michael@0: /* michael@0: ********************************************************************** michael@0: * Copyright (C) 1999-2011, International Business Machines michael@0: * Corporation and others. All Rights Reserved. michael@0: ********************************************************************** michael@0: * Date Name Description michael@0: * 11/17/99 aliu Creation. michael@0: ********************************************************************** michael@0: */ michael@0: michael@0: #include "unicode/utypes.h" michael@0: michael@0: #if !UCONFIG_NO_TRANSLITERATION michael@0: michael@0: #include "unicode/rep.h" michael@0: #include "unicode/unifilt.h" michael@0: #include "unicode/uniset.h" michael@0: #include "unicode/utf16.h" michael@0: #include "rbt_rule.h" michael@0: #include "rbt_data.h" michael@0: #include "cmemory.h" michael@0: #include "strmatch.h" michael@0: #include "strrepl.h" michael@0: #include "util.h" michael@0: #include "putilimp.h" michael@0: michael@0: static const UChar FORWARD_OP[] = {32,62,32,0}; // " > " michael@0: michael@0: U_NAMESPACE_BEGIN michael@0: michael@0: /** michael@0: * Construct a new rule with the given input, output text, and other michael@0: * attributes. A cursor position may be specified for the output text. michael@0: * @param input input string, including key and optional ante and michael@0: * post context michael@0: * @param anteContextPos offset into input to end of ante context, or -1 if michael@0: * none. Must be <= input.length() if not -1. michael@0: * @param postContextPos offset into input to start of post context, or -1 michael@0: * if none. Must be <= input.length() if not -1, and must be >= michael@0: * anteContextPos. michael@0: * @param output output string michael@0: * @param cursorPosition offset into output at which cursor is located, or -1 if michael@0: * none. If less than zero, then the cursor is placed after the michael@0: * output; that is, -1 is equivalent to michael@0: * output.length(). If greater than michael@0: * output.length() then an exception is thrown. michael@0: * @param segs array of UnicodeFunctors corresponding to input pattern michael@0: * segments, or null if there are none. The array itself is adopted, michael@0: * but the pointers within it are not. michael@0: * @param segsCount number of elements in segs[] michael@0: * @param anchorStart TRUE if the the rule is anchored on the left to michael@0: * the context start michael@0: * @param anchorEnd TRUE if the rule is anchored on the right to the michael@0: * context limit michael@0: */ michael@0: TransliterationRule::TransliterationRule(const UnicodeString& input, michael@0: int32_t anteContextPos, int32_t postContextPos, michael@0: const UnicodeString& outputStr, michael@0: int32_t cursorPosition, int32_t cursorOffset, michael@0: UnicodeFunctor** segs, michael@0: int32_t segsCount, michael@0: UBool anchorStart, UBool anchorEnd, michael@0: const TransliterationRuleData* theData, michael@0: UErrorCode& status) : michael@0: UMemory(), michael@0: segments(0), michael@0: data(theData) { michael@0: michael@0: if (U_FAILURE(status)) { michael@0: return; michael@0: } michael@0: // Do range checks only when warranted to save time michael@0: if (anteContextPos < 0) { michael@0: anteContextLength = 0; michael@0: } else { michael@0: if (anteContextPos > input.length()) { michael@0: // throw new IllegalArgumentException("Invalid ante context"); michael@0: status = U_ILLEGAL_ARGUMENT_ERROR; michael@0: return; michael@0: } michael@0: anteContextLength = anteContextPos; michael@0: } michael@0: if (postContextPos < 0) { michael@0: keyLength = input.length() - anteContextLength; michael@0: } else { michael@0: if (postContextPos < anteContextLength || michael@0: postContextPos > input.length()) { michael@0: // throw new IllegalArgumentException("Invalid post context"); michael@0: status = U_ILLEGAL_ARGUMENT_ERROR; michael@0: return; michael@0: } michael@0: keyLength = postContextPos - anteContextLength; michael@0: } michael@0: if (cursorPosition < 0) { michael@0: cursorPosition = outputStr.length(); michael@0: } else if (cursorPosition > outputStr.length()) { michael@0: // throw new IllegalArgumentException("Invalid cursor position"); michael@0: status = U_ILLEGAL_ARGUMENT_ERROR; michael@0: return; michael@0: } michael@0: // We don't validate the segments array. The caller must michael@0: // guarantee that the segments are well-formed (that is, that michael@0: // all $n references in the output refer to indices of this michael@0: // array, and that no array elements are null). michael@0: this->segments = segs; michael@0: this->segmentsCount = segsCount; michael@0: michael@0: pattern = input; michael@0: flags = 0; michael@0: if (anchorStart) { michael@0: flags |= ANCHOR_START; michael@0: } michael@0: if (anchorEnd) { michael@0: flags |= ANCHOR_END; michael@0: } michael@0: michael@0: anteContext = NULL; michael@0: if (anteContextLength > 0) { michael@0: anteContext = new StringMatcher(pattern, 0, anteContextLength, michael@0: FALSE, *data); michael@0: /* test for NULL */ michael@0: if (anteContext == 0) { michael@0: status = U_MEMORY_ALLOCATION_ERROR; michael@0: return; michael@0: } michael@0: } michael@0: michael@0: key = NULL; michael@0: if (keyLength > 0) { michael@0: key = new StringMatcher(pattern, anteContextLength, anteContextLength + keyLength, michael@0: FALSE, *data); michael@0: /* test for NULL */ michael@0: if (key == 0) { michael@0: status = U_MEMORY_ALLOCATION_ERROR; michael@0: return; michael@0: } michael@0: } michael@0: michael@0: int32_t postContextLength = pattern.length() - keyLength - anteContextLength; michael@0: postContext = NULL; michael@0: if (postContextLength > 0) { michael@0: postContext = new StringMatcher(pattern, anteContextLength + keyLength, pattern.length(), michael@0: FALSE, *data); michael@0: /* test for NULL */ michael@0: if (postContext == 0) { michael@0: status = U_MEMORY_ALLOCATION_ERROR; michael@0: return; michael@0: } michael@0: } michael@0: michael@0: this->output = new StringReplacer(outputStr, cursorPosition + cursorOffset, data); michael@0: /* test for NULL */ michael@0: if (this->output == 0) { michael@0: status = U_MEMORY_ALLOCATION_ERROR; michael@0: return; michael@0: } michael@0: } michael@0: michael@0: /** michael@0: * Copy constructor. michael@0: */ michael@0: TransliterationRule::TransliterationRule(TransliterationRule& other) : michael@0: UMemory(other), michael@0: anteContext(NULL), michael@0: key(NULL), michael@0: postContext(NULL), michael@0: pattern(other.pattern), michael@0: anteContextLength(other.anteContextLength), michael@0: keyLength(other.keyLength), michael@0: flags(other.flags), michael@0: data(other.data) { michael@0: michael@0: segments = NULL; michael@0: segmentsCount = 0; michael@0: if (other.segmentsCount > 0) { michael@0: segments = (UnicodeFunctor **)uprv_malloc(other.segmentsCount * sizeof(UnicodeFunctor *)); michael@0: uprv_memcpy(segments, other.segments, other.segmentsCount*sizeof(segments[0])); michael@0: } michael@0: michael@0: if (other.anteContext != NULL) { michael@0: anteContext = (StringMatcher*) other.anteContext->clone(); michael@0: } michael@0: if (other.key != NULL) { michael@0: key = (StringMatcher*) other.key->clone(); michael@0: } michael@0: if (other.postContext != NULL) { michael@0: postContext = (StringMatcher*) other.postContext->clone(); michael@0: } michael@0: output = other.output->clone(); michael@0: } michael@0: michael@0: TransliterationRule::~TransliterationRule() { michael@0: uprv_free(segments); michael@0: delete anteContext; michael@0: delete key; michael@0: delete postContext; michael@0: delete output; michael@0: } michael@0: michael@0: /** michael@0: * Return the preceding context length. This method is needed to michael@0: * support the Transliterator method michael@0: * getMaximumContextLength(). Internally, this is michael@0: * implemented as the anteContextLength, optionally plus one if michael@0: * there is a start anchor. The one character anchor gap is michael@0: * needed to make repeated incremental transliteration with michael@0: * anchors work. michael@0: */ michael@0: int32_t TransliterationRule::getContextLength(void) const { michael@0: return anteContextLength + ((flags & ANCHOR_START) ? 1 : 0); michael@0: } michael@0: michael@0: /** michael@0: * Internal method. Returns 8-bit index value for this rule. michael@0: * This is the low byte of the first character of the key, michael@0: * unless the first character of the key is a set. If it's a michael@0: * set, or otherwise can match multiple keys, the index value is -1. michael@0: */ michael@0: int16_t TransliterationRule::getIndexValue() const { michael@0: if (anteContextLength == pattern.length()) { michael@0: // A pattern with just ante context {such as foo)>bar} can michael@0: // match any key. michael@0: return -1; michael@0: } michael@0: UChar32 c = pattern.char32At(anteContextLength); michael@0: return (int16_t)(data->lookupMatcher(c) == NULL ? (c & 0xFF) : -1); michael@0: } michael@0: michael@0: /** michael@0: * Internal method. Returns true if this rule matches the given michael@0: * index value. The index value is an 8-bit integer, 0..255, michael@0: * representing the low byte of the first character of the key. michael@0: * It matches this rule if it matches the first character of the michael@0: * key, or if the first character of the key is a set, and the set michael@0: * contains any character with a low byte equal to the index michael@0: * value. If the rule contains only ante context, as in foo)>bar, michael@0: * then it will match any key. michael@0: */ michael@0: UBool TransliterationRule::matchesIndexValue(uint8_t v) const { michael@0: // Delegate to the key, or if there is none, to the postContext. michael@0: // If there is neither then we match any key; return true. michael@0: UnicodeMatcher *m = (key != NULL) ? key : postContext; michael@0: return (m != NULL) ? m->matchesIndexValue(v) : TRUE; michael@0: } michael@0: michael@0: /** michael@0: * Return true if this rule masks another rule. If r1 masks r2 then michael@0: * r1 matches any input string that r2 matches. If r1 masks r2 and r2 masks michael@0: * r1 then r1 == r2. Examples: "a>x" masks "ab>y". "a>x" masks "a[b]>y". michael@0: * "[c]a>x" masks "[dc]a>y". michael@0: */ michael@0: UBool TransliterationRule::masks(const TransliterationRule& r2) const { michael@0: /* Rule r1 masks rule r2 if the string formed of the michael@0: * antecontext, key, and postcontext overlaps in the following michael@0: * way: michael@0: * michael@0: * r1: aakkkpppp michael@0: * r2: aaakkkkkpppp michael@0: * ^ michael@0: * michael@0: * The strings must be aligned at the first character of the michael@0: * key. The length of r1 to the left of the alignment point michael@0: * must be <= the length of r2 to the left; ditto for the michael@0: * right. The characters of r1 must equal (or be a superset michael@0: * of) the corresponding characters of r2. The superset michael@0: * operation should be performed to check for UnicodeSet michael@0: * masking. michael@0: * michael@0: * Anchors: Two patterns that differ only in anchors only michael@0: * mask one another if