael@0: dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4; michael@0: dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4; michael@0: dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2; michael@0: dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2; michael@0: dst.pts[6] = fPts[3]; michael@0: return dst; michael@0: } michael@0: interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t); michael@0: interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t); michael@0: return dst; michael@0: } michael@0: michael@0: #ifdef SK_DEBUG michael@0: void SkDCubic::dump() { michael@0: SkDebugf("{{"); michael@0: int index = 0; michael@0: do { michael@0: fPts[index].dump(); michael@0: SkDebugf(", "); michael@0: } while (++index < 3); michael@0: fPts[index].dump(); michael@0: SkDebugf("}}\n"); michael@0: } michael@0: #endif