michael@0: // Copyright (c) 2006-2011 The Chromium Authors. All rights reserved. michael@0: // michael@0: // Redistribution and use in source and binary forms, with or without michael@0: // modification, are permitted provided that the following conditions michael@0: // are met: michael@0: // * Redistributions of source code must retain the above copyright michael@0: // notice, this list of conditions and the following disclaimer. michael@0: // * Redistributions in binary form must reproduce the above copyright michael@0: // notice, this list of conditions and the following disclaimer in michael@0: // the documentation and/or other materials provided with the michael@0: // distribution. michael@0: // * Neither the name of Google, Inc. nor the names of its contributors michael@0: // may be used to endorse or promote products derived from this michael@0: // software without specific prior written permission. michael@0: // michael@0: // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS michael@0: // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT michael@0: // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS michael@0: // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE michael@0: // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, michael@0: // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, michael@0: // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS michael@0: // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED michael@0: // AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, michael@0: // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT michael@0: // OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF michael@0: // SUCH DAMAGE. michael@0: michael@0: #include "convolver.h" michael@0: michael@0: #include michael@0: michael@0: #include "skia/SkTypes.h" michael@0: michael@0: // note: SIMD_SSE2 is not enabled because of bugs, apparently michael@0: michael@0: #if defined(SIMD_SSE2) michael@0: #include // ARCH_CPU_X86_FAMILY was defined in build/config.h michael@0: #endif michael@0: michael@0: #if defined(SK_CPU_LENDIAN) michael@0: #define R_OFFSET_IDX 0 michael@0: #define G_OFFSET_IDX 1 michael@0: #define B_OFFSET_IDX 2 michael@0: #define A_OFFSET_IDX 3 michael@0: #else michael@0: #define R_OFFSET_IDX 3 michael@0: #define G_OFFSET_IDX 2 michael@0: #define B_OFFSET_IDX 1 michael@0: #define A_OFFSET_IDX 0 michael@0: #endif michael@0: michael@0: namespace skia { michael@0: michael@0: namespace { michael@0: michael@0: // Converts the argument to an 8-bit unsigned value by clamping to the range michael@0: // 0-255. michael@0: inline unsigned char ClampTo8(int a) { michael@0: if (static_cast(a) < 256) michael@0: return a; // Avoid the extra check in the common case. michael@0: if (a < 0) michael@0: return 0; michael@0: return 255; michael@0: } michael@0: michael@0: // Stores a list of rows in a circular buffer. The usage is you write into it michael@0: // by calling AdvanceRow. It will keep track of which row in the buffer it michael@0: // should use next, and the total number of rows added. michael@0: class CircularRowBuffer { michael@0: public: michael@0: // The number of pixels in each row is given in |source_row_pixel_width|. michael@0: // The maximum number of rows needed in the buffer is |max_y_filter_size| michael@0: // (we only need to store enough rows for the biggest filter). michael@0: // michael@0: // We use the |first_input_row| to compute the coordinates of all of the michael@0: // following rows returned by Advance(). michael@0: CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size, michael@0: int first_input_row) michael@0: : row_byte_width_(dest_row_pixel_width * 4), michael@0: num_rows_(max_y_filter_size), michael@0: next_row_(0), michael@0: next_row_coordinate_(first_input_row) { michael@0: buffer_.resize(row_byte_width_ * max_y_filter_size); michael@0: row_addresses_.resize(num_rows_); michael@0: } michael@0: michael@0: // Moves to the next row in the buffer, returning a pointer to the beginning michael@0: // of it. michael@0: unsigned char* AdvanceRow() { michael@0: unsigned char* row = &buffer_[next_row_ * row_byte_width_]; michael@0: next_row_coordinate_++; michael@0: michael@0: // Set the pointer to the next row to use, wrapping around if necessary. michael@0: next_row_++; michael@0: if (next_row_ == num_rows_) michael@0: next_row_ = 0; michael@0: return row; michael@0: } michael@0: michael@0: // Returns a pointer to an "unrolled" array of rows. These rows will start michael@0: // at the y coordinate placed into |*first_row_index| and will continue in michael@0: // order for the maximum number of rows in this circular buffer. michael@0: // michael@0: // The |first_row_index_| may be negative. This means the circular buffer michael@0: // starts before the top of the image (it hasn't been filled yet). michael@0: unsigned char* const* GetRowAddresses(int* first_row_index) { michael@0: // Example for a 4-element circular buffer holding coords 6-9. michael@0: // Row 0 Coord 8 michael@0: // Row 1 Coord 9 michael@0: // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10. michael@0: // Row 3 Coord 7 michael@0: // michael@0: // The "next" row is also the first (lowest) coordinate. This computation michael@0: // may yield a negative value, but that's OK, the math will work