michael@0: /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- michael@0: * vim: set ts=8 sts=4 et sw=4 tw=99: michael@0: * This Source Code Form is subject to the terms of the Mozilla Public michael@0: * License, v. 2.0. If a copy of the MPL was not distributed with this michael@0: * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ michael@0: michael@0: #include "mozilla/MathAlgorithms.h" michael@0: michael@0: michael@0: #include "jit/Lowering.h" michael@0: #include "jit/mips/Assembler-mips.h" michael@0: #include "jit/MIR.h" michael@0: michael@0: #include "jit/shared/Lowering-shared-inl.h" michael@0: michael@0: using namespace js; michael@0: using namespace js::jit; michael@0: michael@0: using mozilla::FloorLog2; michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::useBox(LInstruction *lir, size_t n, MDefinition *mir, michael@0: LUse::Policy policy, bool useAtStart) michael@0: { michael@0: MOZ_ASSERT(mir->type() == MIRType_Value); michael@0: michael@0: if (!ensureDefined(mir)) michael@0: return false; michael@0: lir->setOperand(n, LUse(mir->virtualRegister(), policy, useAtStart)); michael@0: lir->setOperand(n + 1, LUse(VirtualRegisterOfPayload(mir), policy, useAtStart)); michael@0: return true; michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::useBoxFixed(LInstruction *lir, size_t n, MDefinition *mir, Register reg1, michael@0: Register reg2) michael@0: { michael@0: MOZ_ASSERT(mir->type() == MIRType_Value); michael@0: MOZ_ASSERT(reg1 != reg2); michael@0: michael@0: if (!ensureDefined(mir)) michael@0: return false; michael@0: lir->setOperand(n, LUse(reg1, mir->virtualRegister())); michael@0: lir->setOperand(n + 1, LUse(reg2, VirtualRegisterOfPayload(mir))); michael@0: return true; michael@0: } michael@0: michael@0: LAllocation michael@0: LIRGeneratorMIPS::useByteOpRegister(MDefinition *mir) michael@0: { michael@0: return useRegister(mir); michael@0: } michael@0: michael@0: LAllocation michael@0: LIRGeneratorMIPS::useByteOpRegisterOrNonDoubleConstant(MDefinition *mir) michael@0: { michael@0: return useRegisterOrNonDoubleConstant(mir); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerConstantDouble(double d, MInstruction *mir) michael@0: { michael@0: return define(new(alloc()) LDouble(d), mir); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerConstantFloat32(float d, MInstruction *mir) michael@0: { michael@0: return define(new(alloc()) LFloat32(d), mir); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitConstant(MConstant *ins) michael@0: { michael@0: if (ins->type() == MIRType_Double) michael@0: return lowerConstantDouble(ins->value().toDouble(), ins); michael@0: michael@0: if (ins->type() == MIRType_Float32) michael@0: return lowerConstantFloat32(ins->value().toDouble(), ins); michael@0: michael@0: // Emit non-double constants at their uses. michael@0: if (ins->canEmitAtUses()) michael@0: return emitAtUses(ins); michael@0: michael@0: return LIRGeneratorShared::visitConstant(ins); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitBox(MBox *box) michael@0: { michael@0: MDefinition *inner = box->getOperand(0); michael@0: michael@0: // If the box wrapped a double, it needs a new register. michael@0: if (IsFloatingPointType(inner->type())) michael@0: return defineBox(new(alloc()) LBoxFloatingPoint(useRegisterAtStart(inner), michael@0: tempCopy(inner, 0), inner->type()), box); michael@0: michael@0: if (box->canEmitAtUses()) michael@0: return emitAtUses(box); michael@0: michael@0: if (inner->isConstant()) michael@0: return defineBox(new(alloc()) LValue(inner->toConstant()->value()), box); michael@0: michael@0: LBox *lir = new(alloc()) LBox(use(inner), inner->type()); michael@0: michael@0: // Otherwise, we should not define a new register for the payload portion michael@0: // of the output, so bypass defineBox(). michael@0: uint32_t vreg = getVirtualRegister(); michael@0: if (vreg >= MAX_VIRTUAL_REGISTERS) michael@0: return false; michael@0: michael@0: // Note that because we're using PASSTHROUGH, we do not change the type of michael@0: // the definition. We also do not define the first output