michael@0: /* michael@0: * Copyright 2012 Google Inc. michael@0: * michael@0: * Use of this source code is governed by a BSD-style license that can be michael@0: * found in the LICENSE file. michael@0: */ michael@0: michael@0: #include "SkIntersections.h" michael@0: #include "SkPathOpsCubic.h" michael@0: #include "SkPathOpsLine.h" michael@0: #include "SkPathOpsPoint.h" michael@0: #include "SkPathOpsQuad.h" michael@0: #include "SkPathOpsRect.h" michael@0: #include "SkReduceOrder.h" michael@0: #include "SkTSort.h" michael@0: michael@0: #if ONE_OFF_DEBUG michael@0: static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}}; michael@0: static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}}; michael@0: #endif michael@0: michael@0: #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1 michael@0: #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0 michael@0: #define SWAP_TOP_DEBUG 0 michael@0: michael@0: static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision michael@0: michael@0: static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) { michael@0: SkDCubic part = cubic.subDivide(tStart, tEnd); michael@0: SkDQuad quad = part.toQuad(); michael@0: // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an michael@0: // extremely shallow quadratic? michael@0: int order = reducer->reduce(quad); michael@0: #if DEBUG_QUAD_PART michael@0: SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" michael@0: " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY, michael@0: cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, michael@0: cubic[3].fX, cubic[3].fY, tStart, tEnd); michael@0: SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n" michael@0: " {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", michael@0: part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY, michael@0: part[3].fX, part[3].fY, quad[0].fX, quad[0].fY, michael@0: quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY); michael@0: #if DEBUG_QUAD_PART_SHOW_SIMPLE michael@0: SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY); michael@0: if (order > 1) { michael@0: SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY); michael@0: } michael@0: if (order > 2) { michael@0: SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY); michael@0: } michael@0: SkDebugf(")\n"); michael@0: SkASSERT(order < 4 && order > 0); michael@0: #endif michael@0: #endif michael@0: return order; michael@0: } michael@0: michael@0: static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2, michael@0: int order2, SkIntersections& i) { michael@0: if (order1 == 3 && order2 == 3) { michael@0: i.intersect(simple1, simple2); michael@0: } else if (order1 <= 2 && order2 <= 2) { michael@0: i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2); michael@0: } else if (order1 == 3 && order2 <= 2) { michael@0: i.intersect(simple1, (const SkDLine&) simple2); michael@0: } else { michael@0: SkASSERT(order1 <= 2 && order2 == 3); michael@0: i.intersect(simple2, (const SkDLine&) simple1); michael@0: i.swapPts(); michael@0: } michael@0: } michael@0: michael@0: // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently michael@0: // chase intersections near quadratic ends, requiring odd hacks to find them. michael@0: static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2, michael@0: double t2s, double t2e, double precisionScale, SkIntersections& i) { michael@0: i.upDepth(); michael@0: SkDCubic c1 = cubic1.subDivide(t1s, t1e); michael@0: SkDCubic c2 = cubic2.subDivide(t2s, t2e); michael@0: SkSTArray ts1; michael@0: // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection) michael@0: c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1); michael@0: SkSTArray ts2; michael@0: c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2); michael@0: double t1Start = t1s; michael@0: int ts1Count = ts1.count(); michael@0: for (int i1 = 0; i1 <= ts1Count; ++i1) { michael@0: const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; michael@0: const double t1 = t1s + (t1e - t1s) * tEnd1; michael@0: SkReduceOrder s1; michael@0: int o1 = quadPart(cubic1, t1Start, t1, &s1); michael@0: double t2Start = t2s; michael@0: int ts2Count = ts2.count(); michael@0: for (int i2 = 0; i2 <= ts2Count; ++i2) { michael@0: const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; michael@0: const double t2 = t2s + (t2e - t2s) * tEnd2; michael@0: if (&cubic1 == &cubic2 && t1Start >= t2Start) { michael@0: t2Start = t2; michael@0: continue; michael@0: } michael@0: SkReduceOrder