out michael@0: // since the user of this buffer will compute the offset relative michael@0: // to the first_row_index and the negative rows will never be used. michael@0: *first_row_index = next_row_coordinate_ - num_rows_; michael@0: michael@0: int cur_row = next_row_; michael@0: for (int i = 0; i < num_rows_; i++) { michael@0: row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; michael@0: michael@0: // Advance to the next row, wrapping if necessary. michael@0: cur_row++; michael@0: if (cur_row == num_rows_) michael@0: cur_row = 0; michael@0: } michael@0: return &row_addresses_[0]; michael@0: } michael@0: michael@0: private: michael@0: // The buffer storing the rows. They are packed, each one row_byte_width_. michael@0: std::vector buffer_; michael@0: michael@0: // Number of bytes per row in the |buffer_|. michael@0: int row_byte_width_; michael@0: michael@0: // The number of rows available in the buffer. michael@0: int num_rows_; michael@0: michael@0: // The next row index we should write into. This wraps around as the michael@0: // circular buffer is used. michael@0: int next_row_; michael@0: michael@0: // The y coordinate of the |next_row_|. This is incremented each time a michael@0: // new row is appended and does not wrap. michael@0: int next_row_coordinate_; michael@0: michael@0: // Buffer used by GetRowAddresses(). michael@0: std::vector row_addresses_; michael@0: }; michael@0: michael@0: // Convolves horizontally along a single row. The row data is given in michael@0: // |src_data| and continues for the num_values() of the filter. michael@0: template michael@0: // This function is miscompiled with gcc 4.5 with pgo. See bug 827946. michael@0: #if defined(__GNUC__) && defined(MOZ_GCC_VERSION_AT_LEAST) michael@0: #if MOZ_GCC_VERSION_AT_LEAST(4, 5, 0) && !MOZ_GCC_VERSION_AT_LEAST(4, 6, 0) michael@0: __attribute__((optimize("-O1"))) michael@0: #endif michael@0: #endif michael@0: void ConvolveHorizontally(const unsigned char* src_data, michael@0: const ConvolutionFilter1D& filter, michael@0: unsigned char* out_row) { michael@0: // Loop over each pixel on this row in the output image. michael@0: int num_values = filter.num_values(); michael@0: for (int out_x = 0; out_x < num_values; out_x++) { michael@0: // Get the filter that determines the current output pixel. michael@0: int filter_offset, filter_length; michael@0: const ConvolutionFilter1D::Fixed* filter_values = michael@0: filter.FilterForValue(out_x, &filter_offset, &filter_length); michael@0: michael@0: // Compute the first pixel in this row that the filter affects. It will michael@0: // touch |filter_length| pixels (4 bytes each) after this. michael@0: const unsigned char* row_to_filter = &src_data[filter_offset * 4]; michael@0: michael@0: // Apply the filter to the row to get the destination pixel in |accum|. michael@0: int accum[4] = {0}; michael@0: for (int filter_x = 0; filter_x < filter_length; filter_x++) { michael@0: ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x]; michael@0: accum[0] += cur_filter * row_to_filter[filter_x * 4 + R_OFFSET_IDX]; michael@0: accum[1] += cur_filter * row_to_filter[filter_x * 4 + G_OFFSET_IDX]; michael@0: accum[2] += cur_filter * row_to_filter[filter_x * 4 + B_OFFSET_IDX]; michael@0: if (has_alpha) michael@0: accum[3] += cur_filter * row_to_filter[filter_x * 4 + A_OFFSET_IDX]; michael@0: } michael@0: michael@0: // Bring this value back in range. All of the filter scaling factors michael@0: // are in fixed point with kShiftBits bits of fractional part. michael@0: accum[0] >>= ConvolutionFilter1D::kShiftBits; michael@0: accum[1] >>= ConvolutionFilter1D::kShiftBits; michael@0: accum[2] >>= ConvolutionFilter1D::kShiftBits; michael@0: if (has_alpha) michael@0: accum[3] >>= ConvolutionFilter1D::kShiftBits; michael@0: michael@0: // Store the new pixel. michael@0: out_row[out_x * 4 + R_OFFSET_IDX] = ClampTo8(accum[0]); michael@0: out_row[out_x * 4 + G_OFFSET_IDX] = ClampTo8(accum[1]); michael@0: out_row[out_x * 4 + B_OFFSET_IDX] = ClampTo8(accum[2]); michael@0: if (has_alpha) michael@0: out_row[out_x * 4 + A_OFFSET_IDX] = ClampTo8(accum[3]); michael@0: } michael@0: } michael@0: michael@0: // Does vertical convolution to produce one output row. The filter values and michael@0: // length are given in the first two parameters. These are applied to each michael@0: // of the rows pointed to in the |source_data_rows| array, with each row michael@0: // being |pixel_width| wide. michael@0: // michael@0: // The output must have room for |pixel_width * 4| bytes. michael@0: template michael@0: void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, michael@0: int filter_length, michael@0: unsigned char* const* source_data_rows, michael@0: int pixel_width, michael@0: unsigned char* out_row) { michael@0: // We go through each column in the output and do a vertical convolution, michael@0: // generating one output pixel each time. michael@0: for (int out_x = 0; out_x < pixel_width; out_x++) { michael@0: // Compute the number of bytes over in each row that the current column michael@0: // we're convolving starts at. The pixel will cover the next 4 bytes. michael@0: int byte_offset = out_x * 4; michael@0: michael@0: // Apply the filter to one column of pixels. michael@0: int accum[4] = {0}; michael@0: for (int filter_y = 0; filter_y < filter_length; filter_y++) { michael@0: ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y]; michael@0: accum[0] += cur_filter michael@0: * source_data_rows[filter_y][byte_offset + R_OFFSET_IDX]; michael@0: accum[1] += cur_filter michael@0: * source_data_rows[filter_y][byte_offset + G_OFFSET_IDX]; michael@0: accum[2] += cur_filter michael@0: * source_data_rows[filter_y][byte_offset + B_OFFSET_IDX]; michael@0: if (has_alpha) michael@0: accum[3] += cur_filter michael@0: * source_data_rows[filter_y][byte_offset + A_OFFSET_IDX]; michael@0: } michael@0: michael@0: // Bring this value back in range. All of the filter scaling factors michael@0: // are in fixed point with kShiftBits bits of precision. michael@0: accum[0] >>= ConvolutionFilter1D::kShiftBits; michael@0: accum[1] >>= ConvolutionFilter1D::kShiftBits; michael@0: accum[2] >>= ConvolutionFilter1D::kShiftBits; michael@0: if (has_alpha) michael@0: accum[3] >>= ConvolutionFilter1D::kShiftBits; michael@0: michael@0: // Store the new pixel. michael@0: out_row[byte_offset + R_OFFSET_IDX] = ClampTo8(accum[0]); michael@0: out_row[byte_offset + G_OFFSET_IDX] = ClampTo8(accum[1]); michael@0: out_row[byte_offset + B_OFFSET_IDX] = ClampTo8(accum[2]); michael@0: if (has_alpha) { michael@0: unsigned char alpha = ClampTo8(accum[3]); michael@0: michael@0: // Make sure the alpha channel doesn't come out smaller than any of the michael@0: // color channels. We use premultipled alpha channels, so this should michael@0: // never happen, but rounding errors will cause this from time to time. michael@0: // These "impossible" colors will cause overflows (and hence random pixel michael@0: // values) when the resulting bitmap is drawn to the screen. michael@0: // michael@0: // We only need to do this when generating the final output row (here). michael@0: int max_color_channel = std::max(out_row[byte_offset + R_OFFSET_IDX], michael@0: std::max(out_row[byte_offset + G_OFFSET_IDX], out_row[byte_offset + B_OFFSET_IDX])); michael@0: if (alpha < max_color_channel) michael@0: out_row[byte_offset + A_OFFSET_IDX] = max_color_channel; michael@0: else michael@0: out_row[byte_offset + A_OFFSET_IDX] = alpha; michael@0: } else { michael@0: // No alpha channel, the image is opaque. michael@0: out_row[byte_offset + A_OFFSET_IDX] = 0xff; michael@0: } michael@0: } michael@0: } michael@0: michael@0: michael@0: // Convolves horizontally along a single row. The row data is given in michael@0: // |src_data| and continues for the num_values() of the filter. michael@0: void ConvolveHorizontally_SSE2(const unsigned char* src_data, michael@0: const ConvolutionFilter1D& filter, michael@0: unsigned char* out_row) { michael@0: #if defined(SIMD_SSE2) michael@0: int num_values = filter.num_values(); michael@0: michael@0: int filter_offset, filter_length; michael@0: __m128i zero = _mm_setzero_si128(); michael@0: __m128i mask[4]; michael@0: // |mask| will be used to decimate all extra filter coefficients that are michael@0: // loaded by SIMD when |filter_length| is not divisible by 4. michael@0: // mask[0] is not used in following algorithm. michael@0: mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); michael@0: mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); michael@0: mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); michael@0: michael@0: // Output one pixel each iteration, calculating all channels (RGBA) together. michael@0: for (int out_x = 0; out_x < num_values; out_x++) { michael@0: const ConvolutionFilter1D::Fixed* filter_values = michael@0: filter.FilterForValue(out_x, &filter_offset, &filter_length); michael@0: michael@0: __m128i accum = _mm_setzero_si128(); michael@0: michael@0: // Compute the first pixel in this row that the filter affects. It will michael@0: // touch |filter_length| pixels (4 bytes each) after this. michael@0: const __m128i* row_to_filter = michael@0: reinterpret_cast(&src_data[filter_offset << 2]); michael@0: michael@0: // We will load and accumulate with four coefficients per iteration. michael@0: for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { michael@0: michael@0: // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. michael@0: __m128i coeff, coeff16; michael@0: // [16] xx xx xx xx c3 c2 c1 c0 michael@0: coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); michael@0: // [16] xx xx xx xx c1 c1 c0 c0 michael@0: coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); michael@0: // [16] c1 c1 c1 c1 c0 c0 c0 c0 michael@0: coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); michael@0: michael@0: // Load four pixels => unpack the first two pixels to 16 bits => michael@0: // multiply with coefficients => accumulate the convolution result. michael@0: // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 michael@0: __m128i src8 = _mm_loadu_si128(row_to_filter); michael@0: // [16] a1 b1 g1 r1 a0 b0 g0 r0 michael@0: __m128i src16 = _mm_unpacklo_epi8(src8, zero); michael@0: __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); michael@0: __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); michael@0: // [32] a0*c0 b0*c0 g0*c0 r0*c0 michael@0: __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); michael@0: accum = _mm_add_epi32(accum, t); michael@0: // [32] a1*c1 b1*c1 g1*c1 r1*c1 michael@0: t = _mm_unpackhi_epi16(mul_lo, mul_hi); michael@0: accum = _mm_add_epi32(accum, t); michael@0: michael@0: // Duplicate 3rd and 4th coefficients for all channels => michael@0: // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients michael@0: // => accumulate the convolution results. michael@0: // [16] xx xx xx xx c3 c3 c2 c2 michael@0: coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); michael@0: // [16] c3 c3 c3 c3 c2 c2 c2 c2 michael@0: coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); michael@0: // [16] a3 g3 b3 r3 a2 g2 b2 r2 michael@0: src16 = _mm_unpackhi_epi8(src8, zero); michael@0: mul_hi = _mm_mulhi_epi16(src16, coeff16); michael@0: mul_lo = _mm_mullo_epi16(src16, coeff16); michael@0: // [32] a2*c2 b2*c2 g2*c2 r2*c2 michael@0: t = _mm_unpacklo_epi16(mul_lo, mul_hi); michael@0: accum = _mm_add_epi32(accum, t); michael@0: // [32] a3*c3 b3*c3 g3*c3 r3*c3 michael@0: t = _mm_unpackhi_epi16(mul_lo, mul_hi); michael@0: accum = _mm_add_epi32(accum, t); michael@0: michael@0: // Advance the pixel and coefficients pointers. michael@0: row_to_filter += 1; michael@0: filter_values += 4; michael@0: } michael@0: michael@0: // When |filter_length| is not divisible by 4, we need to decimate some of michael@0: // the filter coefficient that was loaded incorrectly to zero; Other than michael@0: // that the algorithm is same with above, exceot that the 4th pixel will be michael@0: // always absent. michael@0: int r = filter_length&3; michael@0: if (r) { michael@0: // Note: filter_values must be padded to align_up(filter_offset, 8). michael@0: __m128i coeff, coeff16; michael@0: coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); michael@0: // Mask out extra filter taps. michael@0: coeff = _mm_and_si128(coeff, mask[r]); michael@0: coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); michael@0: coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); michael@0: michael@0: // Note: line buffer must be padded to align_up(filter_offset, 16). michael@0: // We resolve this by use C-version for the last horizontal line. michael@0: __m128i src8 = _mm_loadu_si128(row_to_filter); michael@0: __m128i src16 = _mm_unpacklo_epi8(src8, zero); michael@0: __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); michael@0: __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); michael@0: __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); michael@0: accum = _mm_add_epi32(accum, t); michael@0: t = _mm_unpackhi_epi16(mul_lo, mul_hi); michael@0: accum = _mm_add_epi32(accum, t); michael@0: michael@0: src16 = _mm_unpackhi_epi8(src8, zero); michael@0: coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); michael@0: coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); michael@0: mul_hi = _mm_mulhi_epi16(src16, coeff16); michael@0: mul_lo = _mm_mullo_epi16(src16, coeff16); michael@0: t = _mm_unpacklo_epi16(mul_lo, mul_hi); michael@0: accum = _mm_add_epi32(accum, t); michael@0: } michael@0: michael@0: // Shift right for fixed point implementation. michael@0: accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); michael@0: michael@0: // Packing 32 bits |accum| to 16 bits per channel (signed saturation). michael@0: accum = _mm_packs_epi32(accum, zero); michael@0: // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). michael@0: accum = _mm_packus_epi16(accum, zero); michael@0: michael@0: // Store the pixel value of 32 bits. michael@0: *(reinterpret_cast(out_row)) = _mm_cvtsi128_si32(accum); michael@0: out_row += 4; michael@0: } michael@0: #endif michael@0: } michael@0: michael@0: // Convolves horizontally along four rows. The row data is given in michael@0: // |src_data| and continues for the num_values() of the filter. michael@0: // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please michael@0: // refer to that function for detailed comments. michael@0: void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4], michael@0: const ConvolutionFilter1D& filter, michael@0: unsigned char* out_row[4]) { michael@0: #if defined(SIMD_SSE2) michael@0: int num_values = filter.num_values(); michael@0: michael@0: int filter_offset, filter_length; michael@0: __m128i zero = _mm_setzero_si128(); michael@0: __m128i mask[4]; michael@0: // |mask| will be used to decimate all extra filter coefficients that are michael@0: // loaded by SIMD when |filter_length| is not divisible by 4. michael@0: // mask[0] is not used in following algorithm. michael@0: mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); michael@0: mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); michael@0: mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); michael@0: michael@0: // Output one pixel each iteration, calculating all channels (RGBA) together. michael@0: for (int out_x = 0; out_x < num_values; out_x++) { michael@0: const ConvolutionFilter1D::Fixed* filter_values = michael@0: filter.FilterForValue(out_x, &filter_offset, &filter_length); michael@0: michael@0: // four pixels in a column per iteration. michael@0: __m128i accum0 = _mm_setzero_si128(); michael@0: __m128i accum1 = _mm_setzero_si128(); michael@0: __m128i accum2 = _mm_setzero_si128(); michael@0: __m128i accum3 = _mm_setzero_si128(); michael@0: int start = (filter_offset<<2); michael@0: // We will load and accumulate with four coefficients per iteration. michael@0: for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { michael@0: __m128i coeff, coeff16lo, coeff16hi; michael@0: // [16] xx xx xx xx c3 c2 c1 c0 michael@0: coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); michael@0: // [16] xx xx xx xx c1 c1 c0 c0 michael@0: coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); michael@0: // [16] c1 c1 c1 c1 c0 c0 c0 c0 michael@0: coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); michael@0: // [16] xx xx xx xx c3 c3 c2 c2 michael@0: coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); michael@0: // [16] c3 c3 c3 c3 c2 c2 c2 c2 michael@0: coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); michael@0: michael@0: __m128i src8, src16, mul_hi, mul_lo, t; michael@0: michael@0: #define ITERATION(src, accum) \ michael@0: src8 = _mm_loadu_si128(reinterpret_cast(src)); \ michael@0: src16 = _mm_unpacklo_epi8(src8, zero); \ michael@0: mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ michael@0: mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ michael@0: t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ michael@0: accum = _mm_add_epi32(accum, t); \ michael@0: t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ michael@0: accum = _mm_add_epi32(accum, t); \ michael@0: src16 = _mm_unpackhi_epi8(src8, zero); \ michael@0: mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ michael@0: mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ michael@0: t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ michael@0: accum = _mm_add_epi32(accum, t); \ michael@0: t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ michael@0: accum = _mm_add_epi32(accum, t) michael@0: michael@0: ITERATION(src_data[0] + start, accum0); michael@0: ITERATION(src_data[1] + start, accum1); michael@0: ITERATION(src_data[2] + start, accum2); michael@0: ITERATION(src_data[3] + start, accum3); michael@0: michael@0: start += 16; michael@0: filter_values += 4; michael@0: } michael@0: michael@0: int r = filter_length & 3; michael@0: if (r) { michael@0: // Note: filter_values must be padded to align_up(filter_offset, 8); michael@0: __m128i coeff; michael@0: coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); michael@0: // Mask out extra filter taps. michael@0: coeff = _mm_and_si128(coeff, mask[r]); michael@0: michael@0: __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); michael@0: /* c1 c1 c1 c1 c0 c0 c0 c0 */ michael@0: coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); michael@0: __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); michael@0: coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); michael@0: michael@0: __m128i src8, src16, mul_hi, mul_lo, t; michael@0: michael@0: ITERATION(src_data[0] + start, accum0); michael@0: ITERATION(src_data[1] + start, accum1); michael@0: ITERATION(src_data[2] + start, accum2); michael@0: ITERATION(src_data[3] + start, accum3); michael@0: } michael@0: michael@0: accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); michael@0: accum0 = _mm_packs_epi32(accum0, zero); michael@0: accum0 = _mm_packus_epi16(accum0, zero); michael@0: accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); michael@0: accum1 = _mm_packs_epi32(accum1, zero); michael@0: accum1 = _mm_packus_epi16(accum1, zero); michael@0: accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); michael@0: accum2 = _mm_packs_epi32(accum2, zero); michael@0: accum2 = _mm_packus_epi16(accum2, zero); michael@0: accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); michael@0: accum3 = _mm_packs_epi32(accum3, zero); michael@0: accum3 = _mm_packus_epi16(accum3, zero); michael@0: michael@0: *(reinterpret_cast(out_row[0])) = _mm_cvtsi128_si32(accum0); michael@0: *(reinterpret_cast(out_row[1])) = _mm_cvtsi128_si32(accum1); michael@0: *(reinterpret_cast(out_row[2])) = _mm_cvtsi128_si32(accum2); michael@0: *(reinterpret_cast(out_row[3])) = _mm_cvtsi128_si32(accum3); michael@0: michael@0: out_row[0] += 4; michael@0: out_row[1] += 4; michael@0: out_row[2] += 4; michael@0: out_row[3] += 4; michael@0: } michael@0: #endif michael@0: } michael@0: michael@0: // Does vertical convolution to produce one output row. The filter values and michael@0: // length are given in the first two parameters. These are applied to each michael@0: // of the rows pointed to in the |source_data_rows| array, with each row michael@0: // being |pixel_width| wide. michael@0: // michael@0: // The output must have room for |pixel_width * 4| bytes. michael@0: template michael@0: void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, michael@0: int filter_length, michael@0: unsigned char* const* source_data_rows, michael@0: int pixel_width, michael@0: unsigned char* out_row) { michael@0: #if defined(SIMD_SSE2) michael@0: int width = pixel_width & ~3; michael@0: michael@0: __m128i zero = _mm_setzero_si128(); michael@0: __m128i accum0, accum1, accum2, accum3, coeff16; michael@0: const __m128i* src; michael@0: // Output four pixels per iteration (16 bytes). michael@0: for (int out_x = 0; out_x < width; out_x += 4) { michael@0: michael@0: // Accumulated result for each pixel. 