they are exactly equal, and r2 has michael@0: * all the anchors r1 has (optionally, plus some). Here Y michael@0: * means the row masks the column, N means it doesn't. michael@0: * michael@0: * ab ^ab ab$ ^ab$ michael@0: * ab Y Y Y Y michael@0: * ^ab N Y N Y michael@0: * ab$ N N Y Y michael@0: * ^ab$ N N N Y michael@0: * michael@0: * Post context: {a}b masks ab, but not vice versa, since {a}b michael@0: * matches everything ab matches, and {a}b matches {|a|}b but ab michael@0: * does not. Pre context is different (a{b} does not align with michael@0: * ab). michael@0: */ michael@0: michael@0: /* LIMITATION of the current mask algorithm: Some rule michael@0: * maskings are currently not detected. For example, michael@0: * "{Lu}]a>x" masks "A]a>y". This can be added later. TODO michael@0: */ michael@0: michael@0: int32_t len = pattern.length(); michael@0: int32_t left = anteContextLength; michael@0: int32_t left2 = r2.anteContextLength; michael@0: int32_t right = len - left; michael@0: int32_t right2 = r2.pattern.length() - left2; michael@0: int32_t cachedCompare = r2.pattern.compare(left2 - left, len, pattern); michael@0: michael@0: // TODO Clean this up -- some logic might be combinable with the michael@0: // next statement. michael@0: michael@0: // Test for anchor masking michael@0: if (left == left2 && right == right2 && michael@0: keyLength <= r2.keyLength && michael@0: 0 == cachedCompare) { michael@0: // The following boolean logic implements the table above michael@0: return (flags == r2.flags) || michael@0: (!(flags & ANCHOR_START) && !(flags & ANCHOR_END)) || michael@0: ((r2.flags & ANCHOR_START) && (r2.flags & ANCHOR_END)); michael@0: } michael@0: michael@0: return left <= left2 && michael@0: (right < right2 || michael@0: (right == right2 && keyLength <= r2.keyLength)) && michael@0: (0 == cachedCompare); michael@0: } michael@0: michael@0: static inline int32_t posBefore(const Replaceable& str, int32_t pos) { michael@0: return (pos > 0) ? michael@0: pos - U16_LENGTH(str.char32At(pos-1)) : michael@0: pos - 1; michael@0: } michael@0: michael@0: static inline int32_t posAfter(const Replaceable& str, int32_t pos) { michael@0: return (pos >= 0 && pos < str.length()) ? michael@0: pos + U16_LENGTH(str.char32At(pos)) : michael@0: pos + 1; michael@0: } michael@0: michael@0: /** michael@0: * Attempt a match and replacement at the given position. Return michael@0: * the degree of match between this rule and the given text. The michael@0: * degree of match may be mismatch, a partial match, or a full michael@0: * match. A mismatch means at least one character of the text michael@0: * does not match the context or key. A partial match means some michael@0: * context and key characters match, but the text is not long michael@0: * enough to match all of them. A full match means all context michael@0: * and key characters match. michael@0: * michael@0: * If a full match is obtained, perform a replacement, update pos, michael@0: * and return U_MATCH. Otherwise both text and pos are unchanged. michael@0: * michael@0: * @param text the text michael@0: * @param pos the position indices michael@0: * @param incremental if TRUE, test for partial matches that may michael@0: * be completed by additional text inserted at pos.limit. michael@0: * @return one of U_MISMATCH, michael@0: * U_PARTIAL_MATCH, or U_MATCH. If michael@0: * incremental is FALSE then U_PARTIAL_MATCH will not be returned. michael@0: */ michael@0: UMatchDegree TransliterationRule::matchAndReplace(Replaceable& text, michael@0: UTransPosition& pos, michael@0: UBool incremental) const { michael@0: // Matching and replacing are done in one method because the michael@0: // replacement operation needs information obtained during