michael@0: /* Copyright (c) 2002-2008 Jean-Marc Valin michael@0: Copyright (c) 2007-2008 CSIRO michael@0: Copyright (c) 2007-2009 Xiph.Org Foundation michael@0: Written by Jean-Marc Valin */ michael@0: /** michael@0: @file mathops.h michael@0: @brief Various math functions michael@0: */ michael@0: /* michael@0: Redistribution and use in source and binary forms, with or without michael@0: modification, are permitted provided that the following conditions michael@0: are met: michael@0: michael@0: - Redistributions of source code must retain the above copyright michael@0: notice, this list of conditions and the following disclaimer. michael@0: michael@0: - Redistributions in binary form must reproduce the above copyright michael@0: notice, this list of conditions and the following disclaimer in the michael@0: documentation and/or other materials provided with the distribution. michael@0: michael@0: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS michael@0: ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT michael@0: LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR michael@0: A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER michael@0: OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, michael@0: EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, michael@0: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR michael@0: PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF michael@0: LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING michael@0: NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS michael@0: SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. michael@0: */ michael@0: michael@0: #ifndef MATHOPS_H michael@0: #define MATHOPS_H michael@0: michael@0: #include "arch.h" michael@0: #include "entcode.h" michael@0: #include "os_support.h" michael@0: michael@0: /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */ michael@0: #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15) michael@0: michael@0: unsigned isqrt32(opus_uint32 _val); michael@0: michael@0: #ifndef OVERRIDE_CELT_MAXABS16 michael@0: static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len) michael@0: { michael@0: int i; michael@0: opus_val16 maxval = 0; michael@0: opus_val16 minval = 0; michael@0: for (i=0;i>23)-127; michael@0: in.i -= integer<<23; michael@0: frac = in.f - 1.5f; michael@0: frac = -0.41445418f + frac*(0.95909232f michael@0: + frac*(-0.33951290f + frac*0.16541097f)); michael@0: return 1+integer+frac; michael@0: } michael@0: michael@0: /** Base-2 exponential approximation (2^x). */ michael@0: static OPUS_INLINE float celt_exp2(float x) michael@0: { michael@0: int integer; michael@0: float frac; michael@0: union { michael@0: float f; michael@0: opus_uint32 i; michael@0: } res; michael@0: integer = floor(x); michael@0: if (integer < -50) michael@0: return 0; michael@0: frac = x-integer; michael@0: /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */ michael@0: res.f = 0.99992522f + frac * (0.69583354f michael@0: + frac * (0.22606716f + 0.078024523f*frac)); michael@0: res.i = (res.i + (integer<<23)) & 0x7fffffff; michael@0: return res.f; michael@0: } michael@0: michael@0: #else michael@0: #define celt_log2(x) ((float)(1.442695040888963387*log(x))) michael@0: #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x))) michael@0: #endif michael@0: michael@0: #endif michael@0: michael@0: #ifdef FIXED_POINT michael@0: michael@0: #include "os_support.h" michael@0: michael@0: #ifndef OVERRIDE_CELT_ILOG2 michael@0: /** Integer log in base2. Undefined for zero and negative numbers */ michael@0: static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x) michael@0: { michael@0: celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers"); michael@0: return EC_ILOG(x)-1; michael@0: } michael@0: #endif michael@0: michael@0: michael@0: /** Integer log in base2. Defined for zero, but not for negative numbers */ michael@0: static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x) michael@0: { michael@0: return x <= 0 ? 0 : celt_ilog2(x); michael@0: } michael@0: michael@0: opus_val16 celt_rsqrt_norm(opus_val32 x); michael@0: michael@0: opus_val32 celt_sqrt(opus_val32 x); michael@0: michael@0: opus_val16 celt_cos_norm(opus_val32 x); michael@0: michael@0: /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */ michael@0: static OPUS_INLINE opus_val16 celt_log2(opus_val32 x) michael@0: { michael@0: int i; michael@0: opus_val16 n, frac; michael@0: /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605, michael@0: 0.15530808010959576, -0.08556153059057618 */ michael@0: static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401}; michael@0: if (x==0) michael@0: return -32767; michael@0: i = celt_ilog2(x); michael@0: n = VSHR32(x,i-15)-32768-16384; michael@0: frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); michael@0: return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); michael@0: } michael@0: michael@0: /* michael@0: K0 = 1 michael@0: K1 = log(2) michael@0: K2 = 3-4*log(2) michael@0: K3 = 3*log(2) - 2 michael@0: */ michael@0: #define D0 16383 michael@0: #define D1 22804 michael@0: #define D2 14819 michael@0: #define D3 10204 michael@0: michael@0: static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x) michael@0: { michael@0: opus_val16 frac; michael@0: frac = SHL16(x, 4); michael@0: return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac)))))); michael@0: } michael@0: /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ michael@0: static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x) michael@0: { michael@0: int integer; michael@0: opus_val16 frac; michael@0: integer = SHR16(x,10); michael@0: if (integer>14) michael@0: return 0x7f000000; michael@0: else if (integer < -15) michael@0: return 0; michael@0: frac = celt_exp2_frac(x-SHL16(integer,10)); michael@0: return VSHR32(EXTEND32(frac), -integer-2); michael@0: } michael@0: michael@0: opus_val32 celt_rcp(opus_val32 x); michael@0: michael@0: #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b)) michael@0: michael@0: opus_val32 frac_div32(opus_val32 a, opus_val32 b); michael@0: michael@0: #define M1 32767 michael@0: #define M2 -21 michael@0: #define M3 -11943 michael@0: #define M4 4936 michael@0: michael@0: /* Atan approximation using a 4th order polynomial. Input is in Q15 format michael@0: and normalized by pi/4. Output is in Q15 format */ michael@0: static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x) michael@0: { michael@0: return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x))))))); michael@0: } michael@0: michael@0: #undef M1 michael@0: #undef M2 michael@0: #undef M3 michael@0: #undef M4 michael@0: michael@0: /* atan2() approximation valid for positive input values */ michael@0: static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) michael@0: { michael@0: if (y < x) michael@0: { michael@0: opus_val32 arg; michael@0: arg = celt_div(SHL32(EXTEND32(y),15),x); michael@0: if (arg >= 32767) michael@0: arg = 32767; michael@0: return SHR16(celt_atan01(EXTRACT16(arg)),1); michael@0: } else { michael@0: opus_val32 arg; michael@0: arg = celt_div(SHL32(EXTEND32(x),15),y); michael@0: if (arg >= 32767) michael@0: arg = 32767; michael@0: return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); michael@0: } michael@0: } michael@0: michael@0: #endif /* FIXED_POINT */ michael@0: #endif /* MATHOPS_H */