32 bits per RGBA channel. michael@0: accum0 = _mm_setzero_si128(); michael@0: accum1 = _mm_setzero_si128(); michael@0: accum2 = _mm_setzero_si128(); michael@0: accum3 = _mm_setzero_si128(); michael@0: michael@0: // Convolve with one filter coefficient per iteration. michael@0: for (int filter_y = 0; filter_y < filter_length; filter_y++) { michael@0: michael@0: // Duplicate the filter coefficient 8 times. michael@0: // [16] cj cj cj cj cj cj cj cj michael@0: coeff16 = _mm_set1_epi16(filter_values[filter_y]); michael@0: michael@0: // Load four pixels (16 bytes) together. michael@0: // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 michael@0: src = reinterpret_cast( michael@0: &source_data_rows[filter_y][out_x << 2]); michael@0: __m128i src8 = _mm_loadu_si128(src); michael@0: michael@0: // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => michael@0: // multiply with current coefficient => accumulate the result. michael@0: // [16] a1 b1 g1 r1 a0 b0 g0 r0 michael@0: __m128i src16 = _mm_unpacklo_epi8(src8, zero); michael@0: __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); michael@0: __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); michael@0: // [32] a0 b0 g0 r0 michael@0: __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); michael@0: accum0 = _mm_add_epi32(accum0, t); michael@0: // [32] a1 b1 g1 r1 michael@0: t = _mm_unpackhi_epi16(mul_lo, mul_hi); michael@0: accum1 = _mm_add_epi32(accum1, t); michael@0: michael@0: // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => michael@0: // multiply with current coefficient => accumulate the result. michael@0: // [16] a3 b3 g3 r3 a2 b2 g2 r2 michael@0: src16 = _mm_unpackhi_epi8(src8, zero); michael@0: mul_hi = _mm_mulhi_epi16(src16, coeff16); michael@0: mul_lo = _mm_mullo_epi16(src16, coeff16); michael@0: // [32] a2 b2 g2 r2 michael@0: t = _mm_unpacklo_epi16(mul_lo, mul_hi); michael@0: accum2 = _mm_add_epi32(accum2, t); michael@0: // [32] a3 b3 g3 r3 michael@0: t = _mm_unpackhi_epi16(mul_lo, mul_hi); michael@0: accum3 = _mm_add_epi32(accum3, t); michael@0: } michael@0: michael@0: // Shift right for fixed point implementation. michael@0: accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); michael@0: accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); michael@0: accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); michael@0: accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); michael@0: michael@0: // Packing 32 bits |accum| to 16 bits per channel (signed saturation). michael@0: // [16] a1 b1 g1 r1 a0 b0 g0 r0 michael@0: accum0 = _mm_packs_epi32(accum0, accum1); michael@0: // [16] a3 b3 g3 r3 a2 b2 g2 r2 michael@0: accum2 = _mm_packs_epi32(accum2, accum3); michael@0: michael@0: // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). michael@0: // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 michael@0: accum0 = _mm_packus_epi16(accum0, accum2); michael@0: michael@0: if (has_alpha) { michael@0: // Compute the max(ri, gi, bi) for each pixel. michael@0: // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 michael@0: __m128i a = _mm_srli_epi32(accum0, 8); michael@0: // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 michael@0: __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. michael@0: // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 michael@0: a = _mm_srli_epi32(accum0, 16); michael@0: // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 michael@0: b = _mm_max_epu8(a, b); // Max of r and g and b. michael@0: // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 michael@0: b = _mm_slli_epi32(b, 24); michael@0: michael@0: // Make sure the value of alpha channel is always larger than maximum michael@0: // value of color channels. michael@0: accum0 = _mm_max_epu8(b, accum0); michael@0: } else { michael@0: // Set value of alpha channels to 0xFF. michael@0: __m128i mask = _mm_set1_epi32(0xff000000); michael@0: accum0 = _mm_or_si128(accum0, mask); michael@0: } michael@0: michael@0: // Store the convolution result (16 bytes) and advance the pixel pointers. michael@0: _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); michael@0: out_row += 16; michael@0: } michael@0: michael@0: // When the width of the output is not divisible by 4, We need to save one michael@0: // pixel (4 bytes) each time. And also the fourth pixel is always absent. michael@0: if (pixel_width & 3) { michael@0: accum0 = _mm_setzero_si128(); michael@0: accum1 = _mm_setzero_si128(); michael@0: accum2 = _mm_setzero_si128(); michael@0: for (int filter_y = 0; filter_y < filter_length; ++filter_y) { michael@0: coeff16 = _mm_set1_epi16(filter_values[filter_y]); michael@0: // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 michael@0: src = reinterpret_cast( michael@0: &source_data_rows[filter_y][width<<2]); michael@0: __m128i src8 = _mm_loadu_si128(src); michael@0: // [16] a1 b1 g1 r1 a0 b0 g0 r0 michael@0: __m128i src16 = _mm_unpacklo_epi8(src8, zero); michael@0: __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); michael@0: __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); michael@0: // [32] a0 b0 g0 r0 michael@0: __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); michael@0: accum0 = _mm_add_epi32(accum0, t); michael@0: // [32] a1 b1 g1 r1 michael@0: t = _mm_unpackhi_epi16(mul_lo, mul_hi); michael@0: accum1 = _mm_add_epi32(accum1, t); michael@0: // [16] a3 b3 g3 r3 a2 b2 g2 r2 michael@0: src16 = _mm_unpackhi_epi8(src8, zero); michael@0: mul_hi = _mm_mulhi_epi16(src16, coeff16); michael@0: mul_lo = _mm_mullo_epi16(src16, coeff16); michael@0: // [32] a2 b2 g2 r2 michael@0: t = _mm_unpacklo_epi16(mul_lo, mul_hi); michael@0: accum2 = _mm_add_epi32(accum2, t); michael@0: } michael@0: michael@0: accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); michael@0: accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); michael@0: accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); michael@0: // [16] a1 b1 g1 r1 a0 b0 g0 r0 michael@0: accum0 = _mm_packs_epi32(accum0, accum1); michael@0: // [16] a3 b3 g3 r3 a2 b2 g2 r2 michael@0: accum2 = _mm_packs_epi32(accum2, zero); michael@0: // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 michael@0: accum0 = _mm_packus_epi16(accum0, accum2); michael@0: if (has_alpha) { michael@0: // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 michael@0: __m128i a = _mm_srli_epi32(accum0, 8); michael@0: // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 michael@0: __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. michael@0: // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 michael@0: a = _mm_srli_epi32(accum0, 16); michael@0: // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 michael@0: b = _mm_max_epu8(a, b); // Max of r and g and b. michael@0: // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 michael@0: b = _mm_slli_epi32(b, 24); michael@0: accum0 = _mm_max_epu8(b, accum0); michael@0: } else { michael@0: __m128i mask = _mm_set1_epi32(0xff000000); michael@0: accum0 = _mm_or_si128(accum0, mask); michael@0: } michael@0: michael@0: for (int out_x = width; out_x < pixel_width; out_x++) { michael@0: *(reinterpret_cast(out_row)) = _mm_cvtsi128_si32(accum0); michael@0: accum0 = _mm_srli_si128(accum0, 4); michael@0: out_row += 4; michael@0: } michael@0: } michael@0: #endif michael@0: } michael@0: michael@0: } // namespace michael@0: michael@0: // ConvolutionFilter1D --------------------------------------------------------- michael@0: michael@0: ConvolutionFilter1D::ConvolutionFilter1D() michael@0: : max_filter_(0) { michael@0: } michael@0: michael@0: ConvolutionFilter1D::~ConvolutionFilter1D() { michael@0: } michael@0: michael@0: void ConvolutionFilter1D::AddFilter(int filter_offset, michael@0: const float* filter_values, michael@0: int filter_length) { michael@0: SkASSERT(filter_length > 0); michael@0: michael@0: std::vector fixed_values; michael@0: fixed_values.reserve(filter_length); michael@0: michael@0: for (int i = 0; i < filter_length; ++i) michael@0: fixed_values.push_back(FloatToFixed(filter_values[i])); michael@0: michael@0: AddFilter(filter_offset, &fixed_values[0], filter_length); michael@0: } michael@0: michael@0: void ConvolutionFilter1D::AddFilter(int filter_offset, michael@0: const Fixed* filter_values, michael@0: int filter_length) { michael@0: // It is common for leading/trailing filter values to be zeros. In such michael@0: // cases it is beneficial to only store the central factors. michael@0: // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on michael@0: // a 1080p image this optimization gives a ~10% speed improvement. michael@0: int first_non_zero = 0; michael@0: while (first_non_zero < filter_length && filter_values[first_non_zero] == 0) michael@0: first_non_zero++; michael@0: michael@0: if (first_non_zero < filter_length) { michael@0: // Here we have at least one non-zero factor. michael@0: int last_non_zero = filter_length - 1; michael@0: while (last_non_zero >= 0 && filter_values[last_non_zero] == 0) michael@0: last_non_zero--; michael@0: michael@0: filter_offset += first_non_zero; michael@0: filter_length = last_non_zero + 1 - first_non_zero; michael@0: SkASSERT(filter_length > 0); michael@0: michael@0: for (int i = first_non_zero; i <= last_non_zero; i++) michael@0: filter_values_.push_back(filter_values[i]); michael@0: } else { michael@0: // Here all the factors were zeroes. michael@0: filter_length = 0; michael@0: } michael@0: michael@0: FilterInstance instance; michael@0: michael@0: // We pushed filter_length elements onto filter_values_ michael@0: instance.data_location = (static_cast(filter_values_.size()) - michael@0: filter_length); michael@0: instance.offset = filter_offset; michael@0: instance.length = filter_length; michael@0: filters_.push_back(instance); michael@0: michael@0: max_filter_ = std::max(max_filter_, filter_length); michael@0: } michael@0: michael@0: void BGRAConvolve2D(const unsigned char* source_data, michael@0: int source_byte_row_stride, michael@0: bool source_has_alpha, michael@0: const ConvolutionFilter1D& filter_x, michael@0: const ConvolutionFilter1D& filter_y, michael@0: int output_byte_row_stride, michael@0: unsigned char* output, michael@0: bool use_sse2) { michael@0: #if !defined(SIMD_SSE2) michael@0: // Even we have runtime support for SSE2 instructions, since the binary michael@0: // was not built with SSE2 support, we had to fallback to C version. michael@0: use_sse2 = false; michael@0: #endif michael@0: michael@0: int max_y_filter_size = filter_y.max_filter(); michael@0: michael@0: // The next row in the input that we will generate a horizontally michael@0: // convolved row for. If the filter doesn't start at the beginning of the michael@0: // image (this is the case when we are only resizing a subset), then we michael@0: // don't want to generate any output rows before that. Compute the starting michael@0: // row for convolution as the first pixel for the first vertical filter. michael@0: int filter_offset, filter_length; michael@0: const