the michael@0: // match. Another way to do this is to have the match method michael@0: // create a match result struct with relevant offsets, and to pass michael@0: // this into the replace method. michael@0: michael@0: // ============================ MATCH =========================== michael@0: michael@0: // Reset segment match data michael@0: if (segments != NULL) { michael@0: for (int32_t i=0; iresetMatch(); michael@0: } michael@0: } michael@0: michael@0: // int32_t lenDelta, keyLimit; michael@0: int32_t keyLimit; michael@0: michael@0: // ------------------------ Ante Context ------------------------ michael@0: michael@0: // A mismatch in the ante context, or with the start anchor, michael@0: // is an outright U_MISMATCH regardless of whether we are michael@0: // incremental or not. michael@0: int32_t oText; // offset into 'text' michael@0: // int32_t newStart = 0; michael@0: int32_t minOText; michael@0: michael@0: // Note (1): We process text in 16-bit code units, rather than michael@0: // 32-bit code points. This works because stand-ins are michael@0: // always in the BMP and because we are doing a literal match michael@0: // operation, which can be done 16-bits at a time. michael@0: michael@0: int32_t anteLimit = posBefore(text, pos.contextStart); michael@0: michael@0: UMatchDegree match; michael@0: michael@0: // Start reverse match at char before pos.start michael@0: oText = posBefore(text, pos.start); michael@0: michael@0: if (anteContext != NULL) { michael@0: match = anteContext->matches(text, oText, anteLimit, FALSE); michael@0: if (match != U_MATCH) { michael@0: return U_MISMATCH; michael@0: } michael@0: } michael@0: michael@0: minOText = posAfter(text, oText); michael@0: michael@0: // ------------------------ Start Anchor ------------------------ michael@0: michael@0: if (((flags & ANCHOR_START) != 0) && oText != anteLimit) { michael@0: return U_MISMATCH; michael@0: } michael@0: michael@0: // -------------------- Key and Post Context -------------------- michael@0: michael@0: oText = pos.start; michael@0: michael@0: if (key != NULL) { michael@0: match = key->matches(text, oText, pos.limit, incremental); michael@0: if (match != U_MATCH) { michael@0: return match; michael@0: } michael@0: } michael@0: michael@0: keyLimit = oText; michael@0: michael@0: if (postContext != NULL) { michael@0: if (incremental && keyLimit == pos.limit) { michael@0: // The key matches just before pos.limit, and there is michael@0: // a postContext. Since we are in incremental mode, michael@0: // we must assume more characters may be inserted at michael@0: // pos.limit -- this is a partial match. michael@0: return U_PARTIAL_MATCH; michael@0: } michael@0: michael@0: match = postContext->matches(text, oText, pos.contextLimit, incremental); michael@0: if (match != U_MATCH) { michael@0: return match; michael@0: } michael@0: } michael@0: michael@0: // ------------------------- Stop Anchor ------------------------ michael@0: michael@0: if (((flags & ANCHOR_END)) != 0) { michael@0: if (oText != pos.contextLimit) { michael@0: return U_MISMATCH; michael@0: } michael@0: if (incremental) { michael@0: return U_PARTIAL_MATCH; michael@0: } michael@0: } michael@0: michael@0: // =========================== REPLACE ========================== michael@0: michael@0: // We have a full match. The key is between pos.start and michael@0: // keyLimit. michael@0: michael@0: int32_t newStart; michael@0: int32_t newLength = output->toReplacer()->replace(text, pos.start, keyLimit, newStart); michael@0: int32_t lenDelta = newLength - (keyLimit - pos.start); michael@0: michael@0: oText += lenDelta; michael@0: pos.limit += lenDelta; michael@0: pos.contextLimit += lenDelta; michael@0: // Restrict new value of start