s2; michael@0: int o2 = quadPart(cubic2, t2Start, t2, &s2); michael@0: #if ONE_OFF_DEBUG michael@0: char tab[] = " "; michael@0: if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 michael@0: && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { michael@0: SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, michael@0: __FUNCTION__, t1Start, t1, t2Start, t2); michael@0: SkIntersections xlocals; michael@0: xlocals.allowNear(false); michael@0: intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals); michael@0: SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); michael@0: } michael@0: #endif michael@0: SkIntersections locals; michael@0: locals.allowNear(false); michael@0: intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); michael@0: int tCount = locals.used(); michael@0: for (int tIdx = 0; tIdx < tCount; ++tIdx) { michael@0: double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; michael@0: double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; michael@0: // if the computed t is not sufficiently precise, iterate michael@0: SkDPoint p1 = cubic1.ptAtT(to1); michael@0: SkDPoint p2 = cubic2.ptAtT(to2); michael@0: if (p1.approximatelyEqual(p2)) { michael@0: // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller michael@0: // SkASSERT(!locals.isCoincident(tIdx)); michael@0: if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { michael@0: if (i.swapped()) { // FIXME: insert should respect swap michael@0: i.insert(to2, to1, p1); michael@0: } else { michael@0: i.insert(to1, to2, p1); michael@0: } michael@0: } michael@0: } else { michael@0: double offset = precisionScale / 16; // FIME: const is arbitrary: test, refine michael@0: double c1Bottom = tIdx == 0 ? 0 : michael@0: (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2; michael@0: double c1Min = SkTMax(c1Bottom, to1 - offset); michael@0: double c1Top = tIdx == tCount - 1 ? 1 : michael@0: (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2; michael@0: double c1Max = SkTMin(c1Top, to1 + offset); michael@0: double c2Min = SkTMax(0., to2 - offset); michael@0: double c2Max = SkTMin(1., to2 + offset); michael@0: #if ONE_OFF_DEBUG michael@0: SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, michael@0: __FUNCTION__, michael@0: c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max michael@0: && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, michael@0: to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset michael@0: && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, michael@0: c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max michael@0: && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, michael@0: to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset michael@0: && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); michael@0: SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" michael@0: " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", michael@0: i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1., michael@0: to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); michael@0: SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" michael@0: " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, michael@0: c1Max, c2Min, c2Max); michael@0: #endif michael@0: intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); michael@0: #if ONE_OFF_DEBUG michael@0: SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, michael@0: i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); michael@0: #endif michael@0: if (tCount > 1) { michael@0: c1Min = SkTMax(0., to1 - offset); michael@0: c1Max = SkTMin(1., to1 + offset); michael@0: double c2Bottom = tIdx == 0 ? to2 : michael@0: (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2; michael@0: double c2Top = tIdx == tCount - 1 ? to2 : michael@0: (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2; michael@0: if (c2Bottom > c2Top) { michael@0: SkTSwap(c2Bottom, c2Top); michael@0: } michael@0: if (c2Bottom == to2) { michael@0: c2Bottom = 0; michael@0: } michael@0: if (c2Top == to2) { michael@0: c2Top = 1; michael@0: } michael@0: c2Min = SkTMax(c2Bottom, to2 - offset); michael@0: c2Max = SkTMin(c2Top, to2 + offset); michael@0: #if ONE_OFF_DEBUG michael@0: SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, michael@0: __FUNCTION__, michael@0: c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max michael@0: && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, michael@0: to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset michael@0: && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, michael@0: c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max michael@0: && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, michael@0: to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset michael@0: && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); michael@0: SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" michael@0: " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", michael@0: i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, michael@0: to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); michael@0: SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" michael@0: " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, michael@0: c1Max, c2Min, c2Max); michael@0: #endif michael@0: intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); michael@0: #if ONE_OFF_DEBUG michael@0: SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, michael@0: i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); michael@0: #endif michael@0: c1Min = SkTMax(c1Bottom, to1 - offset); michael@0: c1Max = SkTMin(c1Top, to1 + offset); michael@0: #if ONE_OFF_DEBUG michael@0: SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, michael@0: __FUNCTION__, michael@0: c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max michael@0: && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, michael@0: to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset michael@0: && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, michael@0: c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max michael@0: && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, michael@0: to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset michael@0: && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); michael@0: SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" michael@0: " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", michael@0: i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, michael@0: to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); michael@0: SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" michael@0: " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, michael@0: c1Max, c2Min, c2Max); michael@0: #endif michael@0: intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); michael@0: #if ONE_OFF_DEBUG michael@0: SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, michael@0: i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); michael@0: #endif michael@0: } michael@0: // intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); michael@0: // FIXME: if no intersection is found, either quadratics intersected where michael@0: // cubics did not, or the intersection was missed. In the former case, expect michael@0: // the quadratics to be nearly parallel at the point of intersection, and check michael@0: // for that. michael@0: } michael@0: } michael@0: t2Start = t2; michael@0: } michael@0: t1Start = t1; michael@0: } michael@0: i.downDepth(); michael@0: } michael@0: michael@0: // if two ends intersect, check middle for coincidence michael@0: bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) { michael@0: if (fUsed < 2) { michael@0: return false; michael@0: } michael@0: int last = fUsed - 1; michael@0: double tRange1 = fT[0][last] - fT[0][0]; michael@0: double tRange2 = fT[1][last] - fT[1][0]; michael@0: for (int index = 1; index < 5; ++index) { michael@0: double testT1 = fT[0][0] + tRange1 * index / 5; michael@0: double testT2 = fT[1][0] + tRange2 * index / 5; michael@0: SkDPoint testPt1 = c1.ptAtT(testT1); michael@0: SkDPoint testPt2 = c2.ptAtT(testT2); michael@0: if (!testPt1.approximatelyEqual(testPt2)) { michael@0: return false; michael@0: } michael@0: } michael@0: if (fUsed > 2) { michael@0: fPt[1] = fPt[last]; michael@0: fT[0][1] = fT[0][last]; michael@0: fT[1][1] = fT[1][last]; michael@0: fUsed = 2; michael@0: } michael@0: fIsCoincident[0] = fIsCoincident[1] = 0x03; michael@0: return true; michael@0: } michael@0: michael@0: #define LINE_FRACTION 0.1 michael@0: michael@0: // intersect the end of the cubic with the other. Try lines from the end to control and opposite michael@0: // end to determine range of t on opposite cubic. michael@0: bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) { michael@0: int t1Index = start ? 