ConvolutionFilter1D::Fixed* filter_values = michael@0: filter_y.FilterForValue(0, &filter_offset, &filter_length); michael@0: int next_x_row = filter_offset; michael@0: michael@0: // We loop over each row in the input doing a horizontal convolution. This michael@0: // will result in a horizontally convolved image. We write the results into michael@0: // a circular buffer of convolved rows and do vertical convolution as rows michael@0: // are available. This prevents us from having to store the entire michael@0: // intermediate image and helps cache coherency. michael@0: // We will need four extra rows to allow horizontal convolution could be done michael@0: // simultaneously. We also padding each row in row buffer to be aligned-up to michael@0: // 16 bytes. michael@0: // TODO(jiesun): We do not use aligned load from row buffer in vertical michael@0: // convolution pass yet. Somehow Windows does not like it. michael@0: int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; michael@0: int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0); michael@0: CircularRowBuffer row_buffer(row_buffer_width, michael@0: row_buffer_height, michael@0: filter_offset); michael@0: michael@0: // Loop over every possible output row, processing just enough horizontal michael@0: // convolutions to run each subsequent vertical convolution. michael@0: SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); michael@0: int num_output_rows = filter_y.num_values(); michael@0: michael@0: // We need to check which is the last line to convolve before we advance 4 michael@0: // lines in one iteration. michael@0: int last_filter_offset, last_filter_length; michael@0: filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset, michael@0: &last_filter_length); michael@0: michael@0: for (int out_y = 0; out_y < num_output_rows; out_y++) { michael@0: filter_values = filter_y.FilterForValue(out_y, michael@0: &filter_offset, &filter_length); michael@0: michael@0: // Generate output rows until we have enough to run the current filter. michael@0: if (use_sse2) { michael@0: while (next_x_row < filter_offset + filter_length) { michael@0: if (next_x_row + 3 < last_filter_offset + last_filter_length - 1) { michael@0: const unsigned char* src[4]; michael@0: unsigned char* out_row[4]; michael@0: for (int i = 0; i < 4; ++i) { michael@0: src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; michael@0: out_row[i] = row_buffer.AdvanceRow(); michael@0: } michael@0: ConvolveHorizontally4_SSE2(src, filter_x, out_row); michael@0: next_x_row += 4; michael@0: } else { michael@0: // For the last row, SSE2 load possibly to access data beyond the michael@0: // image area. therefore we use C version here. michael@0: if (next_x_row == last_filter_offset + last_filter_length - 1) { michael@0: if (source_has_alpha) { michael@0: ConvolveHorizontally( michael@0: &source_data[next_x_row * source_byte_row_stride], michael@0: filter_x, row_buffer.AdvanceRow()); michael@0: } else { michael@0: ConvolveHorizontally( michael@0: &source_data[next_x_row * source_byte_row_stride], michael@0: filter_x, row_buffer.AdvanceRow()); michael@0: } michael@0: } else { michael@0: ConvolveHorizontally_SSE2( michael@0: &source_data[next_x_row * source_byte_row_stride], michael@0: filter_x, row_buffer.AdvanceRow()); michael@0: } michael@0: next_x_row++; michael@0: } michael@0: } michael@0: } else { michael@0: while (next_x_row < filter_offset + filter_length) { michael@0: if (source_has_alpha) { michael@0: ConvolveHorizontally( michael@0: &source_data[next_x_row * source_byte_row_stride], michael@0: filter_x, row_buffer.AdvanceRow()); michael@0: } else { michael@0: ConvolveHorizontally( michael@0: &source_data[next_x_row * source_byte_row_stride], michael@0: filter_x, row_buffer.AdvanceRow()); michael@0: } michael@0: next_x_row++; michael@0: } michael@0: } michael@0: michael@0: // Compute where in the output image this row of final data will go. michael@0: unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; michael@0: michael@0: // Get the list of rows that the circular buffer has, in order. michael@0: int first_row_in_circular_buffer; michael@0: unsigned char* const* rows_to_convolve = michael@0: row_buffer.GetRowAddresses(&first_row_in_circular_buffer); michael@0: michael@0: // Now compute the start of the subset of those rows that the filter michael@0: // needs. michael@0: unsigned char* const* first_row_for_filter = michael@0: &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; michael@0: michael@0: if (source_has_alpha) { michael@0: if (use_sse2) { michael@0: ConvolveVertically_SSE2(filter_values, filter_length, michael@0: first_row_for_filter, michael@0: filter_x.num_values(), cur_output_row); michael@0: } else { michael@0: ConvolveVertically(filter_values, filter_length, michael@0: first_row_for_filter, michael@0: filter_x.num_values(), cur_output_row); michael@0: } michael@0: } else { michael@0: if (use_sse2) { michael@0: ConvolveVertically_SSE2(filter_values, filter_length, michael@0: first_row_for_filter, michael@0: filter_x.num_values(), cur_output_row); michael@0: } else { michael@0: ConvolveVertically(filter_values, filter_length, michael@0: first_row_for_filter, michael@0: filter_x.num_values(), cur_output_row); michael@0: } michael@0: } michael@0: } michael@0: } michael@0: michael@0: } // namespace skia