as "TYPE", michael@0: // because it has no corresponding payload at (vreg + 1). Also note that michael@0: // although we copy the input's original type for the payload half of the michael@0: // definition, this is only for clarity. PASSTHROUGH definitions are michael@0: // ignored. michael@0: lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL)); michael@0: lir->setDef(1, LDefinition(inner->virtualRegister(), LDefinition::TypeFrom(inner->type()), michael@0: LDefinition::PASSTHROUGH)); michael@0: box->setVirtualRegister(vreg); michael@0: return add(lir); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitUnbox(MUnbox *unbox) michael@0: { michael@0: // An unbox on mips reads in a type tag (either in memory or a register) and michael@0: // a payload. Unlike most instructions consuming a box, we ask for the type michael@0: // second, so that the result can re-use the first input. michael@0: MDefinition *inner = unbox->getOperand(0); michael@0: michael@0: if (!ensureDefined(inner)) michael@0: return false; michael@0: michael@0: if (IsFloatingPointType(unbox->type())) { michael@0: LUnboxFloatingPoint *lir = new(alloc()) LUnboxFloatingPoint(unbox->type()); michael@0: if (unbox->fallible() && !assignSnapshot(lir, unbox->bailoutKind())) michael@0: return false; michael@0: if (!useBox(lir, LUnboxFloatingPoint::Input, inner)) michael@0: return false; michael@0: return define(lir, unbox); michael@0: } michael@0: michael@0: // Swap the order we use the box pieces so we can re-use the payload michael@0: // register. michael@0: LUnbox *lir = new(alloc()) LUnbox; michael@0: lir->setOperand(0, usePayloadInRegisterAtStart(inner)); michael@0: lir->setOperand(1, useType(inner, LUse::REGISTER)); michael@0: michael@0: if (unbox->fallible() && !assignSnapshot(lir, unbox->bailoutKind())) michael@0: return false; michael@0: michael@0: // Note that PASSTHROUGH here is illegal, since types and payloads form two michael@0: // separate intervals. If the type becomes dead before the payload, it michael@0: // could be used as a Value without the type being recoverable. Unbox's michael@0: // purpose is to eagerly kill the definition of a type tag, so keeping both michael@0: // alive (for the purpose of gcmaps) is unappealing. Instead, we create a michael@0: // new virtual register. michael@0: return defineReuseInput(lir, unbox, 0); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitReturn(MReturn *ret) michael@0: { michael@0: MDefinition *opd = ret->getOperand(0); michael@0: MOZ_ASSERT(opd->type() == MIRType_Value); michael@0: michael@0: LReturn *ins = new(alloc()) LReturn; michael@0: ins->setOperand(0, LUse(JSReturnReg_Type)); michael@0: ins->setOperand(1, LUse(JSReturnReg_Data)); michael@0: return fillBoxUses(ins, 0, opd) && add(ins); michael@0: } michael@0: michael@0: // x = !y michael@0: bool michael@0: LIRGeneratorMIPS::lowerForALU(LInstructionHelper<1, 1, 0> *ins, michael@0: MDefinition *mir, MDefinition *input) michael@0: { michael@0: ins->setOperand(0, useRegister(input)); michael@0: return define(ins, mir, michael@0: LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::DEFAULT)); michael@0: } michael@0: michael@0: // z = x+y michael@0: bool michael@0: LIRGeneratorMIPS::lowerForALU(LInstructionHelper<1, 2, 0> *ins, MDefinition *mir, michael@0: MDefinition *lhs, MDefinition *rhs) michael@0: { michael@0: ins->setOperand(0, useRegister(lhs)); michael@0: ins->setOperand(1, useRegisterOrConstant(rhs)); michael@0: return define(ins, mir, michael@0: LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::DEFAULT)); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerForFPU(LInstructionHelper<1, 1, 0> *ins, MDefinition *mir, michael@0: MDefinition *input) michael@0: { michael@0: ins->setOperand(0, useRegister(input)); michael@0: return define(ins, mir, michael@0: LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::DEFAULT)); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerForFPU(LInstructionHelper<1, 2, 0> *ins, MDefinition *mir, michael@0: MDefinition *lhs, MDefinition *rhs) michael@0: { michael@0: ins->setOperand(0, useRegister(lhs)); michael@0: ins->setOperand(1, useRegister(rhs)); michael@0: return define(ins, mir, michael@0: LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::DEFAULT)); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerForBitAndAndBranch(LBitAndAndBranch *baab, MInstruction *mir, michael@0: MDefinition *lhs, MDefinition *rhs) michael@0: { michael@0: baab->setOperand(0, useRegisterAtStart(lhs)); michael@0: baab->setOperand(1, useRegisterOrConstantAtStart(rhs)); michael@0: return add(baab, mir); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::defineUntypedPhi(MPhi *phi, size_t lirIndex) michael@0: { michael@0: LPhi *type = current->getPhi(lirIndex + VREG_TYPE_OFFSET); michael@0: LPhi *payload = current->getPhi(lirIndex + VREG_DATA_OFFSET); michael@0: michael@0: uint32_t typeVreg = getVirtualRegister(); michael@0: if (typeVreg >= MAX_VIRTUAL_REGISTERS) michael@0: return false; michael@0: michael@0: phi->setVirtualRegister(typeVreg); michael@0: michael@0: uint32_t payloadVreg = getVirtualRegister(); michael@0: if (payloadVreg >= MAX_VIRTUAL_REGISTERS) michael@0: return false; michael@0: MOZ_ASSERT(typeVreg + 1 == payloadVreg); michael@0: michael@0: type->setDef(0, LDefinition(typeVreg, LDefinition::TYPE)); michael@0: payload->setDef(0, LDefinition(payloadVreg, LDefinition::PAYLOAD)); michael@0: annotate(type); michael@0: annotate(payload); michael@0: return true; michael@0: } michael@0: michael@0: void michael@0: LIRGeneratorMIPS::lowerUntypedPhiInput(MPhi *phi, uint32_t inputPosition, michael@0: LBlock *block, size_t lirIndex) michael@0: { michael@0: MDefinition *operand = phi->getOperand(inputPosition); michael@0: LPhi *type = block->getPhi(lirIndex + VREG_TYPE_OFFSET); michael@0: LPhi *payload = block->getPhi(lirIndex + VREG_DATA_OFFSET); michael@0: type->setOperand(inputPosition, LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, michael@0: LUse::ANY)); michael@0: payload->setOperand(inputPosition, LUse(VirtualRegisterOfPayload(operand), LUse::ANY)); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerForShift(LInstructionHelper<1, 2, 0> *ins, MDefinition *mir, michael@0: MDefinition *lhs, MDefinition *rhs) michael@0: { michael@0: ins->setOperand(0, useRegister(lhs)); michael@0: ins->setOperand(1, useRegisterOrConstant(rhs)); michael@0: return define(ins, mir); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerDivI(MDiv *div) michael@0: { michael@0: if (div->isUnsigned()) michael@0: return lowerUDiv(div); michael@0: michael@0: // Division instructions are slow. Division by constant denominators can be michael@0: // rewritten to use other instructions. michael@0: if (div->rhs()->isConstant()) { michael@0: int32_t rhs = div->rhs()->toConstant()->value().toInt32(); michael@0: // Check for division by a positive power of two, which is an easy and michael@0: // important case to optimize. Note that other optimizations are also michael@0: // possible; division by negative powers of two can be optimized in a michael@0: // similar manner as positive powers of two, and division by other michael@0: // constants can be optimized by a reciprocal multiplication technique. michael@0: int32_t shift = FloorLog2(rhs); michael@0: if (rhs > 0 && 1 << shift == rhs) { michael@0: LDivPowTwoI *lir = new(alloc()) LDivPowTwoI(useRegister(div->lhs()), shift, temp()); michael@0: if (div->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) michael@0: return false; michael@0: return define(lir, div); michael@0: } michael@0: } michael@0: michael@0: LDivI *lir = new(alloc()) LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp()); michael@0: if (div->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) michael@0: return false; michael@0: return define(lir, div); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerMulI(MMul *mul, MDefinition *lhs, MDefinition *rhs) michael@0: { michael@0: LMulI *lir = new(alloc()) LMulI; michael@0: if (mul->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) michael@0: return false; michael@0: michael@0: return lowerForALU(lir, mul, lhs, rhs); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerModI(MMod *mod) michael@0: { michael@0: if (mod->isUnsigned()) michael@0: return lowerUMod(mod); michael@0: michael@0: if (mod->rhs()->isConstant()) { michael@0: int32_t rhs = mod->rhs()->toConstant()->value().toInt32(); michael@0: int32_t shift = FloorLog2(rhs); michael@0: if (rhs > 0 && 1 << shift == rhs) { michael@0: LModPowTwoI *lir = new(alloc()) LModPowTwoI(useRegister(mod->lhs()), shift); michael@0: if (mod->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) michael@0: return false; michael@0: return define(lir, mod); michael@0: } else if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) { michael@0: LModMaskI *lir = new(alloc()) LModMaskI(useRegister(mod->lhs()), michael@0: temp(LDefinition::GENERAL), shift + 1); michael@0: if (mod->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) michael@0: return false; michael@0: return define(lir, mod); michael@0: } michael@0: } michael@0: LModI *lir = new(alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()), michael@0: temp(LDefinition::GENERAL)); michael@0: michael@0: if (mod->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) michael@0: return false; michael@0: return define(lir, mod); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitPowHalf(MPowHalf *ins) michael@0: { michael@0: MDefinition *input = ins->input(); michael@0: MOZ_ASSERT(input->type() == MIRType_Double); michael@0: LPowHalfD *lir = new(alloc()) LPowHalfD(useRegisterAtStart(input)); michael@0: return defineReuseInput(lir, ins, 0); michael@0: } michael@0: michael@0: LTableSwitch * michael@0: LIRGeneratorMIPS::newLTableSwitch(const LAllocation &in, const LDefinition &inputCopy, michael@0: MTableSwitch *tableswitch) michael@0: { michael@0: return new(alloc()) LTableSwitch(in, inputCopy, temp(), tableswitch); michael@0: } michael@0: michael@0: LTableSwitchV * michael@0: LIRGeneratorMIPS::newLTableSwitchV(MTableSwitch *tableswitch) michael@0: { michael@0: return new(alloc()) LTableSwitchV(temp(), tempFloat32(), temp(), tableswitch); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitGuardShape(MGuardShape *ins) michael@0: { michael@0: MOZ_ASSERT(ins->obj()->type() == MIRType_Object); michael@0: michael@0: LDefinition tempObj = temp(LDefinition::OBJECT); michael@0: LGuardShape *guard = new(alloc()) LGuardShape(useRegister(ins->obj()), tempObj); michael@0: if (!assignSnapshot(guard, ins->bailoutKind())) michael@0: return false; michael@0: if (!add(guard, ins)) michael@0: return false; michael@0: return redefine(ins, ins->obj()); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitGuardObjectType(MGuardObjectType *ins) michael@0: { michael@0: MOZ_ASSERT(ins->obj()->type() == MIRType_Object); michael@0: michael@0: LDefinition tempObj = temp(LDefinition::OBJECT); michael@0: LGuardObjectType *guard = new(alloc()) LGuardObjectType(useRegister(ins->obj()), tempObj); michael@0: if (!assignSnapshot(guard)) michael@0: return false; michael@0: if (!add(guard, ins)) michael@0: return false; michael@0: return redefine(ins, ins->obj()); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerUrshD(MUrsh *mir) michael@0: { michael@0: MDefinition *lhs = mir->lhs(); michael@0: MDefinition *rhs = mir->rhs(); michael@0: michael@0: MOZ_ASSERT(lhs->type() == MIRType_Int32); michael@0: MOZ_ASSERT(rhs->type() == MIRType_Int32); michael@0: michael@0: LUrshD *lir = new(alloc()) LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp()); michael@0: return define(lir, mir); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitAsmJSNeg(MAsmJSNeg *ins) michael@0: { michael@0: if (ins->type() == MIRType_Int32) michael@0: return define(new(alloc()) LNegI(useRegisterAtStart(ins->input())), ins); michael@0: michael@0: if (ins->type() == MIRType_Float32) michael@0: return define(new(alloc()) LNegF(useRegisterAtStart(ins->input())), ins); michael@0: michael@0: MOZ_ASSERT(ins->type() == MIRType_Double); michael@0: return define(new(alloc()) LNegD(useRegisterAtStart(ins->input())), ins); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerUDiv(MDiv *div) michael@0: { michael@0: MDefinition *lhs = div->getOperand(0); michael@0: MDefinition *rhs = div->getOperand(1); michael@0: michael@0: LUDiv *lir = new(alloc()) LUDiv; michael@0: lir->setOperand(0, useRegister(lhs)); michael@0: lir->setOperand(1, useRegister(rhs)); michael@0: if (div->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) michael@0: return false; michael@0: michael@0: return define(lir, div); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerUMod(MMod *mod) michael@0: { michael@0: MDefinition *lhs = mod->getOperand(0); michael@0: MDefinition *rhs = mod->getOperand(1); michael@0: michael@0: LUMod *lir = new(alloc()) LUMod; michael@0: lir->setOperand(0, useRegister(lhs)); michael@0: lir->setOperand(1, useRegister(rhs)); michael@0: if (mod->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) michael@0: return false; michael@0: michael@0: return define(lir, mod); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitAsmJSUnsignedToDouble(MAsmJSUnsignedToDouble *ins) michael@0: { michael@0: MOZ_ASSERT(ins->input()->type() == MIRType_Int32); michael@0: LAsmJSUInt32ToDouble *lir = new(alloc()) LAsmJSUInt32ToDouble(useRegisterAtStart(ins->input())); michael@0: return define(lir, ins); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitAsmJSUnsignedToFloat32(MAsmJSUnsignedToFloat32 *ins) michael@0: { michael@0: MOZ_ASSERT(ins->input()->type() == MIRType_Int32); michael@0: LAsmJSUInt32ToFloat32 *lir = new(alloc()) LAsmJSUInt32ToFloat32(useRegisterAtStart(ins->input())); michael@0: return define(lir, ins); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitAsmJSLoadHeap(MAsmJSLoadHeap *ins) michael@0: { michael@0: MDefinition *ptr = ins->ptr(); michael@0: MOZ_ASSERT(ptr->type() == MIRType_Int32); michael@0: LAllocation ptrAlloc; michael@0: michael@0: // For MIPS it is best to keep the 'ptr' in a register if a bounds check michael@0: // is needed. michael@0: if (ptr->isConstant() && ins->skipBoundsCheck()) { michael@0: int32_t ptrValue = ptr->toConstant()->value().toInt32(); michael@0: // A bounds check is only skipped for a positive index. michael@0: MOZ_ASSERT(ptrValue >= 0); michael@0: ptrAlloc = LAllocation(ptr->toConstant()->vp()); michael@0: } else michael@0: ptrAlloc = useRegisterAtStart(ptr); michael@0: michael@0: return define(new(alloc()) LAsmJSLoadHeap(ptrAlloc), ins); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitAsmJSStoreHeap(MAsmJSStoreHeap *ins) michael@0: { michael@0: MDefinition *ptr = ins->ptr(); michael@0: MOZ_ASSERT(ptr->type() == MIRType_Int32); michael@0: LAllocation ptrAlloc; michael@0: michael@0: if (ptr->isConstant() && ins->skipBoundsCheck()) { michael@0: MOZ_ASSERT(ptr->toConstant()->value().toInt32() >= 0); michael@0: ptrAlloc = LAllocation(ptr->toConstant()->vp()); michael@0: } else michael@0: ptrAlloc = useRegisterAtStart(ptr); michael@0: michael@0: return add(new(alloc()) LAsmJSStoreHeap(ptrAlloc, useRegisterAtStart(ins->value())), ins); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitAsmJSLoadFuncPtr(MAsmJSLoadFuncPtr *ins) michael@0: { michael@0: return define(new(alloc()) LAsmJSLoadFuncPtr(useRegister(ins->index()), temp()), ins); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerTruncateDToInt32(MTruncateToInt32 *ins) michael@0: { michael@0: MDefinition *opd = ins->input(); michael@0: MOZ_ASSERT(opd->type() == MIRType_Double); michael@0: michael@0: return define(new(alloc()) LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()), ins); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::lowerTruncateFToInt32(MTruncateToInt32 *ins) michael@0: { michael@0: MDefinition *opd = ins->input(); michael@0: MOZ_ASSERT(opd->type() == MIRType_Float32); michael@0: michael@0: return define(new(alloc()) LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()), ins); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitStoreTypedArrayElementStatic(MStoreTypedArrayElementStatic *ins) michael@0: { michael@0: MOZ_ASSUME_UNREACHABLE("NYI"); michael@0: } michael@0: michael@0: bool michael@0: LIRGeneratorMIPS::visitForkJoinGetSlice(MForkJoinGetSlice *ins) michael@0: { michael@0: MOZ_ASSUME_UNREACHABLE("NYI"); michael@0: }