0 : 3; michael@0: double testT = (double) !start; michael@0: bool swap = swapped(); michael@0: // quad/quad at this point checks to see if exact matches have already been found michael@0: // cubic/cubic can't reject so easily since cubics can intersect same point more than once michael@0: SkDLine tmpLine; michael@0: tmpLine[0] = tmpLine[1] = cubic2[t1Index]; michael@0: tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY; michael@0: tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX; michael@0: SkIntersections impTs; michael@0: impTs.allowNear(false); michael@0: impTs.intersectRay(cubic1, tmpLine); michael@0: for (int index = 0; index < impTs.used(); ++index) { michael@0: SkDPoint realPt = impTs.pt(index); michael@0: if (!tmpLine[0].approximatelyEqual(realPt)) { michael@0: continue; michael@0: } michael@0: if (swap) { michael@0: insert(testT, impTs[0][index], tmpLine[0]); michael@0: } else { michael@0: insert(impTs[0][index], testT, tmpLine[0]); michael@0: } michael@0: return true; michael@0: } michael@0: return false; michael@0: } michael@0: michael@0: void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2, michael@0: const SkDRect& bounds2) { michael@0: SkDLine line; michael@0: int t1Index = start ? 0 : 3; michael@0: double testT = (double) !start; michael@0: // don't bother if the two cubics are connnected michael@0: static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this michael@0: static const int kMaxLineCubicIntersections = 3; michael@0: SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals; michael@0: line[0] = cubic1[t1Index]; michael@0: // this variant looks for intersections with the end point and lines parallel to other points michael@0: for (int index = 0; index < kPointsInCubic; ++index) { michael@0: if (index == t1Index) { michael@0: continue; michael@0: } michael@0: SkDVector dxy1 = cubic1[index] - line[0]; michael@0: dxy1 /= SkDCubic::gPrecisionUnit; michael@0: line[1] = line[0] + dxy1; michael@0: SkDRect lineBounds; michael@0: lineBounds.setBounds(line); michael@0: if (!bounds2.intersects(&lineBounds)) { michael@0: continue; michael@0: } michael@0: SkIntersections local; michael@0: if (!local.intersect(cubic2, line)) { michael@0: continue; michael@0: } michael@0: for (int idx2 = 0; idx2 < local.used(); ++idx2) { michael@0: double foundT = local[0][idx2]; michael@0: if (approximately_less_than_zero(foundT) michael@0: || approximately_greater_than_one(foundT)) { michael@0: continue; michael@0: } michael@0: if (local.pt(idx2).approximatelyEqual(line[0])) { michael@0: if (swapped()) { // FIXME: insert should respect swap michael@0: insert(foundT, testT, line[0]); michael@0: } else { michael@0: insert(testT, foundT, line[0]); michael@0: } michael@0: } else { michael@0: tVals.push_back(foundT); michael@0: } michael@0: } michael@0: } michael@0: if (tVals.count() == 0) { michael@0: return; michael@0: } michael@0: SkTQSort(tVals.begin(), tVals.end() - 1); michael@0: double tMin1 = start ? 0 : 1 - LINE_FRACTION; michael@0: double tMax1 = start ? LINE_FRACTION : 1; michael@0: int tIdx = 0; michael@0: do { michael@0: int tLast = tIdx; michael@0: while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) { michael@0: ++tLast; michael@0: } michael@0: double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); michael@0: double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); michael@0: int lastUsed = used(); michael@0: ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); michael@0: if (lastUsed == used()) { michael@0: tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); michael@0: tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0); michael@0: ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); michael@0: } michael@0: tIdx = tLast + 1; michael@0: } while (tIdx < tVals.count()); michael@0: return; michael@0: } michael@0: michael@0: const double CLOSE_ENOUGH = 0.001; michael@0: michael@0: static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { michael@0: if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { michael@0: return false; michael@0: } michael@0: pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2); michael@0: return true; michael@0: } michael@0: michael@0: static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { michael@0: int last = i.used() - 1; michael@0: if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) { michael@0: return false; michael@0: } michael@0: pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2); michael@0: return true; michael@0: } michael@0: michael@0: static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) { michael@0: // the idea here is to see at minimum do a quick reject by rotating