michael@0: /* michael@0: * Copyright 2012 Google Inc. michael@0: * michael@0: * Use of this source code is governed by a BSD-style license that can be michael@0: * found in the LICENSE file. michael@0: * michael@0: * The following code is based on the description in RFC 1321. michael@0: * http://www.ietf.org/rfc/rfc1321.txt michael@0: */ michael@0: michael@0: #include "SkTypes.h" michael@0: #include "SkMD5.h" michael@0: #include michael@0: michael@0: /** MD5 basic transformation. Transforms state based on block. */ michael@0: static void transform(uint32_t state[4], const uint8_t block[64]); michael@0: michael@0: /** Encodes input into output (4 little endian 32 bit values). */ michael@0: static void encode(uint8_t output[16], const uint32_t input[4]); michael@0: michael@0: /** Encodes input into output (little endian 64 bit value). */ michael@0: static void encode(uint8_t output[8], const uint64_t input); michael@0: michael@0: /** Decodes input (4 little endian 32 bit values) into storage, if required. */ michael@0: static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]); michael@0: michael@0: SkMD5::SkMD5() : byteCount(0) { michael@0: // These are magic numbers from the specification. michael@0: this->state[0] = 0x67452301; michael@0: this->state[1] = 0xefcdab89; michael@0: this->state[2] = 0x98badcfe; michael@0: this->state[3] = 0x10325476; michael@0: } michael@0: michael@0: void SkMD5::update(const uint8_t* input, size_t inputLength) { michael@0: unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); michael@0: unsigned int bufferAvailable = 64 - bufferIndex; michael@0: michael@0: unsigned int inputIndex; michael@0: if (inputLength >= bufferAvailable) { michael@0: if (bufferIndex) { michael@0: memcpy(&this->buffer[bufferIndex], input, bufferAvailable); michael@0: transform(this->state, this->buffer); michael@0: inputIndex = bufferAvailable; michael@0: } else { michael@0: inputIndex = 0; michael@0: } michael@0: michael@0: for (; inputIndex + 63 < inputLength; inputIndex += 64) { michael@0: transform(this->state, &input[inputIndex]); michael@0: } michael@0: michael@0: bufferIndex = 0; michael@0: } else { michael@0: inputIndex = 0; michael@0: } michael@0: michael@0: memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex); michael@0: michael@0: this->byteCount += inputLength; michael@0: } michael@0: michael@0: void SkMD5::finish(Digest& digest) { michael@0: // Get the number of bits before padding. michael@0: uint8_t bits[8]; michael@0: encode(bits, this->byteCount << 3); michael@0: michael@0: // Pad out to 56 mod 64. michael@0: unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); michael@0: unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); michael@0: static uint8_t PADDING[64] = { michael@0: 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, michael@0: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, michael@0: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, michael@0: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, michael@0: }; michael@0: this->update(PADDING, paddingLength); michael@0: michael@0: // Append length (length before padding, will cause final update). michael@0: this->update(bits, 8); michael@0: michael@0: // Write out digest. michael@0: encode(digest.data, this->state); michael@0: michael@0: #if defined(SK_MD5_CLEAR_DATA) michael@0: // Clear state. michael@0: memset(this, 0, sizeof(*this)); michael@0: #endif michael@0: } michael@0: michael@0: struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { michael@0: //return (x & y) | ((~x) & z); michael@0: return ((y ^ z) & x) ^ z; //equivelent but faster michael@0: }}; michael@0: michael@0: struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { michael@0: return (x & z) | (y & (~z)); michael@0: //return ((x ^ y) & z) ^ y; //equivelent but slower michael@0: }}; michael@0: michael@0: struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { michael@0: return x ^ y ^ z; michael@0: }}; michael@0: michael@0: struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { michael@0: return y ^ (x | (~z)); michael@0: }}; michael@0: michael@0: /** Rotates x left n bits. */ michael@0: static inline uint32_t rotate_left(uint32_t x, uint8_t n) { michael@0: return (x << n) | (x >> (32 - n)); michael@0: } michael@0: michael@0: template michael@0: static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d, michael@0: uint32_t x, uint8_t s, uint32_t t) { michael@0: a = b + rotate_left(a + operation(b, c, d) + x + t, s); michael@0: } michael@0: michael@0: static void transform(uint32_t state[4], const uint8_t block[64]) { michael@0: uint32_t a = state[0], b = state[1], c = state[2], d = state[3]; michael@0: michael@0: uint32_t storage[16]; michael@0: const uint32_t* X = decode(storage, block); michael@0: michael@0: // Round 1 michael@0: operation(F(), a, b, c, d, X[ 0], 7, 0xd76aa478); // 1 michael@0: operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2 michael@0: operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3 michael@0: operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4 michael@0: operation(F(), a, b, c, d, X[ 4], 7, 0xf57c0faf); // 5 michael@0: operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6 michael@0: operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7 michael@0: operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8 michael@0: operation(F(), a, b, c, d, X[ 8], 7, 0x698098d8); // 9 michael@0: operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10 michael@0: operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11 michael@0: operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12 michael@0: operation(F(), a, b, c, d, X[12], 7, 0x6b901122); // 13 michael@0: operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14 michael@0: operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15 michael@0: operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16 michael@0: michael@0: // Round 2 michael@0: operation(G(), a, b, c, d, X[ 1], 5, 0xf61e2562); // 17 michael@0: operation(G(), d, a, b, c, X[ 6], 9, 0xc040b340); // 18 michael@0: operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19 michael@0: operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20 michael@0: operation(G(), a, b, c, d, X[ 5], 5, 0xd62f105d); // 21 michael@0: operation(G(), d, a, b, c, X[10], 9, 0x2441453); // 22 michael@0: operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23 michael@0: operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24 michael@0: operation(G(), a, b, c, d, X[ 9], 5, 0x21e1cde6); // 25 michael@0: operation(G(), d, a, b, c, X[14], 9, 0xc33707d6); // 26 michael@0: operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27 michael@0: operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28 michael@0: operation(G(), a, b, c, d, X[13], 5, 0xa9e3e905); // 29 michael@0: operation(G(), d, a, b, c, X[ 2], 9, 0xfcefa3f8); // 30 michael@0: operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31 michael@0: operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32 michael@0: michael@0: // Round 3 michael@0: operation(H(), a, b, c, d, X[ 5], 4, 0xfffa3942); // 33 michael@0: operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34 michael@0: operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35 michael@0: operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36 michael@0: operation(H(), a, b, c, d, X[ 1], 4, 0xa4beea44); // 37 michael@0: operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38 michael@0: operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39 michael@0: operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40 michael@0: operation(H(), a, b, c, d, X[13], 4, 0x289b7ec6); // 41 michael@0: operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42 michael@0: operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43 michael@0: operation(H(), b, c, d, a, X[ 6], 23, 0x4881d05); // 44 michael@0: operation(H(), a, b, c, d, X[ 9], 4, 0xd9d4d039); // 45 michael@0: operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46 michael@0: operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47 michael@0: operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48 michael@0: michael@0: // Round 4 michael@0: operation(I(), a, b, c, d, X[ 0], 6, 0xf4292244); // 49 michael@0: operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50 michael@0: operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51 michael@0: operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52 michael@0: operation(I(), a, b, c, d, X[12], 6, 0x655b59c3); // 53 michael@0: operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54 michael@0: operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55 michael@0: operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56 michael@0: operation(I(), a, b, c, d, X[ 8], 6, 0x6fa87e4f); // 57 michael@0: operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58 michael@0: operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59 michael@0: operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60 michael@0: operation(I(), a, b, c, d, X[ 4], 6, 0xf7537e82); // 61 michael@0: operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62 michael@0: operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63 michael@0: operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64 michael@0: michael@0: state[0] += a; michael@0: state[1] += b; michael@0: state[2] += c; michael@0: state[3] += d; michael@0: michael@0: #if defined(SK_MD5_CLEAR_DATA) michael@0: // Clear sensitive information. michael@0: if (X == &storage) { michael@0: memset(storage, 0, sizeof(storage)); michael@0: } michael@0: #endif michael@0: } michael@0: michael@0: static void encode(uint8_t output[16], const uint32_t input[4]) { michael@0: for (size_t i = 0, j = 0; i < 4; i++, j += 4) { michael@0: output[j ] = (uint8_t) (input[i] & 0xff); michael@0: output[j+1] = (uint8_t)((input[i] >> 8) & 0xff); michael@0: output[j+2] = (uint8_t)((input[i] >> 16) & 0xff); michael@0: output[j+3] = (uint8_t)((input[i] >> 24) & 0xff); michael@0: } michael@0: } michael@0: michael@0: static void encode(uint8_t output[8], const uint64_t input) { michael@0: output[0] = (uint8_t) (input & 0xff); michael@0: output[1] = (uint8_t)((input >> 8) & 0xff); michael@0: output[2] = (uint8_t)((input >> 16) & 0xff); michael@0: output[3] = (uint8_t)((input >> 24) & 0xff); michael@0: output[4] = (uint8_t)((input >> 32) & 0xff); michael@0: output[5] = (uint8_t)((input >> 40) & 0xff); michael@0: output[6] = (uint8_t)((input >> 48) & 0xff); michael@0: output[7] = (uint8_t)((input >> 56) & 0xff); michael@0: } michael@0: michael@0: static inline bool is_aligned(const void *pointer, size_t byte_count) { michael@0: return reinterpret_cast(pointer) % byte_count == 0; michael@0: } michael@0: michael@0: static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) { michael@0: #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS) michael@0: return reinterpret_cast(input); michael@0: #else michael@0: #if defined(SK_CPU_LENDIAN) michael@0: if (is_aligned(input, 4)) { michael@0: return reinterpret_cast(input); michael@0: } michael@0: #endif michael@0: for (size_t i = 0, j = 0; j < 64; i++, j += 4) { michael@0: storage[i] = ((uint32_t)input[j ]) | michael@0: (((uint32_t)input[j+1]) << 8) | michael@0: (((uint32_t)input[j+2]) << 16) | michael@0: (((uint32_t)input[j+3]) << 24); michael@0: } michael@0: return storage; michael@0: #endif michael@0: }