to [minOText, min(oText, pos.limit)]. michael@0: pos.start = uprv_max(minOText, uprv_min(uprv_min(oText, pos.limit), newStart)); michael@0: return U_MATCH; michael@0: } michael@0: michael@0: /** michael@0: * Create a source string that represents this rule. Append it to the michael@0: * given string. michael@0: */ michael@0: UnicodeString& TransliterationRule::toRule(UnicodeString& rule, michael@0: UBool escapeUnprintable) const { michael@0: michael@0: // Accumulate special characters (and non-specials following them) michael@0: // into quoteBuf. Append quoteBuf, within single quotes, when michael@0: // a non-quoted element must be inserted. michael@0: UnicodeString str, quoteBuf; michael@0: michael@0: // Do not emit the braces '{' '}' around the pattern if there michael@0: // is neither anteContext nor postContext. michael@0: UBool emitBraces = michael@0: (anteContext != NULL) || (postContext != NULL); michael@0: michael@0: // Emit start anchor michael@0: if ((flags & ANCHOR_START) != 0) { michael@0: rule.append((UChar)94/*^*/); michael@0: } michael@0: michael@0: // Emit the input pattern michael@0: ICU_Utility::appendToRule(rule, anteContext, escapeUnprintable, quoteBuf); michael@0: michael@0: if (emitBraces) { michael@0: ICU_Utility::appendToRule(rule, (UChar) 0x007B /*{*/, TRUE, escapeUnprintable, quoteBuf); michael@0: } michael@0: michael@0: ICU_Utility::appendToRule(rule, key, escapeUnprintable, quoteBuf); michael@0: michael@0: if (emitBraces) { michael@0: ICU_Utility::appendToRule(rule, (UChar) 0x007D /*}*/, TRUE, escapeUnprintable, quoteBuf); michael@0: } michael@0: michael@0: ICU_Utility::appendToRule(rule, postContext, escapeUnprintable, quoteBuf); michael@0: michael@0: // Emit end anchor michael@0: if ((flags & ANCHOR_END) != 0) { michael@0: rule.append((UChar)36/*$*/); michael@0: } michael@0: michael@0: ICU_Utility::appendToRule(rule, UnicodeString(TRUE, FORWARD_OP, 3), TRUE, escapeUnprintable, quoteBuf); michael@0: michael@0: // Emit the output pattern michael@0: michael@0: ICU_Utility::appendToRule(rule, output->toReplacer()->toReplacerPattern(str, escapeUnprintable), michael@0: TRUE, escapeUnprintable, quoteBuf); michael@0: michael@0: ICU_Utility::appendToRule(rule, (UChar) 0x003B /*;*/, TRUE, escapeUnprintable, quoteBuf); michael@0: michael@0: return rule; michael@0: } michael@0: michael@0: void TransliterationRule::setData(const TransliterationRuleData* d) { michael@0: data = d; michael@0: if (anteContext != NULL) anteContext->setData(d); michael@0: if (postContext != NULL) postContext->setData(d); michael@0: if (key != NULL) key->setData(d); michael@0: // assert(output != NULL); michael@0: output->setData(d); michael@0: // Don't have to do segments since they are in the context or key michael@0: } michael@0: michael@0: /** michael@0: * Union the set of all characters that may be modified by this rule michael@0: * into the given set. michael@0: */ michael@0: void TransliterationRule::addSourceSetTo(UnicodeSet& toUnionTo) const { michael@0: int32_t limit = anteContextLength + keyLength; michael@0: for (int32_t i=anteContextLength; ilookupMatcher(ch); michael@0: if (matcher == NULL) { michael@0: toUnionTo.add(ch); michael@0: } else { michael@0: matcher->addMatchSetTo(toUnionTo); michael@0: } michael@0: } michael@0: } michael@0: michael@0: /** michael@0: * Union the set of all characters that may be emitted by this rule michael@0: * into the given set. michael@0: */ michael@0: void TransliterationRule::addTargetSetTo(UnicodeSet& toUnionTo) const { michael@0: output->toReplacer()->addReplacementSetTo(toUnionTo); michael@0: } michael@0: michael@0: U_NAMESPACE_END michael@0: michael@0: #endif /* #if !UCONFIG_NO_TRANSLITERATION */ michael@0: michael@0: //eof