all points michael@0: // to either side of the line formed by connecting the endpoints michael@0: // if the opposite curves points are on the line or on the other side, the michael@0: // curves at most intersect at the endpoints michael@0: for (int oddMan = 0; oddMan < 4; ++oddMan) { michael@0: const SkDPoint* endPt[3]; michael@0: for (int opp = 1; opp < 4; ++opp) { michael@0: int end = oddMan ^ opp; // choose a value not equal to oddMan michael@0: endPt[opp - 1] = &c1[end]; michael@0: } michael@0: for (int triTest = 0; triTest < 3; ++triTest) { michael@0: double origX = endPt[triTest]->fX; michael@0: double origY = endPt[triTest]->fY; michael@0: int oppTest = triTest + 1; michael@0: if (3 == oppTest) { michael@0: oppTest = 0; michael@0: } michael@0: double adj = endPt[oppTest]->fX - origX; michael@0: double opp = endPt[oppTest]->fY - origY; michael@0: double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp; michael@0: if (approximately_zero(sign)) { michael@0: goto tryNextHalfPlane; michael@0: } michael@0: for (int n = 0; n < 4; ++n) { michael@0: double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp; michael@0: if (test * sign > 0 && !precisely_zero(test)) { michael@0: goto tryNextHalfPlane; michael@0: } michael@0: } michael@0: } michael@0: return true; michael@0: tryNextHalfPlane: michael@0: ; michael@0: } michael@0: return false; michael@0: } michael@0: michael@0: int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { michael@0: if (fMax == 0) { michael@0: fMax = 9; michael@0: } michael@0: bool selfIntersect = &c1 == &c2; michael@0: if (selfIntersect) { michael@0: if (c1[0].approximatelyEqual(c1[3])) { michael@0: insert(0, 1, c1[0]); michael@0: return fUsed; michael@0: } michael@0: } else { michael@0: // OPTIMIZATION: set exact end bits here to avoid cubic exact end later michael@0: for (int i1 = 0; i1 < 4; i1 += 3) { michael@0: for (int i2 = 0; i2 < 4; i2 += 3) { michael@0: if (c1[i1].approximatelyEqual(c2[i2])) { michael@0: insert(i1 >> 1, i2 >> 1, c1[i1]); michael@0: } michael@0: } michael@0: } michael@0: } michael@0: SkASSERT(fUsed < 4); michael@0: if (!selfIntersect) { michael@0: if (only_end_pts_in_common(c1, c2)) { michael@0: return fUsed; michael@0: } michael@0: if (only_end_pts_in_common(c2, c1)) { michael@0: return fUsed; michael@0: } michael@0: } michael@0: // quad/quad does linear test here -- cubic does not michael@0: // cubics which are really lines should have been detected in reduce step earlier michael@0: int exactEndBits = 0; michael@0: if (selfIntersect) { michael@0: if (fUsed) { michael@0: return fUsed; michael@0: } michael@0: } else { michael@0: exactEndBits |= cubicExactEnd(c1, false, c2) << 0; michael@0: exactEndBits |= cubicExactEnd(c1, true, c2) << 1; michael@0: swap(); michael@0: exactEndBits |= cubicExactEnd(c2, false, c1) << 2; michael@0: exactEndBits |= cubicExactEnd(c2, true, c1) << 3; michael@0: swap(); michael@0: } michael@0: if (cubicCheckCoincidence(c1, c2)) { michael@0: SkASSERT(!selfIntersect); michael@0: return fUsed; michael@0: } michael@0: // FIXME: pass in cached bounds from caller michael@0: SkDRect c2Bounds; michael@0: c2Bounds.setBounds(c2); michael@0: if (!(exactEndBits & 4)) { michael@0: cubicNearEnd(c1, false, c2, c2Bounds); michael@0: } michael@0: if (!(exactEndBits & 8)) { michael@0: cubicNearEnd(c1, true, c2, c2Bounds); michael@0: } michael@0: if (!selfIntersect) { michael@0: SkDRect c1Bounds; michael@0: c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? michael@0: swap(); michael@0: if (!(exactEndBits & 1)) { michael@0: cubicNearEnd(c2, false, c1, c1Bounds); michael@0: } michael@0: if (!(exactEndBits & 2)) { michael@0: cubicNearEnd(c2, true, c1, c1Bounds); michael@0: } michael@0: swap(); michael@0: } michael@0: if (cubicCheckCoincidence(c1, c2)) { michael@0: SkASSERT(!selfIntersect); michael@0: return fUsed; michael@0: } michael@0: SkIntersections i; michael@0: i.fAllowNear = false; michael@0: i.fMax = 9; michael@0: ::intersect(c1, 0, 1, c2, 0, 1, 1, i); michael@0: int compCount = i.used(); michael@0: if (compCount) { michael@0: int exactCount = used(); michael@0: if (exactCount == 0) { michael@0: set(i); michael@0: } else { michael@0: // at least one is exact or near, and at least one was computed. Eliminate duplicates michael@0: for (int exIdx = 0; exIdx < exactCount; ++exIdx) { michael@0: for (int cpIdx = 0; cpIdx < compCount; ) { michael@0: if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) { michael@0: i.removeOne(cpIdx); michael@0: --compCount; michael@0: continue; michael@0: } michael@0: double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2; michael@0: SkDPoint pt = c1.ptAtT(tAvg); michael@0: if (!pt.approximatelyEqual(fPt[exIdx])) { michael@0: ++cpIdx; michael@0: continue; michael@0: } michael@0: tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2; michael@0: pt = c2.ptAtT(tAvg); michael@0: if (!pt.approximatelyEqual(fPt[exIdx])) { michael@0: ++cpIdx; michael@0: continue; michael@0: } michael@0: i.removeOne(cpIdx); michael@0: --compCount; michael@0: } michael@0: } michael@0: // if mid t evaluates to nearly the same point, skip the t michael@0: for (int cpIdx = 0; cpIdx < compCount - 1; ) { michael@0: double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2; michael@0: SkDPoint pt = c1.ptAtT(tAvg); michael@0: if (!pt.approximatelyEqual(fPt[cpIdx])) { michael@0: ++cpIdx; michael@0: continue; michael@0: } michael@0: tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2; michael@0: pt = c2.ptAtT(tAvg); michael@0: if (!pt.approximatelyEqual(fPt[cpIdx])) { michael@0: ++cpIdx; michael@0: continue; michael@0: } michael@0: i.removeOne(cpIdx); michael@0: --compCount; michael@0: } michael@0: // in addition to adding below missing function, think about how to say michael@0: append(i); michael@0: } michael@0: } michael@0: // If an end point and a second point very close to the end is returned, the second michael@0: // point may have been detected because the approximate quads michael@0: // intersected at the end and close to it. Verify that the second point is valid. michael@0: if (fUsed <= 1) { michael@0: return fUsed; michael@0: } michael@0: SkDPoint pt[2]; michael@0: if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) michael@0: && pt[0].approximatelyEqual(pt[1])) { michael@0: removeOne(1); michael@0: } michael@0: if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1]) michael@0: && pt[0].approximatelyEqual(pt[1])) { michael@0: removeOne(used() - 2); michael@0: } michael@0: // vet the pairs of t values to see if the mid value is also on the curve. If so, mark michael@0: // the span as coincident michael@0: if (fUsed >= 2 && !coincidentUsed()) { michael@0: int last = fUsed - 1; michael@0: int match = 0; michael@0: for (int index = 0; index < last; ++index) { michael@0: double mid1 = (fT[0][index] + fT[0][index + 1]) / 2; michael@0: double mid2 = (fT[1][index] + fT[1][index + 1]) / 2; michael@0: pt[0] = c1.ptAtT(mid1); michael@0: pt[1] = c2.ptAtT(mid2); michael@0: if (pt[0].approximatelyEqual(pt[1])) { michael@0: match |= 1 << index; michael@0: } michael@0: } michael@0: if (match) { michael@0: #if DEBUG_CONCIDENT michael@0: if (((match + 1) & match) != 0) { michael@0: SkDebugf("%s coincident hole\n", __FUNCTION__); michael@0: } michael@0: #endif michael@0: // for now, assume that everything from start to finish is coincident michael@0: if (fUsed > 2) { michael@0: fPt[1] = fPt[last]; michael@0: fT[0][1] = fT[0][last]; michael@0: fT[1][1] = fT[1][last]; michael@0: fIsCoincident[0] = 0x03; michael@0: fIsCoincident[1] = 0x03; michael@0: fUsed = 2; michael@0: } michael@0: } michael@0: } michael@0: return fUsed; michael@0: } michael@0: michael@0: // Up promote the quad to a cubic. michael@0: // OPTIMIZATION If this is a common use case, optimize by duplicating michael@0: // the intersect 3 loop to avoid the promotion / demotion code michael@0: int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { michael@0: fMax = 6; michael@0: SkDCubic up = quad.toCubic(); michael@0: (void) intersect(cubic, up); michael@0: return used(); michael@0: } michael@0: michael@0: /* http://www.ag.jku.at/compass/compasssample.pdf michael@0: ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen michael@0: Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no michael@0: SINTEF Applied Mathematics http://www.sintef.no ) michael@0: describes a method to find the self intersection of a cubic by taking the gradient of the implicit michael@0: form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/ michael@0: michael@0: int SkIntersections::intersect(const SkDCubic& c) { michael@0: fMax = 1; michael@0: // check to see if x or y end points are the extrema. Are other quick rejects possible? michael@0: if (c.endsAreExtremaInXOrY()) { michael@0: return false; michael@0: } michael@0: (void) intersect(c, c); michael@0: if (used() > 0) { michael@0: SkASSERT(used() == 1); michael@0: if (fT[0][0] > fT[1][0]) { michael@0: swapPts(); michael@0: } michael@0: } michael@0: return used(); michael@0: }